
Kailash Kalare, Jitendra Tembhurne / International Journal of Computing, 18(1) 2019, 75-81

 75

A WORK DISTRIBUTION STRATEGY FOR GLOBAL SEQUENCE
ALIGNMENT

Kailash Kalare 1), Jitendra Tembhurne 2)

1) PDPM Indian Institute of Information Technology, Design & Manufacturing, Jabalpur, India, 1611701@iiitdmj.ac.in

2) Indian Institute of Information Technology, Nagpur, India, jitendra.tembhurne@cse.iiitn.ac.in

Paper history:
Received 13 December 2018
Received in revised form 27 February 2019
Accepted 11 March 2019
Available online 31 March 2019

Keywords:
Global alignment;
N-W algorithm;
Global memory;
Optimization.

Abstract: The sequence alignment comprises to identify similarities and
dissimilarities between two given sequences. In this paper, we propose a work
distribution strategy for the implementation of DNA global sequence alignment.
The main objective of this work is to minimize the execution time required for
DNA global alignment of large biological sequences. The proposed approach
dealt the issues with the memory optimizations and minimization of execution
time. We considered the biological sequences of different size to fit into the
global memory of the system. The proposed strategy is implemented in shared
memory architecture using OpenMP programming for large biological
sequences. Parallelization using OpenMP directive is relatively easy and execute
the code fast. We experimented on the Dell Precision Tower 7910 with Intel
Xeon processor with 32GB RAM and 28 CPU cores. The efficient use of global
memory and cache memory optimization dominate the results of execution time.
The results demonstrate the significantly high speed up using OpenMP as
compared with other implementations.

Copyright © Research Institute for Intelligent Computer Systems, 2019.
All rights reserved.

1. INTRODUCTION

One of the principal applications of edit distance
algorithm in Bioinformatics is to find out the
similarity of macromolecules such as DNA sequence
composed of letters A, T, C and G. The replicas of
DNA, which shows imperfection gets changed by
mutations at random places [1]. These mutations can
grow exponentially with large sequences. The
mutations can cause the transformations to both the
sequences. Such transformations are;

1) Insertion of character x before position m
denoted by mx

2) Deletion of character x at position m denoted
by x i_ and,

3) Substitution of character x to character y at
position m denoted by x my.

The transformations due to mutations cause
weights defined by a predefined weight function W.
The following assumptions are made for weight
functions [1, 2] is shown in Table 1.

The series of transformations forms a metric for
both Seq#1 and Seq#2 which is referred to as Score
Matrix (SM). Thus, the optimum alignment is to find

minimum weight alignment with minimum weight
transformation. One of the optimal alignments can
be shown in Example 1.

Example 1: Seq#1 = GACTAC and

Seq#2 = ACGC with weight function
W = {Match (+1), Mismatch (0), Gap (-1)}. The
alignment is given as:

- A C G - C
G A C T A C

.

In Example 1 the substitution is done at 4th

position, while two gaps are added to seq#1 at 1st
position and 5th position. The score was calculated as
follows:

3 matches, compute 3 × 1 = 3,
2 gaps, compute - 2 × 1 = - 2,
The total score is 3 – 2 = 1.

computing@computingonline.net
www.computingonline.net

Print ISSN 1727-6209
On-line ISSN 2312-5381

International Journal of Computing

Kailash Kalare, Jitendra Tembhurne / International Journal of Computing, 18(1) 2019, 75-81

 76

Table 1. Weight Function for Transformation.

Sr.
No.

