
Sara Gotti, Samir Mbarki, Zineb Gotti, Naziha Laaz / International Journal of Computing, 18(3) 2019, 293-306

 293

A MODEL-DRIVEN APPROACH FOR MULTI-PLATFORM EXECUTION
OF INTERACTIVE UIS DESIGNED WITH IFML

Sara Gotti, Samir Mbarki, Zineb Gotti, Naziha Laaz

MISC Laboratory, Faculty of science, Ibn Tofail University, Kenitra, Morocco,

gotti.sara1990@gmail.com, mbarkisamir@hotmail.com, zinebgotti01@gmail.com, laaznaziha@gmail.com

Paper history:
Received 28 March 2019
Received in revised form 18 June 2019
Accepted 10 September 2019
Available online 30 September 2019

Keywords:
IFML;
Model Execution;
MDA;
Bytecode;
Virtual Machine;
Model Interpretation;
Model Compilation;
Human Computer Interaction;
GUIs Plasticity;
Computing Everywhere.

Abstract: Quite recently, considerable attention has been paid to the design,
implementation and evaluation of graphical user interfaces due to the apparition
of the new strategic trend of computing everywhere. Accordingly, it is necessary
to adopt an abstract representation of systems front-end in order to ensure this
trend. IFML (Interaction Flow Modeling Language) is a user interfaces
description language used to describe the content and interaction behavior of
applications front-end. It has been conceived with executability aspect that is
obtained via model transformations and full code generators into functional
codes. however, these code generators are often accompanied by a loss of
information. The main goal of this paper is to present a new virtual machine for
directly executing GUIs models designed with IFML language in combination
with UML domain model; that captures the content dependency. These input
models will be then run on different platforms and devices. We adopted a new
model driven approach that includes the hybrid approach of interpretive
compiler; through a set of transformation rules, for the implementation of the
desired virtual machine.

Copyright © Research Institute for Intelligent Computer Systems, 2019.
All rights reserved.

1. INTRODUCTION

Before GUIs systems, users interacted with their
systems using the command line interface. Graphical
user interfaces have appeared afterwards with their
WIMP (windows, icons, menus and pointers) toolset
to make it easy for a human to navigate and interact
rapidly with interactive systems. Recently, GUIs
tools have undergone remarkable evolution and
drastic changes in response to the platform
requirements and the diversity of devices which is
beneficial for users. However, this may encounter
some practical problems since it is required to
develop multiple GUIs to be run in each device for
the same system. This operation is really tedious and
time consuming. Actually, it is considerably
laborious to build system front-end than to deal with
the domain logic. Therefore, the problem that could
arise is that it might be very hard for enterprises to
cope with this new trend of computing everywhere
regarding the time to market. Accordingly, there is a
need to plastify the UIs, that is to say to adapt UIs to
the context of use while preserving usability [1]. So,

users could work everywhere through different
devices.

Actually, conceptual models allow to have a
complete vision of the business processes of a
system. They are conceived with a much longer life
than the technologies used to implement the
application since they overcome technical
constraints. So, for sustaining GUIs plasticity, it is
recommended to use conceptual models for
describing GUIs at a high level of abstraction
without concerning technical issues. Basically, an
engineering conceptual model must satisfy these five
key characteristics: abstraction, understandability,
accuracy, predictiveness and inexpensive [2]. The
concept of User Interfaces Description Language
(UIDL) could be used in this scope; it represents a
formal high-level language for the definition of
GUIs [3]. Among the set of UIDLs already exist, we
cite the Interaction Flow Modeling Language
(IFML); the OMG vision of UIDL.

IFML is a user interfaces description language
designed to express the content, user interaction and

computing@computingonline.net
www.computingonline.net

Print ISSN 1727-6209
On-line ISSN 2312-5381

International Journal of Computing

Sara Gotti, Samir Mbarki, Zineb Gotti, Naziha Laaz / International Journal of Computing, 18(3) 2019, 293-306

 294

control behavior of a system front-end. It is a
platform independent description of GUIs that
focuses on the representation of the general
components, interactions and front-end behavior in
which there is no definition of graphics and styles. It
has been designed with executability in mind and it
is open to extensibility.

It appears clearly that Model Driven Engineering
(MDE) and human machine interfaces are two
disciplines dedicated to being married. The need for
union is even more obvious when we consider the
plasticity of the GUIs for which platform switching
is dynamic. In fact, IFML was conceived to be
executable, that is to say it could be easily
transformed to source codes via code generators and
model transformations.

In this present work, we propose a new
implementation of the Model Driven Architecture
(MDA) [4]; MDA is the OMG’s particular vision of
MDE, for directly executing models designed with
IFML. IFML and MDA work here together for the
engineering of advanced plastic user interfaces. We
have chosen a direct execution of IFML models
through an MDA driven process instead of following
the code generation option to avoid its drawbacks.
The process of execution is based on the building of
a new virtual machine under the acronym IFVM
(IFML Virtual Machine) for executing GUIs. The
process admits the general view elements of an
application front-end designed with IFML, plus a
second representation describing a domain model
such as UML diagrams [5]. UML diagrams have
been added to make the binding for extracting
information to be shown in the interface, and to
ensure any type of navigation, even that which
carries data.

The remainder of this paper is structured as
follows. In section 2, the related work will be
discussed. Section 3 is devoted to introduce the
IFML user interfaces description language chosen,
and to discuss its executability and the general key
elements of content and navigation with IFML. The
proposed process of execution for the desired IFVM
virtual machine is detailed in section 4. Section 5
shows the experimental results on a running
example. The conclusion is reported in section 6.

