
Bassam Atieh Rajabi, Sai Peck Lee / International Journal of Computing, 18(4) 2019, 471-482

 471

COEVOLUTION PATTERNS TO DETECT AND MANAGE
UML DIAGRAMS CHANGES

Bassam Atieh Rajabi, Sai Peck Lee

Software Engineering Department, Faculty of Computer Science & Information Technology,

University of Malaya, Malaysia, bassamrajabi@gmail.com, saipeck@um.edu.my

Paper history:
Received 22 January 2019
Received in revised form 03 July 2019
Accepted 02 December 2019
Available online 31 December 2019

Keywords:
Coevolution;
Patterns;
UML;
Coloured Petri Nets;
Software Change.

Abstract: UML diagrams are divided into different perspectives in modelling a
problem domain. Preserving coevolution among these diagrams is very crucial so
that they can be updated continuously to reflect software changes. Formal
methods such as Coloured Petri Nets (CPNs) are widely used in detecting and
handling coevolution between software artifacts. Although ample progress has
been made, it still remains much work to be done in further improving the
effectiveness and accuracy of the state-of-the-art coevolution techniques in
managing changes in UML diagrams. In this research, a set of 84 coevolution
patterns for supporting coevolution among UML diagrams are proposed to trace
the diagrams’ inconsistencies and to determine the change impact incrementally
after updating diagrams elements. Coevolution patterns are applied to UML
class, object, activity, statechart, and sequence diagrams to cover the different
perspectives of UML diagrams. The researcher uses CPNs as a formal language
of modelling case study models for the proposed patterns. CPNs tools simulation
and monitoring toolboxes are used to validate and monitor the proposed
coevolution patterns models and to collect quantitative data about the patterns.

Copyright © Research Institute for Intelligent Computer Systems, 2019.
All rights reserved.

1. INTRODUCTION

Software engineers continue to face challenges
in designing adaptive and flexible software systems
that can cope with requirements change. One of the
crucial challenges in software change management
is to preserve the coevolution among software
system artefacts. Understanding the coevolution,
which represents the dependency between artefacts
that frequently change together. Coevolution
involves both change impact analysis and change
propagation between software artefacts or models,
and hence, it is required to check if the change in
one of the artefacts ultimately affects the other
artefacts and to maintain the consistency between
artefacts. For an efficient coevolution check, change
impact analysis is an important step to analyse and
determine the change effect, identify the parts that
require retesting, and maintain the consistency
among software artefacts. Identifying all
components affected by the change is based on the
traceability analysis to analyse the dependencies
between and across software artefacts at all levels of

the software process. Detecting and resolving the
coevolution between software artefacts can be done
through various techniques; some of these
techniques are analysing release histories or
versions, source code, and software architecture
level analysis. There are different approaches
proposed in the literature that use these techniques to
manage changes in the software project life cycle
including changes in software requirements, design
models, and programming code. Many of these
approaches are focused on the coevolution of
software modelling, in particular, Object-Oriented
(OO) software modelling, due to its wide adoption in
software modelling and design. The use of OO
diagrams in modelling a software system leads to a
large number of interdependent diagrams. OO
diagrams are divided into different categories or
perspectives (e.g. structural, behavioural, and
interaction); each category focuses on modelling a
different perspective of a problem domain. One of
the critical issues is to preserve the coevolution
among these diagrams so that they can be updated
continuously to reflect software changes. UML is

computing@computingonline.net
www.computingonline.net

Print ISSN 1727-6209
On-line ISSN 2312-5381

International Journal of Computing

Bassam Atieh Rajabi, Sai Peck Lee / International Journal of Computing, 18(4) 2019, 471-482

 472

the de-facto standard for modelling OO software
systems. UML defines different diagrams. Relations
between these diagrams are complex, and may lead
to inconsistent UML diagrams. Coevolution among
different perspectives or views of UML diagrams
means that the modification in one diagram should
be reflected in other related diagrams to ensure the
consistency of all diagrams. The consistency
problem in UML diagrams is linked to the multiple
views of UML diagrams and the inconsistencies
among these views or perspectives could be a source
of numerous errors in the software developed which
complicate diagrams management. If the effect of
changes in UML diagrams is not addressed
adequately among diagrams, it will result in further
defects, decreased maintainability, and increased
gaps between high-level design and implementation.
Hence, it is our concern to address the coevolution
and inconsistency problems discussed in this section.
Therefore, it is the aim of this research to propose an
efficient coevolution patterns for supporting
coevolution between UML diagrams. The proposed
patterns aim to keep track of changes in UML
diagrams. This includes ensuring the consistency
between UML diagrams, tracing the diagrams’
dependency, and determining the effect of the
change in these diagrams after each change
operation. Additionally, a change history between
two versions created from the same diagram is
addressed.

