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Abstract: The sequence alignment comprises to identify similarities and 
dissimilarities between two given sequences. In this paper, we propose a work 
distribution strategy for the implementation of DNA global sequence alignment. 
The main objective of this work is to minimize the execution time required for 
DNA global alignment of large biological sequences. The proposed approach 
dealt the issues with the memory optimizations and minimization of execution 
time. We considered the biological sequences of different size to fit into the 
global memory of the system. The proposed strategy is implemented in shared 
memory architecture using OpenMP programming for large biological 
sequences. Parallelization using OpenMP directive is relatively easy and execute 
the code fast. We experimented on the Dell Precision Tower 7910 with Intel 
Xeon processor with 32GB RAM and 28 CPU cores. The efficient use of global 
memory and cache memory optimization dominate the results of execution time. 
The results demonstrate the significantly high speed up using OpenMP as 
compared with other implementations. 

Copyright © Research Institute for Intelligent Computer Systems, 2019.  
All rights reserved. 

 
 

1. INTRODUCTION 

One of the principal applications of edit distance 
algorithm in Bioinformatics is to find out the 
similarity of macromolecules such as DNA sequence 
composed of letters A, T, C and G. The replicas of 
DNA, which shows imperfection gets changed by 
mutations at random places [1]. These mutations can 
grow exponentially with large sequences. The 
mutations can cause the transformations to both the 
sequences. Such transformations are;  

1) Insertion of character x before position m 
denoted by mx  

2) Deletion of character x at position m denoted 
by x i_ and,  

3) Substitution of character x to character y at 
position m denoted by x my.  

The transformations due to mutations cause 
weights defined by a predefined weight function W. 
The following assumptions are made for weight 
functions [1, 2] is shown in Table 1. 

The series of transformations forms a metric for 
both Seq#1 and Seq#2 which is referred to as Score 
Matrix (SM). Thus, the optimum alignment is to find 

minimum weight alignment with minimum weight 
transformation. One of the optimal alignments can 
be shown in Example 1.  

 
Example 1: Seq#1 = GACTAC and  

Seq#2 = ACGC with weight function  
W = {Match (+1), Mismatch (0), Gap (-1)}. The 
alignment is given as: 

 
-  A C G  - C 
G A C T A C 

. 

 
In Example 1 the substitution is done at 4th 

position, while two gaps are added to seq#1 at 1st 
position and 5th position. The score was calculated as 
follows: 

 
3 matches, compute 3 × 1 = 3, 
2 gaps, compute - 2 × 1 = - 2, 
The total score is 3 – 2 = 1. 
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Table 1. Weight Function for Transformation. 

Sr. 
No. 

Weight Function 

1 W(Seq#1)+W(Seq#2)=W(Ttotal) 
where Ttotal is the number of total 
transformations 

2 W(XY) = W(YX) 

3 W(XX) = 0 

4 W(XY) + W(YZ) ≥ W(XZ). 

 
A pair of characters in a position is called aligned 

pair. The weights of the series of transformations are 
the sum of weights of aligned pairs. Global 
alignment between two large DNA sequences is the 
problem of finding the optimum alignment under the 
given scoring scheme. The BLAST [3] is used for 
sequence comparisons. It compares the sequences 
and finds out statistical information. FASTA [4] 
provides sequence similarity searching against 
protein databases. An adaptive grid implementation 
of the DNA sequence alignment proposed by C. 
Chen at. el [5], the author described a dynamic 
programming algorithm to compute k non-
intersecting near-optimal alignments in linear space. 
In order to reduce runtime significantly, a 
hierarchical grid system as the computing platform 
and Static as well as dynamic load balancing 
techniques were applied. In [6], the work for 
graphical representation and alignment of DNA 
sequences are presented. The graphical alignment 
approach outlined, which is both conceptually and 
computationally not involved, designed to quickly 
find the two best global alignments. An optimization 
approach and its application to compare DNA 
sequences were proposed in [7]. It uses linear 
programming analysis methods based on the LZ 
algorithm and the Phylogenetic tree obtained by 
ClustalW using 48HEV sequences to compare 
strings. Parallel architecture for DNA sequence 
inexact matching with Burrows-Wheeler Transform 
was by [8] proposed on novel hardware architecture 
to parallelize the inexact matching algorithm based 
on BWT, and implements it on FPGAs. F. Saeed at. 
el [9] proposed a high-performance multiple 
sequence alignment system for pyrosequencing 
reads from multiple reference genomes. This work 
was based on domain decomposition to align such a 
large number of reads from single or multiple 
reference genomes. The alignment algorithm 
accurately aligns the erroneous reads and has been 
implemented on a cluster of workstations using MPI 
library. A tiling based sequence alignment is 
proposed in [10]. The combination of OpenMP and 
MPI paradigm is utilized for load balancing on 
parallel architecture. The proposed algorithm targets 
the metrics for DNA sequence alignment were time, 
speedup and efficiency.  