2. RELATED WORK

After the apparition of IFML language, it has
appeared that it came out with several benefits to the
development of system’s front-end whether it is in
web, desktop or mobile. In the literature, there have
been some works that have been proposed in the
field of adaptive UIs; according to the context of
use, which are classified into four categories [6]: 1)
Translation Interface, 2) Reverse-engineering and

migration Interfaces 3) approaches based on the
markup languages and 4) model-based approach.

Besides, other researchers have proposed
additional works for a generation of GUIs that is
based on several model driven approaches starting
with IFML models. Naziha et al. [7] have discussed
a number of existing model driven works and IFML
modeling tools for the development of GUIs within
an in-depth comparative study. Another IFML based
solution has been proposed in [8] taking a different
way for software modernization according to an
architecture-driven modernization (ADM) [9] based
approach. The point of convergence between these
all previous IFML based solutions, is that they
proceed through the code generation step in order to
reach the source code of the corresponding GUIs
design to be run later.

However, many publications are available in the
literature that propose solutions for directly
executing models without passing by code
generation. Authors in [10] present a comparative
study on a subset of these solutions in the field of
back-end development based on UML models.

It has been shown that very few or no
publications can be found that addresses the issue of
direct execution of front-end representation, unlike
the back-end one, without passing by the code
generation step. Even so, in our earlier work, we
proposed different prototypes of IFML virtual
machine for directly executing the GUIs
representation designed with IFML. A key limitation
of the last one in reference [11], is that it doesn’t
take into account to identify the source of data; from
external artefact, to be displayed in the interface, as
well as to consider the navigation that carries data to
be transmitted from a view element to another one.
On the basis of the mentioned lacks, we propose an
implementation of the desired virtual machine for
directly executing IFML models accompanied with a
domain model such as UML diagrams to cover the
content dependency within a view element.

3. BACKGROUND

In this section, we will enlarge some of the main
concepts that play an important role in
understanding the rest of the paper.

3.1 GUIS EVOLUTION

A graphical user interface (GUI) or a graphical
environment is a human-machine dialogue interface,
in which the objects to be manipulated are drawn in
the form of icons on the screen. So, the user can
control, communicate and interact with interactive
systems via devices using these objects; icons or
widgets, rather than command-line based interfaces

Sara Gotti, Samir Mbarki, Zineb Gotti, Naziha Laaz / International Journal of Computing, 18(3) 2019, 293-306

 295

or text-based user interfaces (TUI). Author in [12]
offers a brief history of the important research
developments in Human-Computer Interaction
(HCI) technology.

In fact, GUIs have undergone several changes
and evolution during the last five-decade span, this
is illustrated in Fig. 1.

Figure 1 – GUIs evolution

First, users interacted by typing orders in form of
command lines to call operations to be executed.
There have been, after, important incremental
refinements to the mode of interactions in steps,
starting by introducing menus and textual interfaces
in natural languages instead of commands. Query
dialogues were used after as an interaction manner
by means of questions and answers. Forms were
added later as an alternative way for easily deal with
inputs. While the WIMP toolset; commonly
identified as GUI, came out, afterwards, to replace
the earlier computing with a graphical easy to
interact system.

3.2 GUIS VS COMPUTING
EVERYWHERE

Modern computing has influenced human life on
a manner allowing user to work and access
information anywhere and anytime using its laptop,
tablet, smartphone, and even wearable devices, and
that is shown in Fig. 2. Actually, computing
everywhere cannot exist without mobility.

Figure 2 – GUIs vs Computing everywhere

In addition, this modernity has also touched the
GUIs representation that should be able to adapt to
the context of use in response to the mobility. It
helped user by permitting more flexibility, choice
and freedom in daily tasks making them smoother
which is beneficial for workers. Therefore, computer
devices are going to weave themselves into the
fabric frequently until it is impossible to distinguish
them [13].

Accordingly, user interfaces should be more
plastic and adaptive whenever the context changes,
in order to make them possible to be run on various
computing devices. However, enabling that
plasticity is found to be more difficult and tedious in
practice, since it requires the development of
multiple user interfaces in a separate way for each
desired platform or device. The conceptual models
have reached a remarkable success to cover all the
business processes needs of a system abstractly
without considering technical constraints. In spite of
that, the use of conceptual models for building
system front-end to deal with computing everywhere
discipline has not been well-articulated.

In fact, various model-based solutions have been
emerged to treat this issue. They provide platform
independent conceptual models for the description
of UIs within a high-level UI Description Language
(UIDL). A UIDL is considered as a common way to
describe characteristics of GUIs independently of
any target platform. Moreover, it could be then easy
to generate the appropriate code of the designed
GUIs by means of model-based technics for
developing GUIs.

Actually, UIDLs aim at capturing abstractly all
the necessary requirements for UIs, what makes UI’s
definition stable across variety of platforms and
devices by applying automatic generation of code.
Besides, they help improving UIs reusability to
support evolution, extensibility and adaptability of a
user interface. Examples of UIDLs are discussed in
[14].

Thus, for conceiving and implementing User
Interface Management System (UIMS), it is required
to choose a UIDL model in order to cleanly separate
process or business logic from GUI code.

IFML [15] is a Domain Specific Language (DSL)
standard that has been adopted by OMG in 2013. It
has been designed to capture content, user
interactions and front-end behavior of software
front-end, independently from the implementation
technology and deployment platform, as well as the
binding to the domain model expressing the business
logic. IFML is also considered as a UIDL since it
permits an abstract description of all GUIs concerns.