Weight Function

1 W(Seq#1)+W(Seq#2)=W(Ttotal)
where Ttotal is the number of total
transformations

2 W(XY) = W(YX)

3 W(XX) = 0

4 W(XY) + W(YZ) ≥ W(XZ).

A pair of characters in a position is called aligned

pair. The weights of the series of transformations are
the sum of weights of aligned pairs. Global
alignment between two large DNA sequences is the
problem of finding the optimum alignment under the
given scoring scheme. The BLAST [3] is used for
sequence comparisons. It compares the sequences
and finds out statistical information. FASTA [4]
provides sequence similarity searching against
protein databases. An adaptive grid implementation
of the DNA sequence alignment proposed by C.
Chen at. el [5], the author described a dynamic
programming algorithm to compute k non-
intersecting near-optimal alignments in linear space.
In order to reduce runtime significantly, a
hierarchical grid system as the computing platform
and Static as well as dynamic load balancing
techniques were applied. In [6], the work for
graphical representation and alignment of DNA
sequences are presented. The graphical alignment
approach outlined, which is both conceptually and
computationally not involved, designed to quickly
find the two best global alignments. An optimization
approach and its application to compare DNA
sequences were proposed in [7]. It uses linear
programming analysis methods based on the LZ
algorithm and the Phylogenetic tree obtained by
ClustalW using 48HEV sequences to compare
strings. Parallel architecture for DNA sequence
inexact matching with Burrows-Wheeler Transform
was by [8] proposed on novel hardware architecture
to parallelize the inexact matching algorithm based
on BWT, and implements it on FPGAs. F. Saeed at.
el [9] proposed a high-performance multiple
sequence alignment system for pyrosequencing
reads from multiple reference genomes. This work
was based on domain decomposition to align such a
large number of reads from single or multiple
reference genomes. The alignment algorithm
accurately aligns the erroneous reads and has been
implemented on a cluster of workstations using MPI
library. A tiling based sequence alignment is
proposed in [10]. The combination of OpenMP and
MPI paradigm is utilized for load balancing on
parallel architecture. The proposed algorithm targets
the metrics for DNA sequence alignment were time,
speedup and efficiency.

An optimized technique for DNA sequence data
compression using OpenMP and MPI was illustrated
in [11]. This compression is vital in massive data
storage and transmission. A parallel algorithm for
DNA sequencing on heterogeneous platform using
supervised machine learning approach is described
in [12]. FED based a parallel algorithm was
proposed by Q. Xue et. al. using Message Passing
Interface (MPI). The results reported the matching in
the given sequence and improved speedup using
MPI [13]. The performance evaluation of DNA
sequencing using OpenMP and CUDA is presented
in [14]. A parallel approach for solving the k-
differences prime problem is presented and speedup
achieved up to 5.6 and 72.8 on OpenMP and GPU
respectively.

2. METHOD AND MATERIALS

2.1. NEEDLEMAN-WUNSCH ALGORITHM

The N-W algorithm is a programming model for
efficiently implementing recursion dynamically.
This algorithm takes two input sequences seq#1 and
seq#2, builds a score matrix SM, where SM [n,m]
represents the score of optimal alignment of
seq#1[1..n] and seq#2[1..m] where n is the length of
seq#1 and m is the length of seq#2. The recursion is
given [15, 16] by

 #1 #2[1, 1] [], []

[,] max [1,]

[, 1]

scheme

penalty

penalty

SM i j S seq i seq i

SM i j SM i j GAP

SM i j GAP

. (1)

Initially, it fills SM[0,0] = 0 and then proceed to
fill the matrix from the top left corner to the bottom
right corner by applying the recursion equation (1)
on each i and j. The Sscheme is a predefined matrix that
compares characters at individual positions and
assigns weights. In this paper, we used the Sscheme
shown in Table 2. The various scoring schemes are
presented in the literature such as BLOSUM and
PAM, for more detail see [1]. The N-W algorithm
also creates Direction Matrix (DM), which stores
direction of movement (pointer) that can be used for
finding the optimal alignment. The purpose of the
DM is to backtrack for finding the maximum value
given in recursion. The backtracking is the reverse
of the score calculation. It starts from the bottom
right corner and proceeds towards the top left corner
[15, 17].

Table 2. Sscheme used by our approach.

A T G C

A +2 -1 -1 -1
T -1 +2 -1 -1

G -1 -1 +2 -1
C -1 -1 -1 +2

Kailash Kalare, Jitendra Tembhurne / International Journal of Computing, 18(1) 2019, 75-81

 77

2.2. PARALLELIZATION OF NEEDLEMAN-
WUNSCH ALGORITHM

Various parallel techniques were proposed in the
literature for the implementation of the N-W
algorithm used in DNA sequence alignment. The
thread level parallelization using pthreads is
proposed in [18, 19], achieves high performance.
However, synchronization among threads and
overhead to shift control from one thread to another
thread becomes the bottleneck for these methods.
Fig. 1 and Fig. 2 illustrate the typical tiling
implementation techniques utilized for the various
algorithms after dependency analysis. The tiling is
an optimization that has been used to obtain huge
performance gains on selecting the proper tile size to
fit into the cache memory. The tiling is the compiler-
based optimization, divides the original task into
sub-tasks and computation of these sub-tasks are
assigned to different threads to be performed in
parallel.