An optimized technique for DNA sequence data 
compression using OpenMP and MPI was illustrated 
in [11]. This compression is vital in massive data 
storage and transmission. A parallel algorithm for 
DNA sequencing on heterogeneous platform using 
supervised machine learning approach is described 
in [12]. FED based a parallel algorithm was 
proposed by Q. Xue et. al. using Message Passing 
Interface (MPI). The results reported the matching in 
the given sequence and improved speedup using 
MPI [13]. The performance evaluation of DNA 
sequencing using OpenMP and CUDA is presented 
in [14]. A parallel approach for solving the k-
differences prime problem is presented and speedup 
achieved up to 5.6 and 72.8 on OpenMP and GPU 
respectively.   
 

2. METHOD AND MATERIALS 

2.1. NEEDLEMAN-WUNSCH ALGORITHM 

The N-W algorithm is a programming model for 
efficiently implementing recursion dynamically. 
This algorithm takes two input sequences seq#1 and 
seq#2, builds a score matrix SM, where SM [n,m] 
represents the score of optimal alignment of 
seq#1[1..n] and seq#2[1..m] where n is the length of 
seq#1 and m is the length of seq#2. The recursion is 
given [15, 16] by  
 

 #1 #2[ 1, 1] [ ], [ ]

[ , ] max [ 1, ]

[ , 1]

scheme

penalty

penalty

SM i j S seq i seq i

SM i j SM i j GAP

SM i j GAP

   
 

   
   

.   (1) 

 

Initially, it fills SM[0,0] = 0 and then proceed to 
fill the matrix from the top left corner to the bottom 
right corner by applying the recursion equation (1) 
on each i and j. The Sscheme is a predefined matrix that 
compares characters at individual positions and 
assigns weights. In this paper, we used the Sscheme 
shown in Table 2. The various scoring schemes are 
presented in the literature such as BLOSUM and 
PAM, for more detail see [1]. The N-W algorithm 
also creates Direction Matrix (DM), which stores 
direction of movement (pointer) that can be used for 
finding the optimal alignment. The purpose of the 
DM is to backtrack for finding the maximum value 
given in recursion. The backtracking is the reverse 
of the score calculation. It starts from the bottom 
right corner and proceeds towards the top left corner 
[15, 17]. 

 

Table 2. Sscheme used by our approach. 

A T G C 

A +2  -1 -1 -1 
T -1 +2 -1 -1 

G -1 -1 +2 -1 
C -1 -1 -1 +2 
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2.2. PARALLELIZATION OF NEEDLEMAN-
WUNSCH ALGORITHM 

Various parallel techniques were proposed in the 
literature for the implementation of the N-W 
algorithm used in DNA sequence alignment. The 
thread level parallelization using pthreads is 
proposed in [18, 19], achieves high performance. 
However, synchronization among threads and 
overhead to shift control from one thread to another 
thread becomes the bottleneck for these methods. 
Fig. 1 and Fig. 2 illustrate the typical tiling 
implementation techniques utilized for the various 
algorithms after dependency analysis. The tiling is 
an optimization that has been used to obtain huge 
performance gains on selecting the proper tile size to 
fit into the cache memory. The tiling is the compiler-
based optimization, divides the original task into 
sub-tasks and computation of these sub-tasks are 
assigned to different threads to be performed in 
parallel. 

