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Abstract: In this study, we present a novel local image descriptor, which is very 
efficient to compute densely, with semantic information based on visual 
primitives and relations between them, namely, coplanarity, cocolority, distance 
and angle. The designed feature descriptor covers both geometric and appearance 
information. The proposed descriptor has demonstrated its ability to compute 
dense depth maps from image pairs with a good performance evaluated by the 
Bad Matched Pixel criterion. Since novel descriptor is very high dimensional, we 
show that a compact descriptor can be sustitable. An analysis of size reduction 
was performed in order to reduce the computational complexity with no lose of 
quality by using different algorithms like max-min or PCA. This novel descriptor 
has a better results than state-of-the-art methods in stereo vision task. Also, an 
implementation in GPU hardware is presented performing time reduction using a 
NVIDIA R GeForce R GT640 graphic card and Matlab over a PC with 
Windows 10. 
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1. INTRODUCTION 

Computer vision is an interdisciplinary field that 
seeks to perform process as similar to human vision, 
employing methods that can understand digital 
images and video, such as acquisition, processing 
and analyzing. Some tasks in computer vision 
include segmentation, object detection and 
identification by extracting high-dimension data 
from the real word and transforming data using 
descriptor that can interface with other processes. 

Stereo vision is one of the most active research 
areas in the computer vision. Therefore, a variety of 
solutions and variations of existing methods have 
been presented for specific needs or requirements. 
The goal of stereo vision is to estimate the depth of a 
scene by disparity maps, matching similarities from 
a pair of images. A taxonomy of existing stereo 
algorithms that allows the dissection and comparison 
of individual algorithm components is presented in 
[1]. This taxonomy is based on four steps that stereo 
algorithms typically perform: 

1. Matching Cost 
2. Cost aggregation 
3. Disparity computation 
4. Disparity refinement 

The sequence of the steps depends on the type of 
an algorithm, where local algorithms typically 
follow the steps 1,2,3 but some others combine steps 
1,2 and use matching costs based on the support 
region. On the other hand, global algorithms do not 
perform an aggregation step but rather seek a 
disparity assignment (step 3) that minimizes a global 
cost function (step 1). 

Some authors focus their efforts in one or more 
steps, depending on particulars goals. Difference 
matching cost have been studied; the most common 
is based in pixel difference and includes squared 
intensity differences (SAD) and absolute intensity 
differences (AD); also, in the video processing field, 
the mean absolute difference (MAD) and mean-
squared error are more frequently used. Other 
approaches use gradient-based measures and non-
parametric measures, such as rank and census 
transform. It is also possible to perform a 
preprocessing step, using histogram equalization or 
Gaussian filters. 

Local and windows-based methods aggregate the 
matching cost over a support region employing 
squared windows or Gaussian convolutions, 
shiftable windows or windows with adaptive sizes. 
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Algorithms can be classified by the disparity 
computation step, local methods, global methods 
and dynamic program methods. 

Local methods emphasize on the matching cost 
computation and cost aggregation steps, computing 
the final disparity by a “winner take all” methods. 
While global methods often skip the aggregation, 
they formulate an energy minimization framework. 
The objective is to find a disparity function that 
minimizes a global energy. More recently, max-flow 
and graph-cut methods have been proposed to solve 
a special class of global optimization problem. 
Dynamic programming methods find the global 
minimum for independent scanlines as an 
optimization problem. These approaches work by 
computing the minimum-cost path through the 
matrix of all pairwise matching costs between two 
corresponding scanlines. 

Most state-of-art methods rely on local measure 
to estimate the similarity of pixels across images and 
then on impose global shape constraints using some 
aggregation cost such as dynamic programming [2], 
level sets [3], graph-cuts [4], PDE [5], or EM [6].  

Image descriptors can be classified as global and 
local descriptor. 2D local features such as SIFT are 
commonly used in object detection task, while 
global descriptors, such as visual contours have been 
proved to provide a semi-global overview of a scene 
and give more information than local features about 
the shape of an object, also, they are flexible enough 
for task such as classification and recognition.  

