
Mohammed Eshtay, Azzam Sleit, Monther Aldwairi / International Journal of Computing, 18(1) 2019, 45-52

 45

IMPLEMENTING BI-TEMPORAL PROPERTIES INTO VARIOUS NOSQL
DATABASE CATEGORIES

Mohammed Eshtay 1), Azzam Sleit 1), Monther Aldwairi 2,3)

1) University of Jordan, Jordan, m.eshtay@fgs.ju.edu.jo, azzam.sleit@ju.edu.jo
2) Jordan University of Science and Technology, Jordan, munzer@just.edu.jo

3) Zayed University, United Arab Emirates, monther.aldwairi@zu.ac.ae

Paper history:
Received 27 September 2018
Received in revised form 4 January 2019
Accepted 7 March 2019
Available online 31 March 2019

Keywords:
NoSQL Databases;
Bitemporal Properties;
Cassandra;
Redis;
Column Oriented Stores;
Key-value Stores.

Abstract: NoSQL database systems have emerged and developed at an
accelerating rate in the last years. Attractive properties such as scalability and
performance, which are needed by many applications today, contributed to their
increasing popularity. Time is very important aspect in many applications. Many
NoSQL database systems do not offer built in management for temporal
properties. In this paper, we discuss how we can embed temporal properties in
NoSQL databases. We review and differentiate between the most popular
NoSQL stores. Moreover, we propose various solutions to modify data models
for embedding bitemporal properties in two of the most popular categories of
NoSQL databases (Key-value stores and Column stores). In addition, we give
examples of how to represent bitemporal properties using Redis Key-value store
and Cassandra column oriented store. This work can be used as basis for
designing and implementing temporal operators and temporal data management
in NoSQL databases.

Copyright © Research Institute for Intelligent Computer Systems, 2019.
All rights reserved.

1. INTRODUCTION

Relational database management systems
(RDBMS) were and still dominant in the market of
database management systems because of the
services they provide such as transaction processing
and the well-established structure. RDBMS apply
the same relational model. All of them use the SQL
language and they differ by the enhancements they
provide Cattell (2011). Despite the popularity of
RDBMS, they faced a set of challenges due to the
wide spread of the INTERNET, the emergence of
many fields such as social networks and the vast
amount of data to be handled. RDBMS performance
and scalability are two important properties that
were not adequate for many of the new distributed
applications. In many cases, the complexity of ACID
(Atomicity, Consistency, Isolation, Durability)
design aspect of RDBMS to guarantee the
transaction reliability is not required in some
applications and can be passed for the sake of other
aspects such as the performance [1]. For example, in
the case of social networks, we need some sort of
high scalability with high degree of structure

flexibility and set of simple operations [2, 3]. Due to
these needs, many systems emerged to support
scalability. They depend on a set of simple
operations and do not follow the strict relational
databases design principles. These systems are
called NoSQL (Not only SQL) [3, 4]. The term
NoSQL is generally used to refer to non-relational
databases. It describes the distributed no. relational
databases that emerged to deal with the huge amount
of data generated by the Web 2 applications [5]. In
the age of data, big data played an essential role in
pushing the need for NoSQL and in the growing
popularity of such systems. The flexible data models
offered by these systems in contrast to the strict rigid
structure of RDBMS and the continues need for data
availability encouraged the use of NoSQL
databases [3]. Google was the leader in adopting
these systems by instituting BigTable [6] in 2006,
followed by Dynamo [7], which was introduced by
Amazon in 2007. Properties such as the ability to
scale rapidly, performance, continuous availability
and partition tolerance overcome the historical
satisfaction of relational database model. These

computing@computingonline.net
www.computingonline.net

Print ISSN 1727-6209
On-line ISSN 2312-5381

International Journal of Computing

Mohammed Eshtay, Azzam Sleit, Monther Aldwairi / International Journal of Computing, 18(1) 2019, 45-52