Sara Gotti, Samir Mbarki, Zineb Gotti, Naziha Laaz / International Journal of Computing, 18(3) 2019, 293-306

 296

3.3 IFML LANGUAGE

Actually, IFML is a PIM standard that brings
several benefits to the front-end development
process. It organizes the structure design of the
interface in terms of a set of gathering elements
called ViewContainers that assemble other elements
of type ViewContainer or ViewComponent for
content display and data entry. IFML offers the
possibility to change the interface state from one
container to another by means of interaction flows or
navigation relations associated with an event that
occurs. There are three types of events [16]:

• ViewElementEvent; caused after a user
interaction,

• ActionEvent; caused after the execution of an
action,

• SystemEvent; caused by the system itself.
The IFML specification is accompanied by four

technical artifacts to help understanding the
language, we cite: The IFML metamodel, the IFML
UML profile, the IFML visual syntax, and the IFML
XMI.

In this work, we focus on the IFML definition via
the metamodel artifact which describes the
semantics and relations between the modeling
constructs.

The IFML metamodel is made up of three
packages: The Core package, the Extension package
and the DataTypes package.

• The Core package: gathers the abstract and
general concepts that build up the language
infrastructure, such as InteractionFlow-Element,
InteractionFlow and Parameter.

• The Extension package: extends the concepts
defined by Core package by concrete concepts to
manage more complex behaviors.

• The DataTypes package: contains the basic data
types defined in the UML metamodel, and
specializes a number of UML metaclasses as the
basis for IFML metaclasses, and presumes that the
IFML DomainModel is represented in UML.

Within a model of type IFML, the general design
of interfaces is made up of one top level element
called IFMLModel, in which, we incorporate two
other metaclasses of type InteractionFlowModel;
that offers the general view through ViewElements,
action and events, and DomainModel; for the
definition of concepts.

As mentioned before, there are three key
ingredients supported by an IFML model, see Fig. 3.
These ingredients permit to a system’s modeler to
set the necessary view elements, their relationships
and their dependencies with actions and concepts.

Figure 3 – IFML key ingredients

When an event is occurred, it could cause an
interaction flow navigation from a view element to
another with/without passing parameters. Therefore,
two types of navigations: a content-dependent
navigation which carries objects from the source of
the navigation to be passed to the target element, and
a content-independent navigation which is a simple
and independent form of navigation.

3.3.1 CONTENT INDEPENDENT
NAVIGATION

It presents a basic form of navigation from a
source ViewContainer to another target one;
associated with an InteractionFlow, after an event is
occurred. It is content independent which means that
the user interaction brings a change to the state of
the interface by displaying the content of the target
ViewContainer without caring about the content of
the source one. That is, it is not required to pass
parameters from the source of navigation to the
target in order to display the content of the target
ViewContainer.

Fig. 4 illustrates a very simple IFML model
exemplifying this concept. It shows two
ViewContainers; Mails and Contact. The first
incorporates a List view element displaying the set
of mails, and the second has a List showing the set
of contacts. They are associated with a
NavigationFlow caused by an event occurrence after
a user interaction of type click. It causes a content-
independent navigation targeting the display of
Contact List.

Figure 4 – Simple navigation between Mails view
container and Contacts view container

Sara Gotti, Samir Mbarki, Zineb Gotti, Naziha Laaz / International Journal of Computing, 18(3) 2019, 293-306

 297

3.3.2 CONTENT DEPENDENT
NAVIGATION

It corresponds to an additional behavior offered
by IFML representing the second form of navigation
which is content dependent. It is similar to content-
independent navigation. However, navigation, here,
is done by means of ViewComponents and not
ViewContainers. It results in changing the content of
ViewComponent to display other ones, but this time
is dependent on the content of the source
ViewComponent. This dependency is ensured by the
ParameterBinding concept added to the
NavigationFlow. We talk about input/ouput
dependency.

As illustrated in Fig. 5, the “Album Details”
ViewComponent displays the details of the specific
Album selected by the user from the “Album List”
ViewComponent. The NavigationFlow is associated
with a ParameterBindingGroup that contains the
value of the output parameter of the source
ViewComponent.

Figure 5 – Navigation after selection between
AlbumList and Album Details with parameter passing

3.3.3 CONTENT DEPENDENCY

It should be noted that IFML allows the display
of content, within a ViewComponent, that could be
derived from a different source. So, the
ViewComponent should be accompanied by
information about the source of the content to be
displayed. Therefore, the DataBinding concept is
used to express the source of the content from
objects of domain model such as UML class
diagram, Entity-Relationship models, ontologies, or
other elements.

Fig. 6 shows an example of using the
DataBinding concept. The “AlbumList”
ViewComponent draws its content from the
“Album” Class of the UML domain model (left
side). VisualisationAttribute was added to locate the
data to be shown in the interface, such as an object
attribute.

Figure 6 – DataBinding associating the AlbumList
view component with UML class diagram

3.3.4 IFML EXECUTABILITY

IFML has been conceived with executability
aspect, that is to say, it permits to get easily and
automatically the appropriate executable code via
model transformations and code generators. It is
then recommended to use executable models to
ensure the automation.

We mean by executable models, syntactically
correct models in term of executability, i.e., they
cover the representation of static; structural
definition of elements, and dynamic part; behavioral
definition [17].

User interaction, within a view, produces events
that could affect the state of the views and then
execute actions that could signal another event and
that are what the execution semantics of IFML.

