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Abstract: NoSQL database systems have emerged and developed at an 
accelerating rate in the last years. Attractive properties such as scalability and 
performance, which are needed by many applications today, contributed to their 
increasing popularity. Time is very important aspect in many applications. Many 
NoSQL database systems do not offer built in management for temporal 
properties. In this paper, we discuss how we can embed temporal properties in 
NoSQL databases. We review and differentiate between the most popular 
NoSQL stores. Moreover, we propose various solutions to modify data models 
for embedding bitemporal properties in two of the most popular categories of 
NoSQL databases (Key-value stores and Column stores). In addition, we give 
examples of how to represent bitemporal properties using Redis Key-value store 
and Cassandra column oriented store. This work can be used as basis for 
designing and implementing temporal operators and temporal data management 
in NoSQL databases. 
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1. INTRODUCTION 

Relational database management systems 
(RDBMS) were and still dominant in the market of 
database management systems because of the 
services they provide such as transaction processing 
and the well-established structure. RDBMS apply 
the same relational model. All of them use the SQL 
language and they differ by the enhancements they 
provide Cattell (2011). Despite the popularity of 
RDBMS, they faced a set of challenges due to the 
wide spread of the INTERNET, the emergence of 
many fields such as social networks and the vast 
amount of data to be handled. RDBMS performance 
and scalability are two important properties that 
were not adequate for many of the new distributed 
applications. In many cases, the complexity of ACID 
(Atomicity, Consistency, Isolation, Durability) 
design aspect of RDBMS to guarantee the 
transaction reliability is not required in some 
applications and can be passed for the sake of other 
aspects such as the performance [1]. For example, in 
the case of social networks, we need some sort of 
high scalability with high degree of structure 

flexibility and set of simple operations [2, 3]. Due to 
these needs, many systems emerged to support 
scalability. They depend on a set of simple 
operations and do not follow the strict relational 
databases design principles. These systems are 
called NoSQL (Not only SQL) [3, 4]. The term 
NoSQL is generally used to refer to non-relational 
databases. It describes the distributed no. relational 
databases that emerged to deal with the huge amount 
of data generated by the Web 2 applications [5]. In 
the age of data, big data played an essential role in 
pushing the need for NoSQL and in the growing 
popularity of such systems. The flexible data models 
offered by these systems in contrast to the strict rigid 
structure of RDBMS and the continues need for data 
availability encouraged the use of NoSQL 
databases [3]. Google was the leader in adopting 
these systems by instituting BigTable [6] in 2006, 
followed by Dynamo [7], which was introduced by 
Amazon in 2007. Properties such as the ability to 
scale rapidly, performance, continuous availability 
and partition tolerance overcome the historical 
satisfaction of relational database model. These 
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properties increase the interest in NoSQL database. 
Furthermore, they cause fast and huge development 
because of the attractiveness of the model for many 
of the new applications [8]. On the contrary, this fast 
development led to the emergence of the problem of 
heterogeneity. Many NoSQL database developed 
and each of which has its own development API to 
offer for the user. We also note that the majority of 
these systems do not support or discuss the 
bitemporal properties that are needed in many 
applications [9]. The need for temporal data 
management is seen important in many well-known 
applications such as insurance, airline ticket 
reservations, medical applications and more. The 
temporal data management is discussed from many 
angles in the RDBMS, and temporal databases are 
considered as an extension of RDBMS. On the other 
hand, the temporal properties still need much work 
to be implemented and used in NoSQL databases [1] 
specially with the emerging applications that 
produce huge amount of timestamped data, such as 
sensor data, financial tickers and e-commerce [10]. 
Moreover, the relation between temporal data and 
NoSQL databases is not yet well configured and the 
door is open for more research to make NoSQL 
systems benefit from the bitemporal properties. In 
order to solve the aforementioned issues, this paper 
discusses bitemporal properties and proposes 
different variants to help embed the bitemporal 
characteristics in NoSQL databases. Since NoSQL 
databases are heterogeneous and conform to 
different structures, these variants are dealing with 
the problem taking into account the unique 
properties of each kind of NoSQL databases 
categories. The models will cover Key-value stores 
and Column Oriented Stores. We begin with a 
discussion of the principal features of NoSQL 
databases (Section 2). In Section 3, we describe 
concepts that are essential to understanding temporal 
data management. Section 4 proposes how we can 
embed temporal data into NoSQL databases. Section 
5 concludes the paper. 