2D visual contours and their relations have been 
used in computer vision and robotics in various 
contexts; for example, in contour relations [7], they 
are used as features for object recognition. Similarly, 
Henricsson [8] uses geometrical relations such as 
proximity, curvilinearity and symmetry between 
contours to describe objects based on combinations 
of these relations. Contours in computer vision are 
important because they provide a means to group the 
local features together as well as saving the spatial 
relations between these contours [9]. 

 
1.1 RELATED WORKS 

Let present brief review of similar papers. Local 
image descriptor has already been used in dense 
matching, although in a more traditional way to 
match only sparse pixels that are feature points. 
More of the existing stereo vision algorithms are 
based on pixel difference and present matching cost 
and disparity refinement. For example, in [10] 
(SAD+Wavelet) techniques are performed with 
aggregation cost using a multilevel disparity map 
(DM) approach and matching cost, such as SAD 
combined with a wavelet; finally, an adaptive filter 
is used during the postprocessing step. A variation of 

this approach is presented in [11] (MDEC+SSIM) 
technique, where a pyramid DM estimation is used 
with SSIM measure as the matching cost. Methods 
based on a global approach usually present better 
performance at high computational cost, such as 
graph-cuts, belief propagation, or semi-global 
matching. Paper [12] presents an algorithm based on 
Randow Walk with Restar Algorithm (RWR) 
updating the matching cost aggregated into 
superpixels. 

Paper [13] presents a hybrid method using 
transition pixel values in horizontal and vertical 
orientations and a polynomial curve fitting, showing 
robustness under radically different radiometric 
conditions. This approach uses a “winner take all” 
disparity computation. Yong in [14] presents a 
feature detector using SURF, SIFT, and HOG 
algorithms to find interesting points and to evaluate 
the quality of the points detected; then, a regression 
of the multimodal image is used to compute the 
disparity map. 

Promising Daisy descriptor [15] advocates an 
approach based on SIFT and GLOH, it has been 
designed to obtain robustness to perspective and 
lighting changes and have been proved to be optimal 
for dense matching. Another local descriptor mainly 
used for image correlation is the Scale Invariant 
Descriptor (SID) [20]. This descriptor uses a 
combination of log-polar sampling with spatially 
varying filtering that converts image scaling and 
rotation into translations. Scale invariance is 
achieved by taking the Fourier Transform Modulus 
(FTM) of the transformed signals because the FTM 
is translation invariant. 

In this paper, we propose novel local feature 
descriptor based on visual primitives (VP). 
Additionally, the semantic information is obtained 
using the relation between visual primitives (VPR). 
These relations are cocolority, coplanarity, normal 
distance and the angle between them. The principal 
difference between of novel descriptor and existing 
approaches is that it can extract structural and 
semantic information from an image; additionally, 
the designed descriptor has demonstrated robustness 
against radiometric distortions. Also, a feature 
descriptor size reduction is applied in order to save 
computational cost and memory. The designed 
descriptor is implemented in a GPU to accelerate 
processing speed, which is important for real-time 
applications. The designed descriptor is used with 
traditional depth map estimation algorithms, 
confirming their performance via traditional quality 
metrics. 

The remainder of the paper is organized as 
follows. In Sect. 2, the novel local feature descriptor 
is explained and the framework for disparity 
estimation is presented with the dimension 
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reduction. In the Sect. 3 the experimental results are 
presented. Finally, Sect. 4 concludes this study by 
discussing the results of the proposed approach. 

 
2. VISUAL PRIMITIVE RELATION 

DESCRIPTOR 

The framework of designed descriptor is 
explained as follows; for a given input image in 
RGB space, we first should compute a space color 
conversion from the RGB color space to the CIELab 
space and then apply the monogenic filter in the L 
channel. This filter gives the information about 
visual primitives: magnitude, phase, and orientation. 
Next, this information should be used to obtain the 
relation between them and to form the feature 
vector. We take advantage of the two degrees of 
freedom when designing monogenic filters to extract 
information. To measure quality performance, the 
designed feature descriptor is used as a metric for 
stereo matching similarities across a pair of images. 
Then, this measure is used in the traditional block 
matching algorithm to estimate a depth map. 