3.4 MODELS EXECUTION

In the past, developers used to compile their
assembly code into machine language. Then, they
started to work alike but with high level languages.
After the appearance of the model driven
development trend, first, they started by working
with the automatic code generation from models.
Next, developers defined their own approaches for
directly implementing models.

In fact, as can be seen from Fig. 7, there are two
main approaches were defined for executing models:
Code generation and Model direct implementation
that has two different forms of execution which are
model interpretation and model compilation.

Figure 7 – Two types of models’ execution

The code generation approach has firstly allowed
the developer to focus just on modeling without
worrying about code, since it is automatically
generated. However, the code generation is often
accompanied by a loss of information what makes

Sara Gotti, Samir Mbarki, Zineb Gotti, Naziha Laaz / International Journal of Computing, 18(3) 2019, 293-306

 298

developers forced to modify the generated source
code. So, it may create a gap between the model and
the source code, which is in contradiction with the
benefits of MDE. Accordingly, a direct model
implementation could be the solution to prevent any
lack of information during the process of the
development.

4. IFVM: MDA-BASED PROCESS

As discussed before, GUI’s developers should
take into account several constraints; heterogeneity
of end users, heterogeneity of computing platforms
and languages, heterogeneity of working
environment and eventually of the context of use.
Therefore, to ensure GUIs production, despite these
constraints, model-driven UIs development could be
systematically used for rapid production of suitable
GUIs via alternative designs to permit a good
change management. The MDA approach allows
rapid development and validation since it is model
based, and it enables a set of transformations from
abstract representation of concepts to concrete
software.

In this paper, we propose a model driven
approach that builds on the union of MDA with
GUIs abstract description, especially that designed
with IFML. It brings a new solution of virtual
machine for multiple execution of GUIs in response
to the context. So, to reach this objective, we have
determined a set of parameterized transformations
from abstract UIs models to concrete interfaces.

In the next subsection, we describe the MDA-
based process named IFVM, and aim to establish the
necessary guidelines to allow the automatic
execution of GUIs description designed with IFML.

4.1 PROCESS OVERVIEW

The proposed approach is shown in Fig.8. The
IFVM virtual machine was proposed as a model
driven process for automatic and direct execution of
systems front-end designed at a high level of
abstraction. The process allows the developers to
abstractly design the interfaces and transform them
into concrete software, as well as conducting rapid
development and validation according to the context
of use.

The process highlights two OMG standards used
as input to generate this implementation, that are:

• IFML model: it models the general structure of
front-end content, user interactions, the structure of
navigations between the view elements, as well as

the binding to resources for extracting information.
• UML domain model: it represents the content

model that provides the data to display in the
interface.

The process has merged the IFML model;
describing the GUIs definition, with a domain model
of type UML, since the front-end design requires to
exploit the knowledge about objects and associations
within an application.

We implemented this MDA process in a simple
way by means of Eclipse-based tools. We started by
designing the front-end definition in the form of
IFML model that conforms to its metamodel [15].
This later offers the possibility to add a sub model
that corresponds to the appropriate domain model.
The process runs automatic transformations from
models to binary, in order to obtain a front-end
execution able to be run on different devices.
Therefore, developers design the input models, and
then the IFVM virtual machine takes care of
generation of the equivalent binary according to the
appropriate platform. This approach had allowed
several benefits for developers in development time
and cost, as well as unnecessary need for
development skills, and eventually the consistency
of the output in response to the context of use.

As can be seen from Fig.8, the process of the
virtual machine incorporates two units: the
compilation and the interpretation unit. Actually,
there are various ways to implement VMs. The
present process is based on the merging of two
concepts of implementation which are the
compilation and the interpretation to conceive the
desired virtual machine. Thus, this hybrid approach
takes benefits from their advantages for fast
execution [18]. It bridges the gap between the
abstract and the concrete representation within a real
machine by using an intermediate VM code of
instruction set that is the bytecode. This bytecode
simple format; result of the compilation, is used as
intermediate code for reducing dependence on
hardware and facilitating its quick interpretation on
several architectures.

Accordingly, we elaborated the IFVM bytecode
metamodel; the IFVM instruction set resulting from
the compilation first and interpreted by the VM later.
So, we can now launch a series of model-based
transformations from GUIs design to the binary code
generation. Additional details about this
intermediate representation is given in the following
section.

Sara Gotti, Samir Mbarki, Zineb Gotti, Naziha Laaz / International Journal of Computing, 18(3) 2019, 293-306

 299

Figure 8 – IFVM Process

4.2 IFVM BYTECODE: IFML VIRTUAL
MACHINE INSTRUCTION SET

Actually, there is a need to adapt an intermediate
representation during the process of model
execution. The bytecode has been chosen as being
intermediate representation in order to gain
optimization and portability. It is a transitional code
between low-level machine instructions and high-
level source code, that is not directly executable.
This facilitates its interpretation on several
architectures using different interpreters, since it is
hardware and operating system independent. A
bytecode interpreter is a virtual machine that
executes the code just like a microprocessor in a
portable way. That is to say that the bytecode could
be transmitted from one machine to another for
which an interpreter exists, and interpreted by
different types of hardware architectures. In fact,
many interpreted languages are compiled first into
bytecode and then executed by an interpreter.
Among these languages, we cite: Java, PHP and
Python.

Accordingly, we propose a new model-based
definition of bytecode for the desired IFVM virtual
machine. It is intended to gather a set of instructions.
So, we elaborated the IFVM Bytecode metamodel
with a set of meta-classes representing bytecode
instructions whose syntax was inspired by Java
bytecode instruction set.