Figure 1 – Diagonal Blocks Processing

Figure 2 – Vertical Blocks Processing

Fig. 1 and Fig. 2 shows, blocks from B00 to Bn-1n-1

are referred as sub-task of the original task, which
are independent of each other as per order of their
execution. In Fig. 1, the blocks are processed
diagonally as these blocks are independent to the
other blocks in the computation. In Fig. 2, the blocks
are executed in parallel in vertical direction to

complete the computation. The tiling provides
efficiency to the algorithm for large sequences.
However, the number of threads required is large
[20] and huge computation performed by the
threads. But, managing large number of threads
increases the overheads such as the cost of
computation.

The best alignment for two sequences n and m is
determined by applying the three steps i.e. 1)
initialization, 2) scoring and, 3) trace back. In our
approach, we have used scoring criteria for match =
+2, mismatch = -1 and gap = -1. The initialization of
sequences n × m is shown in Table 3. The trace back
or Global alignment is demonstrated in Table 4. The
last right point is utilized for back trace in the
matrix. The next point is identified by moving
diagonal or left or up as per the computed value
from the start point.

Table 3. Score Matrix Table.

 SEQUENCE 1

S
E
Q
U
E
N
C
E
2

 A C G T T G C A

 0 -1 -2 -3 -4 -5 -6 -7 -8

C -1 -1 +1 0 -1 -2 -3 -4 -5

C -2 -2 +1 0 -1 -2 -3 -1 -2

A -3 0 0 0 -1 -2 -3 -2 +1

T -4 -1 -1 -1 +2 +1 0 -1 0

G -5 -2 -2 +1 +1 +1 +3 +2 +1

C -6 -3 0 0 0 0 +2 +5 +4

G -7 -4 -1 +2 +1 0 +2 +4 +4

A -8 -5 -2 +1 +1 0 +1 +3 +6

Table 4. Backtracking in Global Sequence Alignment.

 SEQUENCE 1

S
E
Q
U
E
N
C
E
2

 A C G T T G C A

 0 -1 -2 -3 -4 -5 -6 -7 -8

C -1 -1 +1 0 -1 -2 -3 -4 -5

C -2 -2 +1 0 -1 -2 -3 -1 -2

A -3 0 0 0 -1 -2 -3 -2 +1

T -4 -1 -1 -1 +2 +1 0 -1 0

G -5 -2 -2 +1 +1 +1 +3 +2 +1

C -6 -3 0 0 0 0 +2 +5 +4

G -7 -4 -1 +2 +1 0 +2 +4 +4

A -8 -5 -2 +1 +1 0 +1 +3 +6

The alignment of sequences n and m is illustrated

in Fig. 3.

Kailash Kalare, Jitendra Tembhurne / International Journal of Computing, 18(1) 2019, 75-81

 78

Seq#1 (n): A C G T T G C _ G

 | | | | | | | | |

Seq#2 (m): C C _ A T G C G A

Figure 3 – Optimal Global Sequence Alignment

3. WORK DISTRIBUTION STRATEGY

In this section, we introduced the nomenclature,
scheduling algorithm for global alignment and the
OpenMP implementation.

Table 5 shows the list of abbreviations and their
meanings used in this paper.

Table 5. Abbreviations and Meanings

Variable Meaning
Seq#1 First input sequence
Seq#2 Second input sequence
MatchScore,
MissMatchScore,
GAPpenalty

Sscheme elements

ScoreMatrix (SM) Score matrix
BS Block size
BlockID Block id

The parallel algorithm for finding global

alignment is represented in Algorithm 1.

Algorithm 1: Scheduling for Global Alignment

1. Find the length of strings.
2. Define the BS.
3. Divide the string to form a block matrix.
4. Create a block matrix with entries such as 1, 2,

3, ….. .
5. Find StartRowID, EndRowID, StartColID,

EndColID from BlockID.
6. Computes scores for individual blocks assigned

to each thread.
7. Assign threads to the blocks in Columnar,

Horizontal and Vertical direction, with threadID
form 1, 2, and 3 respectively.

8. Find BlockID for blocks down and left of the
diagonal block.

9. Compute the blocks successively to the block
down to diagonal block. Also, compute the
blocks successively to the block left of the
diagonal block. The two independent threads
were assigned to complete these block
computations. This process will repeat until all
the diagonal blocks were consumed.

Fig. 4 shows a typical block matrix addresses for
the computation of score matrix. In this block
matrix, every block is about the same size. Score
computation for every element will be within that
block. The starting and ending elements are
computed separately.