 
2.1 VISUAL PRIMITIVES 

The visual primitives are a set of visual 
descriptors. These primitives [21] describe edge 
structures by means of several properties that are 
relevant for edges only. They have been used to 
formalize different contexts in visual scenes, as well 
as 6D motion and 3D spatial context. These 
descriptors have been employed in several 
applications such as learning of object 
representations, pose estimation, motion estimation, 
and vision-based grasping. 

The primitives express explicitly important 
structural properties of the edges such as local 
orientation, phase, color, and motion; this 
information is encoded in a multi-dimensional 
feature, where geometric and appearance cues are 
separated. Information about these different 
properties can be extracted from images by applying 
a variety of linear and non-linear local filtering 
operations.  

Current work makes use of the monogenic signal 
presented by Felsberg and Sommer [36]. It uses a 
bandpass filter that is radially symmetric around the 
origin ('even') in both the frequency domain and 
image domain. The Log-Gabor is used as even filter, 
as follows: 
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Two odd parts of the filter, ��� and ���, using 
the Riesz transform, are presented in eqs. 2 and 3. 
Each of the two resulting filters are odd-symmetric, 
with the axis of symmetry along the two image axes. 
After filtering, we can present the monogenic signal 
as a combination of the three parts (one even, two 
odd) as a vector shown in eq. 4: 

 
�� = ��(��), �(��), �(��)�. (5) 

 
These three components can be explained as 

spherical polar coordinate system, using the radius, 
elevation angle, and azimuthal angle. The local 
amplitude is the radial part of the representation 
A(x); the local phase is found from the angle 
between the even part and the combined odd part φ; 
and the local orientation θ is the orientation of the 
odd filter and represents the dominant direction in an 
image at point x. The visual primitive is a vector as 
shown in eq. 3. Fig. 1 presents an example of the 
visual primitives from an image to obtain visual 
primitives. 

 

 

Figure 1- Visual primitives from the image Airdock. 

 
2.2 RELATIONS BETWEEN VISUAL 
PRIMITIVES 

Since primitives carry geometrical and 
appearance information, the primitives have 
attributes such as the mean color, position and 
orientation. The mean color is defined in the CIELab 
color space because of the statistically less 
correlated behavior of an image in the CIELab 
space. These attributes together with the geometrical 
and visual of primitives give relations between 
primitives that can be used within the context of 
various reasoning processes. Let describe certain 
primitive relations. 

Angle: The angle between two primitives is 
defined by using the orientations of the primitives 
as: 

 

�����, ��� = ����� �
��.��

|��|����
�. (6) 

 
Normal Distance: The normal distance between 

two primitives is defined by the distance from one 
primitive's position to the line created by the others 
primitive orientation and position. Therefore, the 
distance between the ith and jth primitives in a scene 
is defined as: 
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��� ���, ��� = |�� − (����)��|, (7) 

 
Coplanarity: The coplanarity of entities can be 

measured by their elongation with a common plane. 
We define the coplanarity between two primitives as 
the mean angle between a common plane and the 
best-fit lines of the primitive. Therefore, the 
coplanarity between the ith and jth primitive in the 
scene can be defined as follows: 

 

������, ��� =
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��. (8) 

 
Cocolority: The cocolority between two 

primitives is defined as the color difference between 
the colors on the primitive. The color difference is 
calculated in such a way: 

 

�� = ���� − ���
�

+ ��� − ���
�

+ ��� − ���. (9) 

 
The relations between primitives are illustrated in 

Fig. 2. 
 

 

Figure 2 -Illustration of primitives relations. a) 
Angle; b) Normal distance; c) Coplanarity; 

d)Cocolority. 

 
2.3 VISUAL PRIMITIVE RELATIONS 
DESCRIPTOR 

We present a formal definition of the designed 
visual primitive relations descriptor (VPR). For a 
given input color ����, we convert it from the RGB 
to the CIELab ���� space since the cocolority 
relation is defined in eq. 9. The monogenic signal is 
performed using � scales and σ Gaussian kernels, so 
S*σ filters are used. Each filter is then convolved 
with the L channel of image �� obtaining 3*S*σ 
different components of the monogenic signal: 
��{��, ��}, ���{��, ��}, ���{��, ��}, calculated at �� 

scale wavelengths and �� Gaussian kernel with 

i=1...,S and j=1...,Σ. We obtain the visual primitives 
with different responses.  