In fact, there are two types of virtual machine
implementation: stack based and register based VM.
It depends on the way operands and results are
stored. In stack based VM, values are stored onto the
stack, however in register based one, values are

stored onto registers. To discover the differences
between these two ways of implementation, the
reader is referred to Table 1 that summarizes each
one’s properties.

Table 1. Stack based vs Register based virtual
machine

Stack based VM Register based VM
Values onto the stack
(push and pop)

Values onto registers

Run on any CPU design
with a stack

Each CPU design has its
own number of registers

Simple, powerful and
portable

Faster (no push and pop)

Hardware and operating
system independent

Each process must have
its own VM instance

As can be seen from Table 1, each

implementation has several assets. However, a
stack-based interpreter would be the good
implementation for our proposal, since it is hardware
and operating system independent. It could be now
easy to run the same bytecode on multiple
architectures using different interpreters.

By going back to the process schema illustrated
in Fig.8, IFML model and its corresponding domain
model are compiled first to IFVM Bytecode. So,
each element from the input models are mapped to
its equivalent instruction in IFVM Bytecode. We
have defined a set of instructions of IFVM
Bytecode; derived from Java bytecode instruction
set, under the form of meta-classes within its
appropriate metamodel. Fig. 9 shows an extract of
the proposed IFVM Bytecode metamodel.

Sara Gotti, Samir Mbarki, Zineb Gotti, Naziha Laaz / International Journal of Computing, 18(3) 2019, 293-306

 300

Figure 9 – IFVM Bytecode metamodel

As can be seen from Fig. 9, several opcodes

could be found in Java bytecode instruction set.
Moreover, additional opcodes have been
incorporated for expressing events and navigations
after a user interaction, as well as instruction of type
invoke that allows calling methods such us create(),
addelement(), and eventually setter methods.
Additional information about the top used
instructions is depicted in Table 2.

Foreach property that accompanies IFML model
elements, we have found a solution for representing
them in the IFVM bytecode as pushed and popped
values onto the stack.

Furthermore, we have assigned foreach type of
events, declared in IFML models, its corresponding
instruction in the IFVM Bytecode as described in
Table 2.

An event could affect a navigation. For that, a
navigate instruction is used for expressing the target
of the navigation and eventually the parameter
binding; when the target view element displays
content that relies on the source view element
content.

Therefore, we can now cover the general view of
a user interface within the IFVM Bytecode format,
as well as the behavior through events and
navigations. It is now easy to map each element
form IFML models to its corresponding instruction
in IFVM Bytecode.

The following section presents, in details, the
implementation of the proposed process, and
specifies the sequence of tasks involved in the whole
process.

4.3 IFVM IMPLEMENTATION

This section describes the implementation of the
MDA-based process named IFVM. It provides the
necessary guidelines to allow an automatic
execution of models designed with IFML. It follows
a sequence of steps encompassed in two major units:
the compilation and the interpretation unit.

4.3.1 COMPILATION UNIT

As previously stated, the first task of the model
execution process is to create an IFML PIM model
to cover the content and behavior of a system front-
end, which must be then compiled to an IFVM
Bytecode PIM model. In addition, it is necessary to
add a domain model as input to ensure the binding
with information to be displayed within the
interface.

The information needed to create the IFML
model, according to its IFML metamodel, is
provided from the specification [15]. the creation of
IFML is all around the building of a Core model that
includes the description of interaction and domain
model.

The interaction flow model is built through a set
of view elements. First, we create an element of type
Window, that represents the ViewContainer to
support the other ViewComponents. We continue by
adding, within the window, other ViewComponents
of type Form, List, or Details with their appropriate
fields. And eventually, we could enrich the model by
adding other concepts such as the DataBinding
concept; that refers to the source of content to be
displayed, as well as adding the dependencies, in
term of NavigationFlow, that connects the
ViewComponents together after an event is triggered.

Sara Gotti, Samir Mbarki, Zineb Gotti, Naziha Laaz / International Journal of Computing, 18(3) 2019, 293-306

 301

Table 2. IFVM Instruction set

Opcode

Stack
[Before] → [After]

Description

Push → property push a property onto the stack
Pop property → discard the top property on the stack
New → object create new graphical object
Invoke [arg1,arg2,...]→result invoke a method and put result on the stack
EventS →EventObject,

triggeringExpression
Put on the top of the stack the expression triggering an event of type
SystemEvent and an event object

EventV → EventObject Create an event object of type ViewElementEvent. There is no need of
ParameterBinding since it corresponds to content independent navigation

EventA → EventObject Put on the top of the stack an object of type ActionEvent triggered. It will be
followed by a navigate instruction for expressing the navigation to another
view element

EventSelect → EventObject Put on the top of the stack an object of type OnSelectEvent triggered. It will
be followed by a navigate instruction for expressing the navigation to
another view element

EventSubmit → EventObject Put on the top of the stack an object of type SubmitEvent. It will be followed
by a navigate instruction for expressing the navigation to another view
element

Navigate →NavigationObject,
[SourceParam,
TargetParam]

Put on the top of the stack a set of ParameterBinding to be passed in the
navigation flow after an event is triggered, and a navigation object

As for the domain model, it is associated with a

UML class diagram that contains all the necessary
classes and fields representing the content to be
possibly appeared within the interfaces.

The two PIM obtained models are then compiled,
i.e. transformed into another PIM model, which is
the IFVM Bytecode model, in order to raise the
abstraction level independently of platforms and
architectures. Compilation is established by using a
specific language to define automatic model to
model transformation, that is QVT [19].

We have developed a set of rules allowing this
transformation. As an illustration, we clarify, in the
following algorithm, an extract of the mapping
applied to generate the equivalent IFVM Bytecode.