 

 
Figure 1 – Diagonal Blocks Processing 

 

 
Figure 2 – Vertical Blocks Processing 

 
Fig. 1 and Fig. 2 shows, blocks from B00 to Bn-1n-1 

are referred as sub-task of the original task, which 
are independent of each other as per order of their 
execution. In Fig. 1, the blocks are processed 
diagonally as these blocks are independent to the 
other blocks in the computation. In Fig. 2, the blocks 
are executed in parallel in vertical direction to 

complete the computation. The tiling provides 
efficiency to the algorithm for large sequences. 
However, the number of threads required is large 
[20] and huge computation performed by the 
threads. But, managing large number of threads 
increases the overheads such as the cost of 
computation. 

The best alignment for two sequences n and m is 
determined by applying the three steps i.e. 1) 
initialization, 2) scoring and, 3) trace back. In our 
approach, we have used scoring criteria for match = 
+2, mismatch = -1 and gap = -1. The initialization of 
sequences n × m is shown in Table 3. The trace back 
or Global alignment is demonstrated in Table 4. The 
last right point is utilized for back trace in the 
matrix. The next point is identified by moving 
diagonal or left or up as per the computed value 
from the start point. 

 
Table 3. Score Matrix Table. 

 SEQUENCE 1 

 
 

S 
E 
Q 
U 
E 
N 
C 
E  
2 

  A C G T T G C A 

 0 -1 -2 -3 -4 -5 -6 -7 -8 

C -1 -1 +1 0 -1 -2 -3 -4 -5 

C -2 -2 +1 0 -1 -2 -3 -1 -2 

A -3 0 0 0 -1 -2 -3 -2 +1 

T -4 -1 -1 -1 +2 +1 0 -1 0 

G -5 -2 -2 +1 +1 +1 +3 +2 +1 

C -6 -3 0 0 0 0 +2 +5 +4 

G -7 -4 -1 +2 +1 0 +2 +4 +4 

A -8 -5 -2 +1 +1 0 +1 +3 +6 

 
Table 4. Backtracking in Global Sequence Alignment. 

 SEQUENCE 1 

 
 

S 
E 
Q 
U 
E 
N 
C 
E  
2 

  A C G T T G C A 

 0 -1 -2 -3 -4 -5 -6 -7 -8 

C -1 -1 +1 0 -1 -2 -3 -4 -5 

C -2 -2 +1 0 -1 -2 -3 -1 -2 

A -3 0 0 0 -1 -2 -3 -2 +1 

T -4 -1 -1 -1 +2 +1 0 -1 0 

G -5 -2 -2 +1 +1 +1 +3 +2 +1 

C -6 -3 0 0 0 0 +2 +5 +4 

G -7 -4 -1 +2 +1 0 +2 +4 +4 

A -8 -5 -2 +1 +1 0 +1 +3 +6 

 
The alignment of sequences n and m is illustrated 

in Fig. 3.  
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Seq#1 (n): A C G T T G C _ G 

 | | | | | | | | | 

Seq#2 (m): C C _ A T G C G A 

Figure 3 – Optimal Global Sequence Alignment 
 
3. WORK DISTRIBUTION STRATEGY 

In this section, we introduced the nomenclature, 
scheduling algorithm for global alignment and the 
OpenMP implementation. 

Table 5 shows the list of abbreviations and their 
meanings used in this paper. 

 

Table 5. Abbreviations and Meanings 

Variable Meaning 
Seq#1 First input sequence 
Seq#2 Second input sequence 
MatchScore, 
MissMatchScore, 
GAPpenalty 

Sscheme elements 

ScoreMatrix (SM) Score matrix 
BS Block size 
BlockID Block id 

 
The parallel algorithm for finding global 

alignment is represented in Algorithm 1. 
 

Algorithm 1: Scheduling for Global Alignment 

1. Find the length of strings. 
2. Define the BS. 
3. Divide the string to form a block matrix. 
4. Create a block matrix with entries such as 1, 2,    

3, ….. . 
5. Find StartRowID, EndRowID, StartColID, 

EndColID from BlockID. 
6. Computes scores for individual blocks assigned 

to each thread. 
7. Assign threads to the blocks in Columnar, 

Horizontal and Vertical direction, with threadID 
form   1, 2, and 3 respectively. 

8. Find BlockID for blocks down and left of the 
diagonal block. 

9. Compute the blocks successively to the block 
down to diagonal block. Also, compute the 
blocks successively to the block left of the 
diagonal block. The two independent threads 
were assigned to complete these block 
computations. This process will repeat until all 
the diagonal blocks were consumed. 
 