At each pixel location, the designed descriptor 
consists of a vector made of values from the visual 
primitive relations located on a squared window 
centered on the location. Let to h(x, y) represent the 
vector formed of the values at location (�, �) in an 
image: 

 

ℎ��(�, �)

= ����,����, ���(1,1), … , ���,����, ���(�, �)�
�

, 
(10) 

 
where ���,� is the angle relation described in eq. 

6 between location (�, �) and location (�, �) in the 
neighborhood inside window � from the filter 
chosen response at scale �� and Gaussian kernel σ. 

We normalize this vector to unit and to denote 
the normalized vectors by ℎ�(�, �). If σ is the value 
of Gaussian kernels used and S is the number of 
scales of the monogenic signal, the feature vector of 
the angle relation ��(��, ��) for a location (��, ��) 
is defined as the concatenation of ℎ vectors: 
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For the normal distance and coplanar relations, 

we perform the same structure as the angle relation. 
The relationship vector ℎ��(�, �) and ℎ��(�, �) at 
point (�, �) is shown as follows: 

 
ℎ��(�, �)

= �����,����, ���(1,1), … , ����,����, ���(�, �)�, 
(13) 

ℎ��(�, �) = �����,����, ���(1,1), … , ����,����, ���(�, �)� (14) 

 
where ���(�, �)is the normal distance relation 

between the location (�, �) and location (�, �) 
described in eq. 7 and ���(�, �) is the coplanar 
relation shown in the eq. 8. The feature vector of the 
normal distance relation ���(��, ��) and ���� is 
concatenated as follows: 
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Because the cocolority relation does not depend 

on the filter parameters, the feature vector is defined 
as: 

 
��(��, ��) = ����,�(1,1), … , ���,�(�, �)�

�
, (17) 

 
where ��(�, �) is the cocolority relation between 

the location (�, �) and the neighborhood (�, �) 
inside the window �.  

The final descriptor ���(��, ��) for location 
(��, ��) is defined as the concatenation of the � 
vectors of primitives relations: 

 
���(��, ��)

= �
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The order of the elements in the vector ��� is 

selected using PCA analysis. The vector is sorted 
using the eigenvalues from maximum to minimum, 
forming the elements of the descriptor as follows: 

 
���(��, ��)

= �
���(��, ��), ��(��, ��), ���(��, ��),

���(��, ��)
�

�

, 
(19) 

 
2.4 Computational Complexity  

VPR descriptor is parameterized by the number 
of scales �, the value of Gaussian kernels σ, and the 
size of the rectangular window �. Assuming that 
the image has � pixels, the filters in the frequency 
domain with size � are created. These filters are 
convolved with the image spectrum to produce 
different response versions of the visual primitive 
components. 

Therefore, at each location of an image, the 
relations between primitives are computed inside a 
block window �, where it should be used (2� +
1)� for each primitive relation. Therefore, 
computing all the descriptors of an image requires: 
4Σ� convolutions, and [(2� + 1)� − 1] × � × Σ ×
� multiplications. 

Table 1. Computational complexity of VPR descriptor. 

 Daisy VPR Descriptor 
Conv. 2� × � + 1(1�) 4 × Σ × � 
Sampling � × (� × � + 1) - 
Operations 2� × � + � × � [(� × � + 1)�

− 1] × Σ 

 
Table 1 shows a complexity comparison between 

the Daisy descriptor and VPR descriptor. The Daisy 
descriptor parameters are: � is the number of bins in 
a histogram, � is the number of convolved 
orientations layers, and � is the number of 
histograms at a single layer. One can see that the 
VPR descriptor has a quadratic growth in contrast 
with DAISY.  

Table 2. Number of operations required for the 
proposed VPR and Daisy descriptor. 