Input ifml: IFML
Output ibytecode: IFVMBytecode
begin
map ifmlmodelToiroot(ifml.InteractionFlow-
Model);
end

/**********mapping1**********/
mapping
ifmlmodelToiroot(imodel:interaction-
FlowModel):iroot
begin
 for all w.isTypeOf(Window) ϵ imodel.
interactionFlowModelElements
 => map windowToNew(w)
 end for
end

/**********mapping2**********/
mapping windowToNew(w:window): new
begin

foreach p ϵ w.properties
=> add push instruction

=> insert p as operand to push
instruction

end for
=> add invoke instruction
=> insert create () as operand to

invoke instruction
//Store w into variable i
=> add store_i instruction
/*********step2*********/
for all vc ϵ w.viewComponents
// form or list or details
 => map elementToNew(vc)
//Load window w from i
 => add load_i instruction
//Load ViewComponent vc from k
 => add load_k instruction
// Binding w with vc
 => add invoke instruction
 => insert addElement() as operand

to invoke instruction
end for

end
/**********mapping3**********/

mapping elementToNew(vc:ViewComponent): new
begin
 if vc.isTypeOf(List)
 foreach p ϵ vc.properties
 => add push instruction
 => insert p as operand to push
instruction
 end for

/*********step3*********/
 for all e ϵ vc.viewElementEvents
 => add eventV instruction
 => add navigate instruction
 => insert targetNavigation as operand
to navigate instruction
 end for

/*********step4*********/
 if vc.onSelectEvent is active
 => add eventSelect instruction
 => add navigate instruction

Sara Gotti, Samir Mbarki, Zineb Gotti, Naziha Laaz / International Journal of Computing, 18(3) 2019, 293-306

 302

 => insert targetNavigation operand to
navigate instruction
 => add push instruction
 => insert sourceParameterBinding
operand to push instruction
 => add push instruction
 => insert targetParameterBinding
operand to push instruction
 end if
 => add invoke instruction
 => insert create() operand to invoke
intruction
//Store vc into variable k
 => add store_k instruction

....
end

The first mapping aims at corresponding the two

root elements of IFML and IFVM Bytecode
metamodels, which are interationFlowModel and
iroot. Such mapping represents the main operation
through which we could appeal to the rest of
mapping making the correspondence. It looks over
all the contained view elements of type Window to
be mapped by calling a second mapping.

The extract of mapping 2 transforms each
window into a New machine instruction and captures
all the window properties to be mapped into
instructions of type Push. Then, it follows by adding
Invoke instruction for calling the creation method of
the window, and eventually the Store instruction to
store the created object. Step2 of the current
mapping, is dedicated to map the inside
ViewComponents by calling the third mapping, and
make the binding after using Load and Invoke
instruction as detailed in the algorithm.

As for mapping 3, this operation is dedicated to
make correspondence between view elements of
type ViewComponent; Form, List, and Details, to
their equivalent instructions in IFVM Bytecode in
the same way we did with Windows, but this time,
each ViewComponent will be mapped in a separate
IFVM Bytecode model. Properties such as
VisualizationAttribut and DataBinding are mapped
in the form of values to be pushed with Push
instruction.

Step3 manages the mapping if an event of type
ViewElementEvent is triggered. It is then
transformed into instructions of type EventV and
Navigate, with specification of the target of the
navigation by adding the TargetNavigation operand
to Navigate instruction.

Step4 is devoted to deal with another type of
event which is OnSelectEvent. It is then mapped to a
set of instructions starting with EventSelect, and
Navigate with a TargetNavigation operand, followed
by Push instructions for pushing ParameterBinding
values to be passed from the source to the target
ViewComponent.

Regarding the domain model, it is then compiled
by easily storing the classes, their attributes ,and
eventually the constants.

4.3.2 INTERPRETATION UNIT

The principle objective of this second unit is to
interpret the obtained IFVM Bytecode from the
previous unit and generate the equivalent concrete
representation which is the binary, to be run in the
adequate platform. As can be seen from Fig. 8, the
interpretation of the IFVM Bytecode is implemented
by following these two stages:

• Model to model transformation:
IFVM Bytecode Java Bytecode, Dalvik

Bytecode, and Python Bytecode,
• Model to text transformation, to get the

equivalent bytecode format of each bytecode model.
IFVM Bytecode instruction set has been designed

with abstraction to gain portability. Indeed, to ensure
this portability in implementation, we decided to
work with implementations that already exist. We
talk about Java, Android Dalvik, and Python
implementations.

The first stage has a single task, which carries out
the model to model transformation, in which the
obtained IFVM Bytecode model is evolved to three
other types of bytecode models. The bytecode
models are represented according to their three
metamodels, which are the Java Bytecode
metamodel, the Dalvik Bytecode metamodel and the
Python Bytecode metamodel. The three metamodels
of the bytecode forms have been elaborated in
accordance with their specifications in [20, 21, 22].

The model to model transformation can be
formally established by QVT language [19]. Table 3
outlines the mapping between elements from IFVM
Bytecode into their equivalent elements in Java
Bytecode syntax.

Accordingly, we proceed in the same way to
build the mapping with the other two forms of
bytecode.