 46

properties increase the interest in NoSQL database.
Furthermore, they cause fast and huge development
because of the attractiveness of the model for many
of the new applications [8]. On the contrary, this fast
development led to the emergence of the problem of
heterogeneity. Many NoSQL database developed
and each of which has its own development API to
offer for the user. We also note that the majority of
these systems do not support or discuss the
bitemporal properties that are needed in many
applications [9]. The need for temporal data
management is seen important in many well-known
applications such as insurance, airline ticket
reservations, medical applications and more. The
temporal data management is discussed from many
angles in the RDBMS, and temporal databases are
considered as an extension of RDBMS. On the other
hand, the temporal properties still need much work
to be implemented and used in NoSQL databases [1]
specially with the emerging applications that
produce huge amount of timestamped data, such as
sensor data, financial tickers and e-commerce [10].
Moreover, the relation between temporal data and
NoSQL databases is not yet well configured and the
door is open for more research to make NoSQL
systems benefit from the bitemporal properties. In
order to solve the aforementioned issues, this paper
discusses bitemporal properties and proposes
different variants to help embed the bitemporal
characteristics in NoSQL databases. Since NoSQL
databases are heterogeneous and conform to
different structures, these variants are dealing with
the problem taking into account the unique
properties of each kind of NoSQL databases
categories. The models will cover Key-value stores
and Column Oriented Stores. We begin with a
discussion of the principal features of NoSQL
databases (Section 2). In Section 3, we describe
concepts that are essential to understanding temporal
data management. Section 4 proposes how we can
embed temporal data into NoSQL databases. Section
5 concludes the paper.

2. NOSQL SYSTEMS

The main reason for the popularity of the NoSQL
systems is their appropriateness for the new type of
applications that require strong support of
scalability, good performance, and big data
management. NoSQL databases overcome the
limitations we faced in RDBMS such as the growth
of the volume of big data, semi-structured data and
the increased data connectivity. In RDBMS, the data
must be structured and must follow the strict model
of the relational model [9]. In contrast to RDBMS,
NoSQL databases have the ability to scale
horizontally besides the vast amount of data that is

handled by these systems. NoSQL databases are
divided into four main categories: Key-value stores,
Document stores, Column Oriented Stores, and
Graph Databases [11, 12].

2.1 KEY-VALUE STORES

The first and the simplest category of NoSQL
databases is Key-value stores. In this type, the data
is organized in a form of map; each value is attached
to a unique key. A key identifies a value and is used
for entering, retrieving and deletion of data. The
values in these systems are schema flexible. These
values that are attached to the keys might be of any
kind, they might be simple such as strings and they
might be of complex types such as arrays and
lists [2] (see Fig. 1). Key-value databases can be
imagined as a relation table with two fields: key and
value. The value field can take data of any type and
of any length, which make Key-value databases
suitable for unstructured data (typically BLOB).
These systems focus the attention on scalability
rather than consistency [13]. In addition, the
simplicity of their data model structure makes the
data retrieval very quick, which is appropriate for
big data processing supporting scalability and
availability characteristics. Some the famous Key-
value stores are: Amazon dynamo [7], LinkedIn
Voldemort [14], Redis [15] and Basho Riak [16].

Figure 1 – Key-value NoSQL Database

2.2 COLUMN ORIENTED STORES

In traditional RDBMS, the data is organized in
tables that consist of a collection of rows. Each row
is identified by a unique id to be used for lookup
process. Whereas column oriented NoSQL databases
focus on columns to store data rather than rows.
Column oriented databases tackle aspects such as the
big number of columns and the schema changes.
Each column has an indexed unique key to facilitate
data retrieval and only columns specified by the
query are needed to be retrieved, which will
minimize the I/O cost. Unlike RDBMS that stores

Mohammed Eshtay, Azzam Sleit, Monther Aldwairi / International Journal of Computing, 18(1) 2019, 45-52

 47

rows contiguously, these systems store column
values contiguously. Therefore, adding new Column
oriented databases store data in rows each of which
is identified by a primary key. The components of
the row are a set of column families that contain the
values of the given row. Furthermore, we can add
one more level of grouping using super columns.
Super column acts as a key for one or more columns
that it holds, Fig. 2. Comparing to other NoSQL
categories column stores databases provide better
indexing and querying capabilities than Key-value
stores. On the other hand, column stores face the
same limitation of Key-value stores that any logic
requiring relations must be implemented in the client
application [17]. HBase [18], Cassandra [19] and
Accumulo [20] are examples of column stores
database.