 Daisy VPR 
Descriptor 

Convolutions 49(1�) 16 
Sampling 1,562,500 - 
Operations 1,000,000 20,000,000 

 
Daisy feature descriptor proposes the use of the 

following parameters: � = 8, � = 3, and � = 8; So, 
we can see that DAISY requires 49 convolutions by 
1D direction, 25 sampling per pixel and 24 
operations by pixel. If we insert parameters � = 4, 
� = 2, σ=2, it can be observed that the designed 

descriptor requires 192� operations and 16 
convolutions. Novel descriptor have advantage in 
comparison with Daisy one, it can be easily 
parallelized because each relation at point �, � is 
calculated separately. A summary of this is shown in 
Table 2 considering an image with size 250 × 250. 

The designed framework that appears to 
demonstrate the competitive quality performance 
was implemented using an Intel Core i7-3770 CPU 
at 3.40Ghz with 8 GB of RAM memory. Time 
values were computed using this CPU. Table 3 
presents the processing time values for the Daisy 
and VPR descriptor. 

The advantage of VPR descriptor is that can be 
implemented using parallel programing. The main 
process of our work is based on the visual primitives 
and the monogenic signal, so they should be 
computed in GPU. We use the Felsberg’s 
monogenic filters described in eqs. 1 and 2, that 
allow to compute the visual primitive components 
by Fast Fourier Transform (FFT). The filters are 
computed in the frequency and in the image 
spectrum domains in order to obtain the visual 
primitives components. Once we obtained the visual 
primitives, the relations can be computed in parallel 
matter.  

Let perform a kernel by each block window �, 
this means that we compute the relation between 
primitives for each location (�, �) in one kernel. 
Each a kernel should perform [(2� + 1)� − 1] ×
Σ × �. We applied this method for each primitive 
relation that should be computed. 

The time for the primitive calculation is for only 
one scale and for one sigma value. The calculation 
time for a window size 3x3 is 0.084�� for each 
visual primitive relation. Finally, the total time value 
to compute designed descriptor result is 0.76�� and 
it is shown in Table 3, while Daisy descriptor time in 
GPU computes result during 9.96�� as it was 
presented in [24]. 

Table 3. Processing times required for the proposed 
VPR and for Daisy descriptors. 

Technique Time 
CPU(Seconds) 

Time GPU 
(Miliseconds) 

Daisy 0.25 9.96 
VPR 47.04 0.76 

 
We emphasize that the novel descriptor VPR 

based on visual primitives and their relations can 
obtain the structure and semantic information of an 
image. The novel descriptor is robust against 
radiometric distortions such as illumination and 
exposure changes. Additionally, VPR descriptor can 
be used together with state-of-the-art methods to 
improve quality. Even the computation cost could be 
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higher than that of Daisy descriptor; the quality 
results shows that it is worth it. 

 

2.5 Feature Descriptor Reduction 

The descriptor’s size can be obtained from eq. 
19, where is [Σ × (2� + 1)�, 3� + 1]. As is shown, 
the descriptor’s size grows exponential, using the 
parameters � = 2, Σ = 4 and � = 4 the descriptor 
size will be [324,7] for each pixel in an image.  If 
the image size is [490,720], we have 685,843,200 
feature values, and using double format, we will 
need up 4,677,684,480 bytes. In order to reduce this 
size, different reduction algorithms are applied, such 
as, statistic algorithms, direction approach and PCA. 

For statistic algorithms, at each vector relation 
descriptor ��, we applied an operation � that can be 
max, min, or mean algorithm, so the final descriptor 
is formed as follows: 

 
��� = [�(���), �(��), �(���), �(���)] (20) 

 
and the dimension is reduced to [Σ, 3� + 1]. 

Second approach to reduce the descriptor 
dimension consists in computing the relations 
around specific directions. Let consider the center of 
the window ��, ��, and calculating the relation 
between the point (��, ��) along eight directions 
(North, South, East, West, NE, NW, SW, SE) as 
shown in the Fig. 3a. By this way, the final 
dimension is [Σ × 8 × �, 3� + 1]. 
At least, a PCA analysis should perform along the 
location of the descriptors. The eigenvalues are 
calculated for each location inside the window and 
select the half top values.  The locations used to 
compute the relations are shown in the Fig. 3b. The 
dimensions after applying PCA reduction are 

�Σ ×
(����)�

�
, 3� + 1�. 