Once we get the equivalent bytecode format;
JVM, Dalvik and Python, we could now pass to the
second stage of the interpretation unit which is
launching a model to text transformation to get the
real bytecode text, to be run on real or existing VMs.
This transformation is formalized by means of the
open source Acceleo [23] language; an Eclipse
implementation of the OMG MOF2Text
Transformation Language that maps model elements
into text instructions. However, it could be difficult
to fill in the template with binary code, while the
computed text from elements provided by bytecode
models is not written in binary. Therefore, the
filling, within the template, must be performed by
means of bytecode editing libraries. ASM library

Sara Gotti, Samir Mbarki, Zineb Gotti, Naziha Laaz / International Journal of Computing, 18(3) 2019, 293-306

 303

[24] is one of the existing libraries for Java Bytecode
manipulation and analysis. So, we simply need to fill
in the Acceleo template by the ASM-based program
that generates dynamically and directly the Java
Bytecode class files. We act alike for the other
bytecode types, that is to say that we use libraries for

building the binary form of bytecodes within the
Acceleo template.

Once we generate the bytecodes numeric codes,
they will be passed to the VMs to be executed and
produce finally the binary code that will
subsequently be run in platforms.

Table 3. Mapping IFVM Bytecode to Java Bytecode

IFVM Bytecode Java Bytecode
push bipush
pop pop
new new
invoke invokeSpecial (e.g. invoking constructor method)

invokeVirtual
eventS

invokeVirtual (the action listener method)

eventA
eventV
eventSelect
eventSubmit
navigate new (instantiate the target interface)
store_n astore_n

Figure 10 – Movie manager system designed with IFML

5. ILLUSTRATING EXAMPLE

This section presents a case study to demonstrate
the feasibility of IFVM, the proposed MDA-based
process. This project addresses the execution of
GUIs abstract description designed with IFML. The
case study relates to a movie manager system.
Within this system, a user could add movie, list
movies and eventually display the details of a
selected movie from the list. Fig. 10 shows the
general views and possible navigations of the chosen
system, designed with eclipse IFML editor.

The view contains three ViewContainers of type
Window: MovieList, Movie and AddMovieForm

windows. The Movie Window incorporates a
ViewComponent of type Details to display the
descriptions of a selected movie. The MovieList
Window, in its turn, contains a ViewComponent of
type List that permits showing the set of existing
movies. As for the third Window, it includes a
ViewComponent of type Form that allows a user to
add a movie to the existing list. The following
paragraphs present the details of the main stages
defined during the process.

The first unit of implementation consists in
transforming an XML file instance of IFML
metamodel (see Fig. 11). It is obtained from the
graphical design with eclipse IFML editor [25].

Sara Gotti, Samir Mbarki, Zineb Gotti, Naziha Laaz / International Journal of Computing, 18(3) 2019, 293-306

 304

Figure 11 – Input of compilation unit (left). Output of compilation unit (right)

Figure 12 – Input of interpretation unit (left). Output of interpretation unit (right)

The IFML model and its corresponding domain

model are used as input (left of Fig. 11) on which
the transformation rules are applied.

The result of transformation is a set of XML files
that correspond to the IFVM Bytecode instructions
foreach Window. Right of Fig. 11 exposes the
generated IFVM Bytecode models of MovieDetail
and MovieList Windows.

IFVM Bytecode XML files, of each window, will
be passed for a second mapping, within the

interpretation unit, to produce models of existing
bytecodes forms, that are Java Bytecode model,
Dalvik model and Python Bytecode model.

Right of Fig. 12 shows an extract of Java
Bytecode model of a window of type List, for
displaying the list of movies, corresponding to its
IFVM Bytecode model shown in left of Fig. 12.

Once we get the bytecode models, we established
a model to text transformation, in which, the text to
be generated is the program of the library permitting

Sara Gotti, Samir Mbarki, Zineb Gotti, Naziha Laaz / International Journal of Computing, 18(3) 2019, 293-306

 305

the bytecode editing.
Fig. 13 shows the execution result after running

the obtained Java Bytecode class files, that have
been generated using the ASM library.

The first window is the MovieList Window,
through which, a click on see details button makes
the display of the MovieDetail Window, we talk
about content dependent navigation. And eventually,
a click on Add movie button permits the display of
the AddMovie Form without considering the
content, we talk about content independent
navigation.

6. CONCLUSION

This research work explored the feasibility to use
a model-driven approach to automatically execute
user interfaces and interactions designed with IFML
with content provided by UML domain model.

The execution process is based on the usage of a
set of metamodels to represent the models involved
in each unit of the process. For example, the IFML,
UML, and IFVM Bytecode metamodels have been
used during the compilation unit. Moreover, the Java
Bytecode, Dalvik Bytecode, and Python Bytecode
metamodels have been utilized throughout the
interpretation unit.

Figure 13 – Execution result

Our contribution offers an easy way of building

and maintaining the software front-end from abstract
representation. It relies on the use of transformations
and model tools without passing by an intermediate
code generation phase. It excludes all the errors that
could arise during code generation, and helps
increasing portability of GUIs execution.

The next step in this research initiative is to
develop a framework that combines front-end
representation with the back-end that captures the
business operations to make a fully automatic
executions according to model-driven approaches.

7. REFERENCES

[1] J.-S. Sottet, G. Calvary, and J.-M. Favre,
“Models at run-time for sustaining user
interface plasticity,” Proceedings of the 2006
International Conference on Models Run Time
Workshop Conjunction Model, 2006, pp. 1-4.

[2] B. Selic, “The pragmatics of model-driven
development,” IEEE Softw., vol. 20, no. 5, pp.
19-25, Sep. 2003.

[3] O. Shaer, R.J.K. Jacob, M. Green, K. Luyten,
“User interface description languages for next

generation user interfaces,” Proceedings of the
International Conference on Human Factors in
Computing Systems CHI’08, New York, NY,
USA, 2008, pp. 3949–3952.