Fig. 5 demonstrates the blocks execution by the
different threads. Initially, the block0 is executed by
thread0 then block1 and block10 is executed by
thread1 and thread2 and this process carried till left

diagonal block computation finished and thread
disband starts thereafter.

0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
33 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69
70 71 72 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87 88 89
90 91 92 93 94 95 96 97 98 99

Figure 4 – A typical Block Matrix

Figure 5 – Threads execution order

Fig. 6 illustrates the proposed block computation
and work distribution approach for the computation
of the score matrix for the global DNA alignment.
The SM computation starts with the computation of
diagonal blocks from B00 to Bn-1n-1. This computation
is done by using a single thread. Once the diagonal
block computation is finished, two new threads
become active to start the computation of blocks
down and left to the diagonal block. This
computation process will continue till last diagonal
computation is finished.

Figure 6 – Proposed Load Distribution Strategy

3.1. OPENMP IMPLEMENTATION

The Listing 1 illustrates the high level description
of OpenMP [20] code with load distribution strategy
for the computation of score matrix computation
using N-W algorithm.

Kailash Kalare, Jitendra Tembhurne / International Journal of Computing, 18(1) 2019, 75-81

 79

Listing 1: High level description of N-W algorithm.

1. #pragma omp synchronized parallel{
2. #pragma omp sections{
3. #pragma omp section
4. for(a = 1; a < noofcolsBM; a++)
5. Compute Scores for every block with

 blockid(a, 0);
6. #pragma omp section
7. for(b = 1; b < noofrowsBM; b++)
8. Compute Scores for every block with

 blockid(0, b);
9. #pragma omp section{
10. #pragma omp parallel{
11. for(q = 1; q < noofrowsBM; q++) {
12. t = q;
13. Compute scores for every block

 with blockid(t, q);
14. #pragma omp parallel{
15. #pragma omp sections{
16. //section 1 inside section 3 for every

 q and w
17. #pragma omp section{
18. d = t;
19. for(c = q + 1; c < noofrowsBM;

 c++){
20. Compute Scores for every

 block with blockid(c, d);
21. }
22. }
23. //section 1 inside section 3 for every q and w
24. #pragma omp section{
25. f = q;
26. for(e = t + 1; c < noofrowsBM; e++){
27. Compute Scores for every block with

 blockid(e, f);
28. }
29. }
30. }
31. }
32. }
33. }

The Line No. 3 and Line No. 7 in Listing 1 can

be performed in parallel. The computations of block
with block addresses specified are corresponding to
the first column in the Fig. 3 for Line No. 3 and
computation of block addresses indicated in the first
row in the Table 3 for Line No. 7. These parallel
computations will begin after the computation of
block ‘0’. However, once block ‘1’ and block ‘10’
finished the computation, the Line No. 11 becomes
active and the computation is distributed to the 3
threads. The nested parallelism is activated and
utilized when one block finished the computation,
then two new sections are initiated to compute in
parallel as indicated in Line No. 17. For example,
once the block ‘11’ is processed completely as
shown in Fig.3, 4 threads were active to begin to
perform the computations of the blocks ‘20’, ‘21’,
‘2’ and ‘12’ in parallel. The process of sections
creation and assigning the blocks to them will
continue for every diagonal block execution as
indicated by Line No. 17. With this approach more
threads will be available for the computation at the
successive stages of block computation. Hence, this

will increase the overall performance of the N-W
algorithm computation in parallel.

4. RESULTS AND DISCUSSION

The performance is measured only for the
computation of the score matrix. The time required
for the sequential algorithm is compared with the
time required for parallel algorithm. We compared
genomes of equal residues ranging from 10000 to
100000 on Dell Precision Tower 7910 with Intel
Xeon processor with 32GB RAM and 28 CPU cores.
The OMP_NESTED environment variable is set to
true. The performance measure includes the metrics;
score matrix computation and different DNA
lengths.

We first evaluated the time required for
computation of the score matrix in sequential and
parallel. We have considered the different set of
threads for performance measurement such as 8, 12
and 28 threads. Fig. 7 to Fig. 9 shows the
comparison between time required for the sequential
and parallel implementation of the proposed
approach by using a different set of threads and
different lengths of DNA sequences respectively.
The x-axis represents the sequence lengths in
characters, and the y-axis represents the time for
computation in seconds. The speedup achieved for
the DNA sequence alignment for the different DNA
lengths listed in this section.