 

 
a)                                        b) 

Figure 3 -Location calculated for image reduction 
a)8 directions; b) PCA. 

 
The computation complexity reduction for each 

algorithm is summered in the Table 4. One can see 
observing this table that the statistic methods get the 
best reduction and PCA method only can reduce the 
size to the half. 

Table 4. Computational complexity reduction by 
different algorithms. 

 Max/Min/
Meann 

8 Dirct. PCA 

Operations 1,750,000 8,000,000 10,000,000 

 

3. EXPIREMENTS AND RESULTS 

In this section, we discuss the results of the 
experiments that we performed to justify the 
performance of the designed descriptor in the 
reconstruction of the disparity maps. First, to 
understand the influence of VPR parameters, we 
perform a parameter sweep experiment. Then, a 
comparison of the designed descriptor and other 
descriptors in depth map estimation is performed. 

 

3.1 Data 

To evaluate the performance of the proposed 
method, we used the dataset Middlebury [23]. The 
2014 dataset was employed for testing and 
comparing with disparity maps. These datasets 
contain up to nine different pair images with their 
ground truth at full size (width: 1330-1390 pixels, 
height: 1110 pixels) half size, and one-third size. 
The 2014 dataset contains 33 image pairs divided 
into three sets, 10 for training, 10 for testing and 13 
additional images without a ground truth provided. 
Additionally, this dataset presents two views of each 
image pair, taken under several different 
illuminations (L) and different exposures (E). 

 
3.2 Quality criteria 

In quality analysis, the quantitative metric 
Percentage of Bad Matching Pixels (B) is employed, 
justifying the performance of the proposed 
framework. To compute the selected metric, the 
ground truth GT for density maps (DM) obtained 
from the Middlebury Stereo Vision website for each 
a stereo pair and the DM estimates obtained by 
proposed descriptor are employed.  

The B values are calculated as follows: 
 

� =
1

�
Σ�,�(|���(�, �) − ��(�, �)| > ��) (20) 

 
where N is the total number of pixels in an image 

or frame, ���is the estimated disparity, and �� is 
the ground truth.  δ is the error threshold difference 
for each a pixel valuated, commonly used value is 
2.0. 

 

3.3 Comparison with other descriptors 

To compare the novel feature descriptor with 
other descriptors, we used the database Middlebury 



Dario Rosas, Volodymyr Ponomaryov, Rogelio Reyes-Reyes / International Journal of Computing, 17(3) 2018, 171-179 

 

 177

2014 at a quarter side of the original image. We 
employed commonly used SID and Daisy 
descriptors for comparison because Daisy is one of 
the most cited descriptors among state-of-the-art-
methods, and SID is based on a monogenic signal. 

Table 5. Bad Percentage Pixel for the dataset 
Middlebury. 