[4] J. Miller and J. Mukerji, MDA Guide Version
1.0.1, 2003.

[5] OMG, “About the Unified Modeling Language
Specification Version 2.5.1,” 2017. [Online].
Available at: https://www.omg.org/spec/UML/.

[6] W. Bouchelligua, A. Mahfoudhi, L. Benammar,
S. Rebai, and M. Abed, “An MDE approach for
user interface adaptation to the context of use,”
Proceedings of the International Conference on
Human-Centred Software Engineering, 2010,
pp. 62–78.

[7] N. Laaz, K. Wakil, S. Mbarki, and D. N. A.
Jawawi, “Comparative analysis of interaction
flow modeling language tools,” J. Comput. Sci.,
vol. 14, no. 9, pp. 1267–1278, Oct. 2018.

[8] Z. Gotti and S. Mbarki, “Java swing
modernization approach – Complete abstract
representation based on static and dynamic
analysis,” Proceedings of the International
Conference on ICSOFT-EA, 2016.

Sara Gotti, Samir Mbarki, Zineb Gotti, Naziha Laaz / International Journal of Computing, 18(3) 2019, 293-306

 306

[9] OMG, ADM Platform Task Force, Object
Management Group, 2003. [Online]. Available
at: https://www.omg.org/adm/.

[10] S. Gotti and S. Mbarki, “UML executable: A
comparative study of UML compilers and
interpreters,” Proceedings of the 2016
International Conference on Information
Technology for Organizations Development
(IT4OD), 2016, pp. 1–5.

[11] S. Gotti and S. Mbarki, “IFVM bridge: A
model driven IFML execution,” Int. J. Online
Biomed. Eng. IJOE, vol. 15, no. 4, pp. 111–
126, Feb. 2019.

[12] B. A. Myers, “A brief history of human-
computer interaction technology,” Interactions,
vol. 5, no. 2, pp. 44–54, Mar. 1998.

[13] A. Schuster, Ed., Intelligent Computing
Everywhere, London: Springer-Verlag, 2007.

[14] J. Guerrero-Garcia, J. M. Gonzalez-Calleros,
J. Vanderdonckt, and J. Munoz-Arteaga, “A
theoretical survey of user interface description
languages: Preliminary results,” Proceedings of
the 2009 Latin American Web Congress, 2009,
pp. 36–43.

[15] IFML: The Interaction Flow Modeling
Language, The OMG standard for front-end
design, [Online]. Available at:
https://www.ifml.org/

[16] M. Brambilla, The IFML book – OMG’s
Interaction Flow Modeling Language
explained, 1st ed., Morgan Kaufmann, 2014.

[17] E. Cariou, C. Ballagny, A. Feugas, and F.
Barbier, “Contracts for Model Execution
Verification,” Proceedings of the European
Conference on Modelling Foundations and
Applications ECMFA’2011, 2011, pp. 3–18.

[18] A. Aggarwal, D. S. K. Singh, and S. Jain, “A
Hybrid Approach of Compiler and Interpreter,”
International Journal of Scientific &
Engineering Research, vol. 5, no. 6, p. 4, 2014.

[19] OMG, “About the MOF
Query/View/Transformation Specification
Version 1.3,” 2016. [Online]. Available at:
https://www.omg.org/spec/QVT/About-QVT.

[20] T. Lindholm, F. Yellin, G. Bracha, and A.
Buckley, The Java® Virtual Machine
Specification, Oracle Help Center, 2013, 604 p.

[21] D. Ehringer, “The Dalvik Virtual Machine,”
2010. [Online]. Available at:
http://www.davidehringer.com/software/androi
d/The_Dalvik_Virtual_Machine.pdf.

[22] A. Rigo and S. Pedroni, “PyPy’s approach to
virtual machine construction,” Proceedings of
the Companion to the 21st ACM SIGPLAN
Symposium on Object-Oriented Programming

Systems, Languages, and Applications,
OOPSLA'06, 2006, pp. 944-953.

[23] Acceleo. [Online]. Available at: https://www.
eclipse.org/acceleo/documentation/.

[24] E. Bruneton, “ASM 4.0 A Java bytecode
engineering library,” 154 p.

[25] Eclipse, “Open source IFML editor.” [Online].
Available at: http://ifml.github.io/.

Sara Gotti, PhD Student. She
got her Master Degree in
software quality in 2013. She is
a researcher on studying the
execution of conceptual models
at MISC laboratory in Faculty of
science, Ibn Tofail University,
Morocco.

Her main research interests

are related to the establishment of a model
compiler/interpreter,

Samir Mbarki, he received his
B.S. degree in applied
mathematics from Mo-hammed
V University, Morocco, 1992,
and Doctorate of High Graduate
Studies degrees in Computer
Sciences from Mohammed V
University, Morocco, 1997. In
1995, he joined Ibn Tofail
University, Morocco where he is

currently a Professor in Department of Mathematics
and Computer Science. His research interests
include software engineering, model driven
architecture and natural language processing.

Zineb Gotti, PhD Student.
Received her master degree in
software quality in 2013. Her
activities of research focusing
on interactive systems moderni-
zation and evolution at MISC
laboratory in Faculty of science,
Ibn Tofail University, Morocco.

Naziha Laaz, PhD Student,
holding a Master Degree in
software quality. Her main
research interests are related to
the model driven engineering
using ontologies for graphical
user interfaces generation at
MISC laboratory in Faculty of
science, Ibn Tofail University,
Morocco.