Figure 7 – Computation time of 8 threads Vs single

thread

Figure 8 – Computation time of 12 threads Vs

single thread

Kailash Kalare, Jitendra Tembhurne / International Journal of Computing, 18(1) 2019, 75-81

 80

Figure 9 – Computation time of 28 threads Vs single

thread

The speedup is computed by using the formula,
Speedup = timesequential / timeparallel. We evaluated the
speedup for all the above computations. The
speedup achieved in the range of 1.5x to 4x on the
use of 8 cores, the speedup ranging from 1.2x to
5.5x is achieved on the use of 12 cores, and the
speedup achieved range from 2x to 13x on the use of
28 cores. The maximum speedup is achieved for
string length of 100000 as 13x on the 28 core
system. It is also possible to get a higher speedup for
larger sequences for higher configuration systems.

We have compared our work distribution
approach with [21-24]. The performance analysis
shows that the speedup achieved by [21] is 2.63x,
[22] is 3x, [23] is 7x, [24] is 2x and 13x by our
proposed approach. As highlighted in Table 6 the
proposed strategy in this paper outperform [21-24]
by achieving highest speedup. In this work, we
mainly focused on the memory optimizations and
minimization of execution time.

Table 6. Comparison with other Approaches

Ref Speedup Method highlights

[21] 2.63x

 cell values computation is
parallelized in the matrix

 anti-diagonal elements are
computed in parallel

[22] 3x

 distribution of the DNA
sequence comparisons

 DNA sequence are handled by
multiple compute units such
as concurrent processes,
thread group and threads

 calculation of score matrix of
comparison between
sequences performed by each
compute unit

[23] 7x

 tiling based multithreaded
approach

 DNA sequences are divided in
smaller chunks

 chunks are concurrently
processed by the different
threads

[24] 2x
 parallelization of computation

of the values of cells in the

score matrix
 score matrix is reorganized: all

cells in a column can be
computed concurrently

 each thread perform several
calculations

our
method

13x

 Computation divided in to
blocks

 blocks execution by the
different threads

 OpenMP nested parallelism is
utilized

 load distribution on CPU
using different threads

5. CONCLUSION

In this paper, we have presented the work
distribution strategy using OpenMP to speed up the
global sequence alignment for DNA. We have been
using the OpenMP nested parallelism strategy for
our algorithm implementation. This nested
parallelism supported by OpenMP increases the
efficiency of the system and achieves high speed up.
The speed up is computed for DNA sequence of
different size ranging from 10000 to 100000. The
performance evaluation shows that our algorithm
achieved high speed up over the sequential
algorithm. The speedup will increase for large
sequences. The backtracking process is not
considered in this work. In addition, backtracking
can be considered for future work and the approach
can be well suitable for MPI and CUDA
implementation.

6. REFERENCES

[1] M. Rosenberg, Sequence Alignment, Methods,
Concepts and Strategies, University of
California Press, 2011.

[2] K. Sharma, Bioinformatics: Sequence
Alignment and Markov Models, McGraw-Hill,
2008.

[3] Blast Library, 2018, [Online]. Available:
http://blast.ncbi.nlm.nih.gov/Blast.cgi.

[4] FASTA Tool, 2018, [Online]. Available:
http://www.ebi.ac.uk/Tools/fasta33/index.html.

[5] C. Chen, B. Schmidt, “An adaptive grid
implementation of DNA sequence alignment,”
Journal of Future Generation Computer
Systems, vol. 21, issue 7, pp. 988-1003, 2005.

[6] M. Randic, J. Zupan, D. Vikic and D. Plavsic,
“A novel unexpected use of a graphical
representation of DNA: graphical alignment of
DNA sequences,” Journal of Chemical Physics
Letters, vol. 431, isuess (4-6), pp. 375-379,
2006.

[7] L. Liu, C. Li, F. Bai, Q. Zhao and Y. Wang,
“An optimization approach and its application
to compare DNA sequences,” Journal of

Kailash Kalare, Jitendra Tembhurne / International Journal of Computing, 18(1) 2019, 75-81

 81

Molecular Structure, vol. 1082, pp. 49-55,
2015.

[8] Y. Xin, B. Liu, B. Min, W. Li, R.C.C. Cheung,
A.S. Fong and T.F. Chan, “Parallel architecture
for DNA sequence inexact matching with
Burrows-Wheeler transform,” Microelectronics
Journal, vol. 44, issue 8, pp. 670-682, 2013.

[9] F. Saeed, A.P. Rathke, J. Gwarnicki,
T.B. Wolf, A. Khokhar, “A high performance
multiple sequence alignment system for
pyrosequencing reads from multiple reference
genomes,” Journal of Parallel Distributed
Computing, vol. 72, issue 1, pp. 83-93, 2012.