Figure 2 – Column Stores

2.3 DOCUMENT ORIENTED STORES

Another type of NoSQL is document based
databases. As the name indicates, these databases are
designed to manage documents. Documents are used
to store data using some standard data exchange
format such as JSON (JavaScript Option Notations)
or BSON (Binary JSON). The main idea of
document based databases is to provide big data
storage and good query performance. Documents
contain semistructured data in the form of attribute
name/value pairs. The data is represented as
documents and organized in a hierarchical way.
Each document contains set of nested fields and list
of attributes attached to the identifier that is used for
indexing and retrieving [12] as seen in Figure 3.
Documents dont adhere to a fixed schema; in the
contrary, they allow flexible schema in which
documents may contain subdocuments and
documents as lists [4, 10]. Document stores are
useful when data is suitable for representation as
documents i.e. blogging sites or content
management systems (CMS). The main problem of
the document stores is the absence of built-in
relationships between documents. MongoDB [21]
and Apache CouchDB [22] are examples of this
type.

Figure 3 – Document Stores

3. TEMPORAL DATA MANAGEMENT

Generally, traditional databases do not deal
directly with historical data and temporal
characteristics. In many cases, the handling of the
temporal properties is left to the developers. They
find, analyze and handle such data taking into
account the specific properties of the application [1].
The relational database systems that provide built-in
time management for data are called temporal
databases. Temporal databases support two types of
time properties, valid time and transaction time.
Valid time represents the validity interval of the
data, which is the period that the data is considered
true. The interval consists of start and end times. On
the other hand, transaction time is the time when
data stored in the database. The combination of both
valid time and transaction time forms bitemporal
properties [23]. Many researches have been
conducted on the relation between the RDBMS and
bitemporal data. For example, TSQL2 is an
extension of SQL that handles the bitemporal
properties and supports many temporal operators.
TDBMS tends to handle the temporal data in the
same way relational databases handle the normal
data. Nowadays, big data is one of the topics that
receive great interest in databases research [1].
Handling temporal data in big data systems raises
huge research challenges and many opportunities for
enhancements [24]. The main reason behind this
potential is that the previous techniques, tools and
algorithms developed to deal with bitemporal data in
preceding technologies such as RDBMS and
TDBMS in the foregoing years are inappropriate for
big data. In the case of big data, we are concerned
with the main characteristics of big data such as
scalability, performance, heterogeneity, and volume.
The line of the research is concerned with exploiting

Mohammed Eshtay, Azzam Sleit, Monther Aldwairi / International Journal of Computing, 18(1) 2019, 45-52

 48

the temporal properties of the big data model [24].
The implementation of bitemporal data management
usually involves implementing temporal operators
such as before, overlap and coalesce operations as
additional features [25]. Some work has been done
to manage the temporal characteristics in different
NoSQL databases. Hu and Dessloch in [26]
presented a definition for temporal operators such as
union, intersection, and filter. They applied it to
column-based NoSQL databases (CoNoSQLDBs).
Their work has been presented to overcome the
problem of implicit history representation (IHR)
which is originally implemented in CoNoSQLDBs.
Another NoSQL document-based database
implemented temporal characteristics is MarkLogic
[27]. They introduced set of functions to insert,
update and delete temporal documents. In addition,
they defined a set of terms such as instant, period,
valid time and system time. NoSQL databases
systems are platforms developed with big data needs
in mind. NoSQL databases are the best place to
embed and exploit bitemporal properties. The
discussion of the relation between NoSQL databases
and temporal characteristics still needs more effort
and research. In this paper, we will discuss how to
embed bitemporal properties in different NoSQL
systems.