Fig. 4 shows a typical block matrix addresses for 
the computation of score matrix. In this block 
matrix, every block is about the same size. Score 
computation for every element will be within that 
block. The starting and ending elements are 
computed separately.  

Fig. 5 demonstrates the blocks execution by the 
different threads. Initially, the block0 is executed by 
thread0 then block1 and block10 is executed by 
thread1 and thread2 and this process carried till left 

diagonal block computation finished and thread 
disband starts thereafter. 

 
0 1 2 3 4 5 6 7 8 9 
10 11 12 13 14 15 16 17 18 19 
20 21 22 23 24 25 26 27 28 29 
33 31 32 33 34 35 36 37 38 39 
40 41 42 43 44 45 46 47 48 49 
50 51 52 53 54 55 56 57 58 59 
60 61 62 63 64 65 66 67 68 69 
70 71 72 73 74 75 76 77 78 79 
80 81 82 83 84 85 86 87 88 89 
90 91 92 93 94 95 96 97 98 99 

Figure 4 – A typical Block Matrix 
 

 
Figure 5 – Threads execution order 

 

Fig. 6 illustrates the proposed block computation 
and work distribution approach for the computation 
of the score matrix for the global DNA alignment. 
The SM computation starts with the computation of 
diagonal blocks from B00 to Bn-1n-1. This computation 
is done by using a single thread. Once the diagonal 
block computation is finished, two new threads 
become active to start the computation of blocks 
down and left to the diagonal block. This 
computation process will continue till last diagonal 
computation is finished. 

 

 
Figure 6 – Proposed Load Distribution Strategy 
 

3.1. OPENMP IMPLEMENTATION 

The Listing 1 illustrates the high level description 
of OpenMP [20] code with load distribution strategy 
for the computation of score matrix computation 
using N-W algorithm. 
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Listing 1: High level description of N-W algorithm. 

1. #pragma omp synchronized parallel{ 
2.   #pragma omp sections{ 
3.       #pragma omp section 
4.           for(a = 1; a < noofcolsBM; a++) 
5.                Compute Scores for every block with 

              blockid(a, 0); 
6.       #pragma omp section 
7.           for(b = 1; b < noofrowsBM; b++) 
8.                Compute Scores for every block with  

              blockid(0, b); 
9.       #pragma omp section{ 
10.          #pragma omp parallel{ 
11.               for(q = 1; q < noofrowsBM; q++) { 
12.                    t = q; 
13.                   Compute scores for every block 

                  with blockid(t, q); 
14.          #pragma omp parallel{ 
15.             #pragma omp sections{ 
16.                 //section 1 inside section 3 for every 

                 q and w 
17.                 #pragma omp section{ 
18.                     d = t; 
19.                     for(c = q + 1; c < noofrowsBM; 

                           c++){ 
20.                          Compute Scores for every 

                         block with blockid(c, d); 
21.                    } 
22.                 } 
23.     //section 1 inside section 3 for every q and w 
24.     #pragma omp section{ 
25.       f = q; 
26.       for(e = t + 1; c < noofrowsBM; e++){ 
27.            Compute Scores for every block with 

           blockid(e, f);  
28.       } 
29.      } 
30.     } 
31.    } 
32.   } 
33. } 
 
The Line No. 3 and Line No. 7 in Listing 1 can 

be performed in parallel. The computations of block 
with block addresses specified are corresponding to 
the first column in the Fig. 3 for Line No. 3 and 
computation of block addresses indicated in the first 
row in the Table 3 for Line No. 7. These parallel 
computations will begin after the computation of 
block ‘0’. However, once block ‘1’ and block ‘10’ 
finished the computation, the Line No. 11 becomes 
active and the computation is distributed to the 3 
threads. The nested parallelism is activated and 
utilized when one block finished the computation, 
then two new sections are initiated to compute in 
parallel as indicated in Line No. 17. For example, 
once the block ‘11’ is processed completely as 
shown in Fig.3, 4 threads were active to begin to 
perform the computations of the blocks ‘20’, ‘21’, 
‘2’ and ‘12’ in parallel. The process of sections 
creation and assigning the blocks to them will 
continue for every diagonal block execution as 
indicated by Line No. 17. With this approach more 
threads will be available for the computation at the 
successive stages of block computation. Hence, this 

will increase the overall performance of the N-W 
algorithm computation in parallel. 