[10] D.D. Shrimankar and S.R. Sathe, “Analysis of
parallel algorithms on SMP node and cluster of
workstations using parallel programming
models with new tile-based method for large
biological datasets,” Bioinformatics and
Biology Insights, vol. 10, pp. 255-265, 2016.

[11] C. Li, Z. Ji, F. Gu, “Efficient parallel design for
BWT-based DNA sequences data multi-
compression algorithm,” Proceedings of
International Conference on Automatic Control
and Artificial Intelligence, Xiamen, China, 3-5
March, 2012, pp. 967-970.

[12] S. Memeti and S. Pllana, “A machine learning
approach for accelerating DNA sequence
analysis,” International Journal of High
Performance Computing Applications, vol. 32,
issue 3, pp. 363-379, 2016.

[13] Q. Xue, J. Xie, J. Shu, H. Zhang, D. Dai,
X. Wu, W. Zhang, “A parallel algorithm for
DNA sequences alignment based on MPI,”
Proceedings of International Conference on
Information Science, Electronics and Electrical
Engineering, Sapporo, Japan, 26-28 April,
2014, pp. 786-789.

[14] L. Feuser and N. Moreano, “Parallel solutions
to the k-difference primer problem,”
Proceedings of the International Conference on
Computational Science, ICCS’2018, Lecture
Notes in Computer Science, Vol. 10860,
Springer, Cham, 2018.

[15] S.B. Needleman, C.D. Wunch, “A general
method applicable to the search for similarities
in the amino acid sequence of two proteins,”
Journal of Molecular Biology, vol. 48, pp. 443-
453, 1970.

[16] T.F. Smith, M.S. Waterman, “Identification of
common molecular subsequences,” Journal of
Molecular Biology, vol. 147, pp. 195-197,
1981.

[17] V. Bharadwaj, W.H. Min, “Handling biological
sequence alignment on networked computing
systems,” Journal of Parallel Distributed
Computing, vol. 69, issue 10, pp. 854-865,
2009.

[18] T. Almeida, N. Roma, “A parallel
programming framework for multi-core DNA
sequence alignment,” Proceedings of

International Conference on Complex,
Intelligent and Software Intensive Systems,
Krakow, Poland, 15-18 February, 2010,
pp. 907-912.

[19] E. Ruccii, A. De Giusti, F. Chichizola,
M. Naiouf, L. De Giustil, “DNA sequence
alignment: hybrid parallel programming on a
multicore cluster,” Proceedings of the
International Conference on Computers,
Digital Communications and Computing,
Recent Advances in Computers,
Communications, Applied Social Science and
Mathematics, Barcelona, Spain, 2011, pp 183-
190.

[20] B. Chapman, G. Jost and R.V.D. Pas, Using
OpenMP: Portable Shared Memory Parallel
Programming, MIT Press, 2007.

[21] A.A. Khan, L. Hassan, S. Ullah, “OpenMP
based parallel and scalable genetic sequence
alignment,” Journal of Engineering and
Applied Science, vol. 34, issue 2, pp. 29-34,
2015.

[22] P. Borovska and M. Lazarova, “Parallel models
for sequence alignment on CPU and GPU,”
Proceedings of International Conference on
Computer Systems and Technologies –
CompSysTech-2011, Vienna, Austria, June 16–
17, 2011, pp. 210-215.

[23] S.R. Sathe, D.D. Shrimankar, “Parallelization
of DNA sequence alignment using OpenMP,”
Proceedings of International Conference on
Communication, Computing & Security,
Rourkela, Odisha, India, February 12-14, 2011,
pp. 200-203.

[24] A. Chaibou1 and O. Sie, “Comparative study of
the parallelization of the Smith-Waterman
algorithm on OpenMP and Cuda C,” Journal of
Computer and Communications, vol. 3,
pp. 107-117, 2015.

Kailash W. Kalare, M. Tech. (CSE)
from VNIT, Nagpur and currently is
a Ph.D scholar at PDPM IIITDM,
Jabalpur, India. His areas of interest
are Deep Learning, High
Performance Computing, and Image
Reconstruction.

Jitendra V. Tembhurne, Ph.D from
VNIT, Nagpur and currently working
as an Assistant Professor in the
department of Computer Science &
Engineering, Indian Institute of
Information Technology, Nagpur.
His areas of interest are Parallel
Computing, Data Mining, Deep
Learning, ML and Data Science.