4. EMBEDDING TEMPORAL
CHARACTERISTICS

The current NoSQL databases do not offer built-
in temporal data management, which is needed by
many applications and useful in many situations
[26]. The idea of this section is to present different
ways to extend different categories of NoSQL
databases in a way that allow them to handle
bitemporal data properties. The existed techniques,
tools, and algorithms that manage the temporal data
in the relational databases handle these data the
same way the handle normal data, which cannot be
applied directly to the new generation of databases.
Non-relational databases have different lenient data
model to deal with semi-structured data compared to
the relational model which has a strict rigid model.
In this section, we will introduce with case studies
how we can deal with temporal information in
various NoSQL databases.

4.1 KEY-VALUE

In Key-value stores, the data is stored as a Key -
Value pairs. The values are referenced by the keys.
In the case of bitemporal data, we need to manage
the valid and transaction times. We will propose set

of ideas to help in the management of temporal data
in Key-value stores. One of the solutions is to add
two attributes in each Key-value pair, one for the
valid time in the form of validTimeStart and
validTimeEnd attributes as shown in the below
example, Table 1.

Table 1. Embedding temporal data into Key-value
Stores

ROW

ID=1 FirstName Moe

 LastName Sami

 Salary 1000

 ValidTimeStart 24-1-2016

 ValidTimeEnd 24-4-2017

 TransactionTime 1-1-2016

In the example, we can see that the key is 1 and it

refers to the set of values (FirstName, LastName,
Salary, and ValidTime). The salary is a field of data
that is affected by the time. In order to keep
temporal property of the field salary, we need to
manage the valid time, in each inserted Key-value
pair we need to keep track of transaction time and
the valid time. Transaction time could be part of the
key so we will be able to retrieve chain of time
series information. A clearer and more structured
method leads us to another solution. The idea is to
divide the key into two parts to form a composite
key. This composite key consists of a part that
identifies the row, which is the regular key and the
other one represents the interval of the valid time. In
such a way, we can make the key suitable for
retrieving data according to the validity of the
information as depicted in Fig. 4.

Figure 4 – Embedding Temporal Data in Key-value
Stores

Redis [15] is a NoSQL database that is not only

supports simple Key-value structure in which a
string key associated with a string value but can also
be associated with a complex structure. Redis
supports various types of data structures, which
gives us wide flexibility to use them to manage
temporal data. The simplest are the string values
associated with a key. Lists, sets, sorted sets and
hashes are also value data structures available too.
Redis does not support built in temporal

Mohammed Eshtay, Azzam Sleit, Monther Aldwairi / International Journal of Computing, 18(1) 2019, 45-52

 49

management but it offers set of functions that can be
used to achieve this purpose. In the below example
we will use Radis hash to store the values of the first
and the last name of the employee and the history of
his payroll record. The structure of our Key-value
data is:

<majorKey><timeKey><dataValue>.

HMSET 1 firstName "John" lastName
"Smith"
HMSET 1:2014105 salary 1000 vs
2014101 ve 2015121
HMSET 1:20151210 salary 2000 vs
2015122 ve 201751
HMSET 1:2017051 salary 3000 vs
201752 ve +inf

The first statement creates an employee with a

major key of value 1. The next three statements add
the salary of the employee and the period of the
validity of this salary. Each one is referred to using
the key (major and time). The result of the executing
this code is depicted in Figure 5. One of the ways to
get the history of the employee with major key 1 is
to do something like:

keys 1:*

which will return
A. "1:20151210"
B. "1:2014105"
C. "1:201751"

Redis also offers sorted set that can be used to

store values. In such a case, we can use timestamps
to mark the historical data that we want to deal with.
In this case, we can implicitly specify the valid start
and end times. The valid start time is the current
timestamp and the valid end time is the timestamp of
the next value in the set. In the below example, we
show the structure of the data and we use Redis to
store and fetch set of historical data:

zadd StockPrice 1 11.1
zadd StockPrice 2 10.9
zadd StockPrice 3 10.5
zadd StockPrice 4 10.8
zadd StockPrice 5 12.15
zadd StockPrice 6 11.99
zadd StockPrice 7 11.9

To retrieve subset of the values:
zrangebyscore historical 2 4

It returns:
10.9, 10.5, 10.8

The aforementioned ideas will handle the

temporal properties using the available capabilities
of the existing NoSQL. It would be more efficient to
have specific time series type. This type would be
similar to a hash with internal handling of bi-
temporal properties and specific indexing
capabilities.