Image Daisy SID VPR  
Adirondack 25.76 17.50 24.35  

Jadeplant 27.58 52.41 45.36  

Motorcycle 17.06 10.71 16.32  

Piano 22.57 13.93 23.37  

Pipes 27.10 30.60 25.26  

Playroom 24.31 17.05 22.00  

Recycle 18.16 15.87 19.26  

Image 
Daisy 

E 
VPR E 

Daisy 
L 

VPR L 

Adirondack 25.62 24.69 40.27 34.6 

Jadeplant 24.81 23.20 28.26 20.5 

Motorcycle 16.16 16.34 25.44 21.4 

Piano 22.68 24.02 33.05 28.7 

Pipes 26.48 25.45 41.96 39.2 

Playroom 23.78 21.96 32.75 29.7 

Recycle 22.83 23.67 29.01 38.9 

 
We apply the parameters � = 2, � = 4 and � =

4, the parameters for SID and Daisy have been 
chosen according to their respective works. Table 5 
shows the results in the tested dataset for these three 
feature descriptors using traditional block matching 
to compute the depth map. The first column presents 
results for the Daisy descriptor. This descriptor 
demonstrates sufficiently good performance, with B 
criterion value less than 20%; the worst performance 
can be seen for the Jadeplant image, and the best 
performance appears in the Motorcycle image. The 
second column is the B for SID; it appears that the 
descriptor demonstrates better performance, but 
since the SID descriptor performs image reduction, 
the disparity map is also reduced, and it cannot be 
compared directly. Additionally, the SID cannot be 
performed for large images. The third column 
presents results for the novel descriptor, where one 
can see that they are very close to those of Daisy. 
Next, the columns show the experiment results for 
testing the Daisy and VPR descriptor in the case of 
image exposure (E) and lighting (L) changes. 
Finally, we can conclude that the novel descriptor 
shows better performance in almost all tested 
images, even with exposure and lighting changes.  

Observing the results for the image Piano, one 
can see more differences between the Daisy 
descriptor and the designed one, but these 
differences cannot be easily seen in the depth map. 
The Daisy descriptor exhibits lower performance 
when lighting differences are present, and the VPR 
descriptor appears to demonstrate robustness against 
these changes. 

As we used traditional block matching for cost 
aggregation, we cannot resolve the occlusion 
problems, so for the areas where the depth could not 
be calculated correctly, most of the differences 
appear because of occlusion.  

Table 6. Bad Percentage Pixel for descriptor 
dimensions reduction. 

Image Max Min Mean 8 Dirs. 
Adirondack 48.66 50.90 40.02 28.88 
Jadeplant 47.49 47.53 49.35 49.36 

Motorcycle 35.01 36.40 30.46 19.65 
Piano 45.95 48.29 37.72 27.03 
Pipes 46.95 47.59 41.42 28.38 

Playroom 41.66 44.07 34.33 24.77 
Playtable 41.03 41.56 36.87 30.24 
Recycle 46.45 48.57 37.14 26.98 
Shelves 40.09 41.19 37.69 30.51 
Vintage 56.53 56.04 55.73 61.90 

Image PCA VPR   
Adirondack 26.14 24.35   
Jadeplant 48.59 45.36   

Motorcycle 17.73 16.32   
Piano 24.94 23.37   
Pipes 26.62 25.26   

Playroom 23.06 22.00   
Playtable 27.58 19.26   
Recycle 23.06 24.35   
Shelves 28.31 27.55   
Vintage 62.11 63.48   

 
The Table 6 shows the bad percentage pixel 

when the dimension descriptor reduction was 
applied. As it can been seen, for eight directions in 
case of using PCA method VPR algorithm presents 
better results in comparison when the statistic 
approach is applied, even statistic algorithm 
performs sufficiently bigger reduction. Calculating 
the relations only at the locations obtained by the 
eigenvalues give us the best results with a mean 
quality lost less than 2%. Appling the calculations 
for eight directions can be obtained good 
performance with a lost quality around 5%.  So, we 
can conclude that using PCA analysis is the best way 
to reduce to the half the descriptor dimension but 
saving quality. 

 
4. CONCLUSIONS 

Novel descriptor VPR based on visual primitives 
and the relations between them has been designed as 
a preprocessing step in stereo vision algorithms. The 
performance of the novel descriptor has been tested 
in the disparity maps computing. The VPR 
descriptor appears to demonstrate better 
performance in comparison with the Daisy and SID 
descriptors; also, it can be used for images of large 
sizes. Additionally, experiments with different 
exposure and illumination changes have been 
performed, demonstrating that VPR descriptor 
provides better robustness in comparison with other 
descriptors, in the case of lighting changes, which 
are more challenging. The improvement in stereo 
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vision algorithm was performed in the preprocessing 
step; the novel descriptor demonstrates the ability to 
improve the quality results when implemented with 
state-of-the-art methods. Computing our descriptor 
takes more computational complex using single 
core, so is important to seek for a faster computation 
of the descriptor for all image pixels. This could 
have implications beyond stereo reconstruction 
because dense computation of ijmage descriptors is 
fast becoming an important technique in other task, 
such as object recognition, object detection or facial 
aging analysis.   
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