 
2. NOSQL SYSTEMS 

The main reason for the popularity of the NoSQL 
systems is their appropriateness for the new type of 
applications that require strong support of 
scalability, good performance, and big data 
management. NoSQL databases overcome the 
limitations we faced in RDBMS such as the growth 
of the volume of big data, semi-structured data and 
the increased data connectivity. In RDBMS, the data 
must be structured and must follow the strict model 
of the relational model [9]. In contrast to RDBMS, 
NoSQL databases have the ability to scale 
horizontally besides the vast amount of data that is 

handled by these systems. NoSQL databases are 
divided into four main categories: Key-value stores, 
Document stores, Column Oriented Stores, and 
Graph Databases [11, 12]. 

 

2.1 KEY-VALUE STORES 

The first and the simplest category of NoSQL 
databases is Key-value stores. In this type, the data 
is organized in a form of map; each value is attached 
to a unique key. A key identifies a value and is used 
for entering, retrieving and deletion of data. The 
values in these systems are schema flexible. These 
values that are attached to the keys might be of any 
kind, they might be simple such as strings and they 
might be of complex types such as arrays and 
lists [2] (see Fig. 1). Key-value databases can be 
imagined as a relation table with two fields: key and 
value. The value field can take data of any type and 
of any length, which make Key-value databases 
suitable for unstructured data (typically BLOB). 
These systems focus the attention on scalability 
rather than consistency [13]. In addition, the 
simplicity of their data model structure makes the 
data retrieval very quick, which is appropriate for 
big data processing supporting scalability and 
availability characteristics. Some the famous Key-
value stores are: Amazon dynamo [7], LinkedIn 
Voldemort [14], Redis [15] and Basho Riak [16]. 

 

 

Figure 1 – Key-value NoSQL Database 

 

2.2 COLUMN ORIENTED STORES 

In traditional RDBMS, the data is organized in 
tables that consist of a collection of rows. Each row 
is identified by a unique id to be used for lookup 
process. Whereas column oriented NoSQL databases 
focus on columns to store data rather than rows. 
Column oriented databases tackle aspects such as the 
big number of columns and the schema changes. 
Each column has an indexed unique key to facilitate 
data retrieval and only columns specified by the 
query are needed to be retrieved, which will 
minimize the I/O cost. Unlike RDBMS that stores 
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rows contiguously, these systems store column 
values contiguously. Therefore, adding new Column 
oriented databases store data in rows each of which 
is identified by a primary key. The components of 
the row are a set of column families that contain the 
values of the given row. Furthermore, we can add 
one more level of grouping using super columns. 
Super column acts as a key for one or more columns 
that it holds, Fig. 2. Comparing to other NoSQL 
categories column stores databases provide better 
indexing and querying capabilities than Key-value 
stores. On the other hand, column stores face the 
same limitation of Key-value stores that any logic 
requiring relations must be implemented in the client 
application [17]. HBase [18], Cassandra [19] and 
Accumulo [20] are examples of column stores 
database. 

 

 

Figure 2 – Column Stores 

 

2.3 DOCUMENT ORIENTED STORES 

Another type of NoSQL is document based 
databases. As the name indicates, these databases are 
designed to manage documents. Documents are used 
to store data using some standard data exchange 
format such as JSON (JavaScript Option Notations) 
or BSON (Binary JSON). The main idea of 
document based databases is to provide big data 
storage and good query performance. Documents 
contain semistructured data in the form of attribute 
name/value pairs. The data is represented as 
documents and organized in a hierarchical way. 
Each document contains set of nested fields and list 
of attributes attached to the identifier that is used for 
indexing and retrieving [12] as seen in Figure 3. 
Documents dont adhere to a fixed schema; in the 
contrary, they allow flexible schema in which 
documents may contain subdocuments and 
documents as lists [4, 10]. Document stores are 
useful when data is suitable for representation as 
documents i.e. blogging sites or content 
management systems (CMS). The main problem of 
the document stores is the absence of built-in 
relationships between documents. MongoDB [21] 
and Apache CouchDB [22] are examples of this 
type. 