Figure 5 – Redis representation of temporal data

4.2 COLUMN ORIENTED

Column oriented NoSQL databases are inspired
by big table. The main idea is to have structured data
that can scale to large size. They have three main
components the key, the column family and the
super column. Row keys are the main object for data
distribution and partitioning. This row key property
is going to be exploited in the model that we propose
for temporal data management. Values belonging to
the same column are stored separately on the same
disk. Columns are grouped in super columns [17,
28]. The management of temporal data is going to be
different in this type since column oriented
databases attach the timestamps to the saved values.
In each column, multiple data values are stored and
sorted by their time stamps. One way is to use these
timestamps to handle valid time or transaction time;
actually, timestamps are more appropriate to
represent transaction time. Furthermore, maintaining
valid time can be done by adding additional columns
to express the valid time interval. Adding two
columns is trivial and straightforward solution, the
first column will represent the valid time start and
the second one is to represent valid time end. Table
2 shows an example of such data. In this example,
we can track the salary of the employee using the
validation time stored in the added two columns.

Mohammed Eshtay, Azzam Sleit, Monther Aldwairi / International Journal of Computing, 18(1) 2019, 45-52

 50

Table 2. Column Oriented

ID: 1

Name Salary vtFrom vtTo Tt

Sami 30000 1 2 1/1/2014

Sami 40000 3 5 1/6/2015

Sami 50000 5  10/10/2016

In the following, we will use Cassandra [19]

which is a well-known NoSQL column store to
show the ability to model temporal data in column
oriented databases. Cassandra is open source
distributed NoSQL system to handle the huge
amount of data across many servers. Cassandra has
introduced its query language, which is called
Cassandra Query Language (CQL) to work as an
interface for accessing it.

CREATE TABLE Employee (
 id INT,
 name TEXT,
 salary FLOAT,
 vtFrom DATE,
 vtTo DATE,
 tt TIMESTAMP,
 PRIMARY KEY (id,vtFrom)
);

with clustering order by (vtFrom
DESC);

Theoretically, Cassandra cannot be classified as a
temporal database, but it does provide strong
capabilities to handle temporal data. Although
Cassandra does not have interval (period) datatype
but still can give us the ability to define our own
time that has a start and end timestamps. One way is
to add a column that contains interval that represents
the valid time period the same way we deal with the
timestamp. The interval will be of the form
[validTimeS, validTimeE] and can be attached to the
values in column families or to the columns. The
data in columns can be modeled as a pair of (value,
interval) for example (Programmer, [1, 4]). Table 3
shows how we could represent data in column
oriented NoSQL databases.

Table 3: Embedding temporal data into Column
Stores

ID Name Salary

1 Sami (500,[1,2]),

 (700,[3,4]),

 (1000[5,])

CREATE TYPE salary (
 amount FLOAT,
 vtFrom TIMESTAMP,
 vtTo TIMESTAMP
);

CREATE TABLE employee (
 id INT PRIMARY KEY,
 name TEXT,
 payroll map<TIMESTAMP,
frozen<salary>>
);

INSERT INTO employee(id, name,
payroll)

VALUES (1,
 'Sami',

{'1/1/2015':
{salary: 500,

 vtFrom: '1/1/2015',
 vtTo: '31/5/2016',

}});

UPDATE employee

SET payroll = payroll
+{'5/6/2016':
 { salary: 50000,
 vtFrom: '1/6/2016',
 vtTo: '1/10/2017' }}

 WHERE id = 1;

5. CONCLUSIONS

Handling temporal data and adding bitemporal
characteristics to the non-relational databases is a
hot research area. The need for this implementation
is obvious because of the increasing popularity of
NoSQL databases and the vast number of
applications that require temporal data management.
In this paper, we presented the three main categories
of NoSQL databases and proposed set of solutions to
describe how we can manage bi-temporal
characteristics. We discussed three different
solutions to store valid and transactions times in
Key-value databases, and two solutions to handle the
bitemporal properties in column oriented stores. In
addition, we used Redis and Cassandra stores to
show how we can embed bitemporal properties in
the NoSQL databases. In the future work, we seek to
embed the bitemporal properties in document and
graph databases. Moreover, we are concerned about
the temporal data operators such as before, after and
union.