 
4. RESULTS AND DISCUSSION 

The performance is measured only for the 
computation of the score matrix. The time required 
for the sequential algorithm is compared with the 
time required for parallel algorithm. We compared 
genomes of equal residues ranging from 10000 to 
100000 on Dell Precision Tower 7910 with Intel 
Xeon processor with 32GB RAM and 28 CPU cores. 
The OMP_NESTED environment variable is set to 
true. The performance measure includes the metrics; 
score matrix computation and different DNA 
lengths. 

We first evaluated the time required for 
computation of the score matrix in sequential and 
parallel. We have considered the different set of 
threads for performance measurement such as 8, 12 
and 28 threads. Fig. 7 to Fig. 9 shows the 
comparison between time required for the sequential 
and parallel implementation of the proposed 
approach by using a different set of threads and 
different lengths of DNA sequences respectively. 
The x-axis represents the sequence lengths in 
characters, and the y-axis represents the time for 
computation in seconds. The speedup achieved for 
the DNA sequence alignment for the different DNA 
lengths listed in this section.  

 

 
Figure 7 – Computation time of 8 threads Vs single 

thread 
 

 
Figure 8 – Computation time of 12 threads Vs 

single thread 
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Figure 9 – Computation time of 28 threads Vs single 

thread 
 

The speedup is computed by using the formula, 
Speedup = timesequential / timeparallel. We evaluated the 
speedup for all the above computations. The 
speedup achieved in the range of 1.5x to 4x on the 
use of 8 cores, the speedup ranging from 1.2x to 
5.5x is achieved on the use of 12 cores, and the 
speedup achieved range from 2x to 13x on the use of 
28 cores. The maximum speedup is achieved for 
string length of 100000 as 13x on the 28 core 
system. It is also possible to get a higher speedup for 
larger sequences for higher configuration systems. 

We have compared our work distribution 
approach with [21-24]. The performance analysis 
shows that the speedup achieved by [21] is 2.63x, 
[22] is 3x, [23] is 7x, [24] is 2x and 13x by our 
proposed approach. As highlighted in Table 6 the 
proposed strategy in this paper outperform [21-24] 
by achieving highest speedup. In this work, we 
mainly focused on the memory optimizations and 
minimization of execution time. 

 
Table 6. Comparison with other Approaches 

Ref Speedup Method highlights 

[21] 2.63x 

 cell values computation is 
parallelized in the matrix 

 anti-diagonal elements are 
computed in parallel  

[22] 3x 

 distribution of the DNA 
sequence comparisons 

 DNA sequence are handled by 
multiple compute units such 
as concurrent processes, 
thread group and threads 

 calculation of score matrix of 
comparison between 
sequences performed by each 
compute unit 

[23] 7x 

 tiling based multithreaded 
approach 

 DNA sequences are divided in 
smaller chunks 

 chunks are concurrently 
processed by the different 
threads 

[24] 2x 
 parallelization of  computation 

of the values of cells in the 

score matrix 
 score matrix is reorganized: all 

cells in a column can be 
computed concurrently 

 each thread  perform several 
calculations 

our 
method 

13x 

 Computation divided in to 
blocks 

 blocks execution by the 
different threads 

 OpenMP nested parallelism is 
utilized 

 load distribution on CPU 
using different threads 

 
5. CONCLUSION 

In this paper, we have presented the work 
distribution strategy using OpenMP to speed up the 
global sequence alignment for DNA. We have been 
using the OpenMP nested parallelism strategy for 
our algorithm implementation. This nested 
parallelism supported by OpenMP increases the 
efficiency of the system and achieves high speed up. 
The speed up is computed for DNA sequence of 
different size ranging from 10000 to 100000. The 
performance evaluation shows that our algorithm 
achieved high speed up over the sequential 
algorithm. The speedup will increase for large 
sequences. The backtracking process is not 
considered in this work. In addition, backtracking 
can be considered for future work and the approach 
can be well suitable for MPI and CUDA 
implementation. 
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