 

 

Figure 3 – Document Stores 

 

3. TEMPORAL DATA MANAGEMENT 

Generally, traditional databases do not deal 
directly with historical data and temporal 
characteristics. In many cases, the handling of the 
temporal properties is left to the developers. They 
find, analyze and handle such data taking into 
account the specific properties of the application [1]. 
The relational database systems that provide built-in 
time management for data are called temporal 
databases. Temporal databases support two types of 
time properties, valid time and transaction time. 
Valid time represents the validity interval of the 
data, which is the period that the data is considered 
true. The interval consists of start and end times. On 
the other hand, transaction time is the time when 
data stored in the database. The combination of both 
valid time and transaction time forms bitemporal 
properties [23]. Many researches have been 
conducted on the relation between the RDBMS and 
bitemporal data. For example, TSQL2 is an 
extension of SQL that handles the bitemporal 
properties and supports many temporal operators. 
TDBMS tends to handle the temporal data in the 
same way relational databases handle the normal 
data. Nowadays, big data is one of the topics that 
receive great interest in databases research [1]. 
Handling temporal data in big data systems raises 
huge research challenges and many opportunities for 
enhancements [24]. The main reason behind this 
potential is that the previous techniques, tools and 
algorithms developed to deal with bitemporal data in 
preceding technologies such as RDBMS and 
TDBMS in the foregoing years are inappropriate for 
big data. In the case of big data, we are concerned 
with the main characteristics of big data such as 
scalability, performance, heterogeneity, and volume. 
The line of the research is concerned with exploiting  
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the temporal properties of the big data model [24]. 
The implementation of bitemporal data management 
usually involves implementing temporal operators 
such as before, overlap and coalesce operations as 
additional features [25]. Some work has been done 
to manage the temporal characteristics in different 
NoSQL databases. Hu and Dessloch in [26] 
presented a definition for temporal operators such as 
union, intersection, and filter. They applied it to 
column-based NoSQL databases (CoNoSQLDBs). 
Their work has been presented to overcome the 
problem of implicit history representation (IHR) 
which is originally implemented in CoNoSQLDBs. 
Another NoSQL document-based database 
implemented temporal characteristics is MarkLogic 
[27]. They introduced set of functions to insert, 
update and delete temporal documents. In addition, 
they defined a set of terms such as instant, period, 
valid time and system time. NoSQL databases 
systems are platforms developed with big data needs 
in mind. NoSQL databases are the best place to 
embed and exploit bitemporal properties. The 
discussion of the relation between NoSQL databases 
and temporal characteristics still needs more effort 
and research. In this paper, we will discuss how to 
embed bitemporal properties in different NoSQL 
systems. 

 

4. EMBEDDING TEMPORAL 
CHARACTERISTICS 

The current NoSQL databases do not offer built-
in temporal data management, which is needed by 
many applications and useful in many situations 
[26]. The idea of this section is to present different 
ways to extend different categories of NoSQL 
databases in a way that allow them to handle 
bitemporal data properties. The existed techniques, 
tools, and algorithms that manage the temporal data 
in the relational databases handle these data the 
same way the handle normal data, which cannot be 
applied directly to the new generation of databases. 
Non-relational databases have different lenient data 
model to deal with semi-structured data compared to 
the relational model which has a strict rigid model. 
In this section, we will introduce with case studies 
how we can deal with temporal information in 
various NoSQL databases. 

 
4.1 KEY-VALUE 

In Key-value stores, the data is stored as a Key -
Value pairs. The values are referenced by the keys. 
In the case of bitemporal data, we need to manage 
the valid and transaction times. We will propose set 

of ideas to help in the management of temporal data 
in Key-value stores. One of the solutions is to add 
two attributes in each Key-value pair, one for the 
valid time in the form of validTimeStart and 
validTimeEnd attributes as shown in the below 
example, Table 1. 