Mohammed Eshtay, Azzam Sleit, Monther Aldwairi / International Journal of Computing, 18(1) 2019, 45-52

 51

ACKNOWLEDGEMENTS

This work was supported in part by Zayed
University Research Office, Research Cluster
Award#17079.

6. REFERENCES

[1] M.D. Monger, R.A. Mata-Toledo, P. Gupta,
"Temporal data management in NoSQL
databases," Journal of Information Systems &
Operations Management, vol. 6, issue 2, pp. 1-
7, 2012.

[2] K. Grolinger, W.A. Higashino, A. Tiwari,
M.A.M. Capretz, "Data management in cloud
environments: NoSQL and NewSQL data
stores," Journal of Cloud Computing:
Advances, Systems and Applications, vol. 2,
issue 1, article no. 49, December 2013.

[3] J. Bhogal, I. Choksi, "Handling big data using
NoSQL," Proceedings of the 2015 IEEE 29th
International Conference on Advanced
Information Networking and Applications
Workshops (WAINA), 24-27 March 2015,
pp. 393-398.

[4] V.N. Gudivada, D. Rao, V.V. Raghavan,
"NoSQL systems for big data management,"
Proceedings of the 2014 IEEE World Congress
on Services (SERVICES), 2014, pp. 190-197.

[5] K. Kaur, R. Rani, "Modeling and querying data
in NoSQL databases," Proceedings of the 2013
IEEE International Conference on Big Data, 6-
9 October 2013, pp. 1-7.

[6] F. Chang, J. Dean, S. Ghemawat et al.,
"Bigtable: A distributed storage system for
structured data," ACM Transactions on
Computer Systems (TOCS), vol. 26, issue 2,
article no. 4, 2008.

[7] G. DeCandia, et al., "Dynamo: amazon's highly
available Key-value store," ACM SIGOPS
Operating Systems Review, vol. 41, issue 6,
pp. 205-220, 2007.

[8] G. Harrison, "Sharding, Amazon, and the Birth
of NoSQL," in Next Generation Databases,
Springer, pp. 39-51, 2015.

[9] P. Atzeni, F. Bugiotti, L. Rossi, "Uniform
access to non-relational database systems: The
SOS platform," Proceedings of the
International Conference on Advanced
Information Systems Engineering, 2012, pp.
160-174.

[10] N.Q. Mehmood, R. Culmone, L. Mostarda,
"Modeling temporal aspects of sensor data for
MongoDB NoSQL database," Journal of Big
Data, vol. 4, issue 8, pp. 1-35, 2017.

[11] C.J. Tauro, S. Aravindh, A. Shreeharsha,
"Comparative study of the new generation,
agile, scalable, high performance NOSQL
databases," International Journal of Computer
Applications, vol. 48, issue 20, pp. 1-4, 2012.

[12] A. Moniruzzaman, S.A. Hossain, "Nosql
database: New era of databases for big data
analytics-classification, characteristics and
comparison," arXiv preprint arXiv:1307.0191,
2013.

[13] J. Pokorny, "NoSQL databases: a step to
database scalability in web environment,"
International Journal of Web Information
Systems, vol. 9, issue 1, pp. 69-82, 2013.

[14] A. Auradkar, et al., "Data infrastructure at
LinkedIn," Proceedings of the IEEE 28th
International Conference on Data Engineering
(ICDE'2012), 2012, pp. 1370-1381.

[15] Redis. [Online]. Available at: https://redis.io.
[16] Riak Products. [Online]. Available at:

http://basho.com/products/.
[17] R. Hecht, S. Jablonski, "NoSQL evaluation: A

use case oriented survey," Proceedings of the
2011 IEEE International Conference on Cloud
and Service Computing (CSC), 12-14
December 2011, vol. 1, pp. 336-341.