Table 1. Embedding temporal data into Key-value 
Stores 

ROW 

ID=1  FirstName   Moe 

 LastName Sami 

 Salary 1000 

 ValidTimeStart 24-1-2016 

 ValidTimeEnd 24-4-2017 

 TransactionTime 1-1-2016 

 
In the example, we can see that the key is 1 and it 

refers to the set of values (FirstName, LastName, 
Salary, and ValidTime). The salary is a field of data 
that is affected by the time. In order to keep 
temporal property of the field salary, we need to 
manage the valid time, in each inserted Key-value 
pair we need to keep track of transaction time and 
the valid time. Transaction time could be part of the 
key so we will be able to retrieve chain of time 
series information. A clearer and more structured 
method leads us to another solution. The idea is to 
divide the key into two parts to form a composite 
key. This composite key consists of a part that 
identifies the row, which is the regular key and the 
other one represents the interval of the valid time. In 
such a way, we can make the key suitable for 
retrieving data according to the validity of the 
information as depicted in Fig. 4.  
 

 

Figure 4 – Embedding Temporal Data in Key-value 
Stores 

 
Redis [15] is a NoSQL database that is not only 

supports simple Key-value structure in which a 
string key associated with a string value but can also 
be associated with a complex structure. Redis 
supports various types of data structures, which 
gives us wide flexibility to use them to manage 
temporal data. The simplest are the string values 
associated with a key. Lists, sets, sorted sets and 
hashes are also value data structures available too. 
Redis does not support built in temporal 
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management but it offers set of functions that can be 
used to achieve this purpose.  In the below example 
we will use Radis hash to store the values of the first 
and the last name of the employee and the history of 
his payroll record. The structure of our Key-value 
data is: 

 
<majorKey><timeKey><dataValue>. 

 
 
HMSET 1 firstName "John" lastName 
"Smith" 
HMSET 1:2014105 salary 1000 vs 
2014101 ve 2015121  
HMSET 1:20151210 salary 2000 vs 
2015122 ve 201751  
HMSET 1:2017051 salary 3000 vs 
201752 ve +inf 

 
The first statement creates an employee with a 

major key of value 1. The next three statements add 
the salary of the employee and the period of the 
validity of this salary. Each one is referred to using 
the key (major and time). The result of the executing 
this code is depicted in Figure 5. One of the ways to 
get the history of the employee with major key 1 is 
to do something like:  
 
keys 1:* 

which will return  
A. "1:20151210" 
B. "1:2014105" 
C. "1:201751" 

 

 
Redis also offers sorted set that can be used to 

store values. In such a case, we can use timestamps 
to mark the historical data that we want to deal with. 
In this case, we can implicitly specify the valid start 
and end times. The valid start time is the current 
timestamp and the valid end time is the timestamp of 
the next value in the set. In the below example, we 
show the structure of the data and we use Redis to 
store and fetch set of historical data: 

 
zadd StockPrice 1 11.1 
zadd StockPrice 2 10.9 
zadd StockPrice 3 10.5 
zadd StockPrice 4 10.8 
zadd StockPrice 5 12.15 
zadd StockPrice 6 11.99 
zadd StockPrice 7 11.9 

 

To retrieve subset of the values: 
zrangebyscore historical 2 4 

It returns:  
10.9, 10.5, 10.8 

 
The aforementioned ideas will handle the 

temporal properties using the available capabilities 
of the existing NoSQL. It would be more efficient to 
have specific time series type. This type would be 
similar to a hash with internal handling of bi-
temporal properties and specific indexing 
capabilities. 