[18] Apache HBase, [Online]. Available at:
https://hbase.apache.org.

[19] G. Wang, J. Tang, "The nosql principles and
basic application of cassandra model,"
Proceedings of the IEEE 2012 International
Conference on Computer Science & Service
System (CSSS), 2012, pp. 1332-1335.

[20] Apache Accumulo, [Online]. Available at:
https://accumulo.apache.org.

[21] K. Banker, MongoDB in Action, Manning
Publications Co., 2011.

[22] J. C. Anderson, N. Slater, J. Lehnardt,
CouchDB: The Definitive Guide, (1st ed.),
O'Reilly Media, 2009, p. 300.

[23] A. Cuzzocrea, "Temporal aspects of big data
management: state-of-the-art analysis and
future research directions," Proceedings of the
2015 22nd IEEE International Symposium on
Temporal Representation and Reasoning
(TIME), 23-25 September 2015, pp. 180-185.

[24] A. Cuzzocrea, I.-Y. Song, "Big graph analytics:
The state of the art and future research agenda,"
Proceedings of the 17th ACM International
Workshop on Data Warehousing and OLAP
(DOLAP'14), 7 November 2014, pp. 99-101.

[25] F. Bugiotti, et al., "Database design for NoSQL
systems," Proceedings of the International

Mohammed Eshtay, Azzam Sleit, Monther Aldwairi / International Journal of Computing, 18(1) 2019, 45-52

 52

Conference on Conceptual Modeling, 2014,
pp. 223-231.

[26] Y. Hu, S. Dessloch, "Defining temporal
operators for column oriented NoSQL
databases," Proceedings of the East European
Conference on Advances in Databases and
Information Systems (ADBIS'2014), 2014,
pp. 39-55.

[27] MarkLogic, Best Database For Integrating
Data From Silos. [Online]. Available at:
www.marklogic.com.

[28] J. Han, et al., "Survey on NoSQL database,"
Proceedings of the 6th International
Conference on Pervasive Computing and
Applications (ICPCA'2011), 26-28 October
2011, pp. 363-366.

Mohammed Eshtay has
received his PhD in Computer
Science from university of
Jordan in 2018. He has many
years of experience in the field
of Information Technology
working in various positions. In

addition to his work in the academic field, he has
held many positions in the industry. Dr. Eshtay
research interests include machine learning,
evolutionary computing, data science and NoSQL
stores.

Azzam Sleit is the Former Minister
of ICT from 2013 to 2015. He is a
Professor of Computer Science
with the University of Jordan,
where he also functioned as the
Dean of IT& Director of the
Computer Center. Dr. Sleit has
over twenty five years of
experience and leadership in the IT

field working at various levels of government, private
and international sectors. Dr. Sleit is the author of
more than one hundred research papers published
in reputable journals and conferences.

Monther Aldwairi is an associate
professor at the College of
Technological Innovation at
Zayed University since fall of
2014. He received his B.S. in
electrical engineering from
Jordan University of Science
and University (JUST) in 1998,
and his M.S. and PhD in com-

puter engineering from North Carolina State
University (NCSU), Raleigh, NC, in 2001 and 2006,
respectively. Prior to joining ZU, he was an Assistant
and then Associate Professor of Computer
Engineering at Jordan. University of Science and
Technology. He served as the Vice Dean of the
Faculty of Computer and Information Technology
from 2010 to 2012 and was the Assistant Dean for
Student Affairs in 2008. In addition, he was an
Adjunct Professor at New York In- stitute of
Technology (NYiT) from 2009 to 2012. He worked at
NCSU as Post-Doctoral Research Associate in 2007
and as a research assistant from 2001 to 2006. He
worked as a system integration engineer for
ARAMEX from 1998 to 2000. Dr. Aldwairi’s re-
search interests are in information, network and web
security, intrusion detection, dig- ital forensics,
reconfigurable architectures, parallel architectures
and algorithms, artificial intelligence and pattern
matching algorithms.