 

 

Figure 5 – Redis representation of temporal data 

 

4.2 COLUMN ORIENTED 

Column oriented NoSQL databases are inspired 
by big table. The main idea is to have structured data 
that can scale to large size. They have three main 
components the key, the column family and the 
super column. Row keys are the main object for data 
distribution and partitioning. This row key property 
is going to be exploited in the model that we propose 
for temporal data management. Values belonging to 
the same column are stored separately on the same 
disk. Columns are grouped in super columns [17, 
28]. The management of temporal data is going to be 
different in this type since column oriented 
databases attach the timestamps to the saved values. 
In each column, multiple data values are stored and 
sorted by their time stamps. One way is to use these 
timestamps to handle valid time or transaction time; 
actually, timestamps are more appropriate to 
represent transaction time. Furthermore, maintaining 
valid time can be done by adding additional columns 
to express the valid time interval. Adding two 
columns is trivial and straightforward solution, the 
first column will represent the valid time start and 
the second one is to represent valid time end. Table 
2 shows an example of such data. In this example, 
we can track the salary of the employee using the 
validation time stored in the added two columns. 
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Table 2. Column Oriented 

ID: 1 

Name Salary vtFrom vtTo Tt 

Sami 30000 1 2 1/1/2014 

Sami 40000 3 5 1/6/2015 

Sami 50000 5  10/10/2016 

 
In the following, we will use Cassandra [19] 

which is a well-known NoSQL column store to 
show the ability to model temporal data in column 
oriented databases. Cassandra is open source 
distributed NoSQL system to handle the huge 
amount of data across many servers. Cassandra has 
introduced its query language, which is called 
Cassandra Query Language (CQL) to work as an 
interface for accessing it. 

 
CREATE TABLE Employee ( 
    id INT, 
    name TEXT, 
    salary FLOAT, 
    vtFrom DATE, 
    vtTo DATE, 
    tt TIMESTAMP, 
    PRIMARY KEY (id,vtFrom) 
); 

with clustering order by (vtFrom 
DESC); 
 

Theoretically, Cassandra cannot be classified as a 
temporal database, but it does provide strong 
capabilities to handle temporal data. Although 
Cassandra does not have interval (period) datatype 
but still can give us the ability to define our own 
time that has a start and end timestamps. One way is 
to add a column that contains interval that represents 
the valid time period the same way we deal with the 
timestamp. The interval will be of the form 
[validTimeS, validTimeE] and can be attached to the 
values in column families or to the columns. The 
data in columns can be modeled as a pair of (value, 
interval) for example (Programmer, [1, 4]). Table 3 
shows how we could represent data in column 
oriented NoSQL databases. 
 

Table 3: Embedding temporal data into Column 
Stores 

ID Name Salary 

1 Sami (500,[1,2]), 

  (700,[3,4]), 

  (1000[5, ]) 

 
 
 

CREATE TYPE salary ( 
      amount FLOAT, 
      vtFrom TIMESTAMP, 
      vtTo TIMESTAMP 
  ); 

CREATE TABLE employee ( 
      id INT PRIMARY KEY, 
      name TEXT, 
      payroll map<TIMESTAMP, 
frozen<salary>> 
  ); 
 

INSERT INTO employee(id, name, 
payroll) 

VALUES (1, 
        'Sami', 

{'1/1/2015': 
{salary: 500, 

           vtFrom: '1/1/2015', 
           vtTo: '31/5/2016', 

}}); 
 
UPDATE employee 

SET  payroll = payroll 
+{'5/6/2016':  
 { salary: 50000, 
   vtFrom: '1/6/2016', 
   vtTo: '1/10/2017' }} 

   WHERE id = 1; 
 

5. CONCLUSIONS 

Handling temporal data and adding bitemporal 
characteristics to the non-relational databases is a 
hot research area. The need for this implementation 
is obvious because of the increasing popularity of 
NoSQL databases and the vast number of 
applications that require temporal data management. 
In this paper, we presented the three main categories 
of NoSQL databases and proposed set of solutions to 
describe how we can manage bi-temporal 
characteristics. We discussed three different 
solutions to store valid and transactions times in 
Key-value databases, and two solutions to handle the 
bitemporal properties in column oriented stores. In 
addition, we used Redis and Cassandra stores to 
show how we can embed bitemporal properties in 
the NoSQL databases. In the future work, we seek to 
embed the bitemporal properties in document and 
graph databases. Moreover, we are concerned about 
the temporal data operators such as before, after and 
union. 
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