The concept of pattern was introduced to
expresses a relation between a certain context, a
problem, and a solution. Design patterns in OO
design capture frequently recurring sub-designs or
groups of objects that collaborate to perform a
certain task [1, 2]. The researcher studied the state of
the art patterns mainly patterns proposed by
Gamma’s [1, 2] and proposed a new set of patterns
to support coevolution between UML diagrams
including change impact and traceability analysis.
The proposed patterns are the basis of initiation for
all update operations, and are used to detect any
elements affected by the change in systems modelled
using UML diagrams. In the scope of this research,
Coevolution patterns are applied on Class Diagram
(CD), Object Diagram (OD), Activity Diagram
(AD), StateChart Diagram (SCD), and Sequence
Diagrams (SD). These diagrams cover the three
perspectives of UML diagrams (i.e. structural,
behavioural, and interaction). Several studies
mentioned that these diagrams are the mostly used
diagrams in UML design. Additional patterns for
change control and management are also provided.
The relations between these patterns are identified
and stated clearly. UML is a powerful means for
describing the static and dynamic aspects of
systems, but remains semi-formal and lacks

techniques for model validation and verification.
Formal specifications and mathematical foundations
such as CPNs are widely used in handling of
inconsistency problems among models to
automatically validate and verify the model dynamic
behaviour. In this research, CPNs Tools are used to
creates, simulates, and validates the proposed
patterns. Previous approaches are concentrated on
checking the consistency by comparing two different
versions from the same model. Additionally, there
are limitations in managing the coevolution after
adding, modifying, or deleting new models or
diagrams or diagram elements. The proposed
patterns design handle the coevolution between
UML diagrams perspectives and ensuring the
consistency and coevolution of all diagrams
comprehensively. The proposed pattern design
enables comprehensive modelling for changes in
UML diagrams and provides coevolution patterns
for all type of change including the change impact
and traceability analysis for UML diagram changes
(i.e. it improves pattern support in software analysis
and design). Additionally, it provides a new
structure for the CPNs to support model changes and
it increases the structuring capabilities of CPNs.
This section introduces the research context. The
rest of the paper is organized as follows: Section 2
presents a literature review for this research. In
section 3, the coevolution patterns to support
detecting and resolving the coevolution and
inconsistencies among UML diagrams are proposed.
Section 4 is dedicated to the proposed patterns
analysis and results discussion. Finally, conclusions
are drawn and suggested recommendations for some
potential future research areas are highlighted.

2. LITERATURE REVIEW

Pattern languages express sound solutions for
problems frequently recurring in a certain domain in
a pattern format. A pattern language helps
developers to build efficient models by avoiding the
reinvention of already existing solutions to
problems. Software models and patterns can be
integrated together in software development because
patterns can be used as templates for software
development models [3]. Additionally, patterns
enhance the software structure by decoupling
different components and this makes the evolution
tasks easier. In OO, design patterns make it easier to
reuse successful designs and architectures (Gamma ,
Helm, Johnson, and Vlissides [1] and Gamma,
Helm, Johnson, and Vlissides [2]). Gamma, et al [1]
and Gamma, et al [2] proposed a pattern definition
for use in OO software design. This pattern is
defined as follows: Intent, Motivation, Applicability,
Participants, Collaborations, Diagram,
Consequences, Implementation, Example, and See

Bassam Atieh Rajabi, Sai Peck Lee / International Journal of Computing, 18(4) 2019, 471-482

 473

Also. Patterns are used in many workflow software
systems to manage and execute operational
processes involving people, applications, and/or
information sources. Some of these patterns are
modelled and simulated using CPNs. Pattern
language verification in the model-driven design
approach is introduced in [4]. A pattern language for
evolution reuse in component-based software
architectures approach is proposed in [5]. Decades
of research efforts have produced a wide spectrum
of approaches and techniques for checking the
coevolution and inconsistency among OO diagrams.
Some of these approaches can be classified into
direct, transformational, or formal semantics
approaches [6]. The main ideas and weaknesses of
these approaches are: Standard Object Constraints
Language (OCL) as a direct approach is concerned
with keeping the software models in a consistent
state and synchronized with the underlying source
code and does not allow for making changes to the
model elements to resolve them [7],[8]. Some
approaches that use OCL to ensure consistency
between UML diagrams are proposed in Egyed [9],
[10] and Elaasar and Briand [11]. CPNs can be used
to check and verify the UML model associated with
the OCL to ascertain whether or not it meets the user
requirement [12]. The coevolution in
transformational approaches is based on
bidirectional mapping rules between the architecture
model and source code. The graph transformation
technique is limited to checking the structural
inconsistencies only because it can only detect and
resolve the inconsistencies that can be expressed as a
graph structure [13]. According to Lucas et al. [14],
75% of the approaches and techniques used for
detecting and handling the coevolution and
inconsistencies problems are formal. The most
common formal methods used are state transitions
methods such as CPNs. Formal approaches are
widely used for describing the behaviour of UML
diagrams using the executable model capability
provided in CPNs. As regards the usage of patterns
in software modelling, researchers have
concentrated on using patterns as design patterns and
in the workflow software management system.
Updating the pattern design to manipulate the
software changes and change impact also could
facilitate software change design. A coevolution
approach between a component-based architecture
model and OO source code is proposed in
Langhammer [15]. García, Diaz, and Azanza [16]
discuss the coevolution between metamodels and
models based on model transformation to
metamodels. In these approaches, new updates are
stored in a new version from the metamodel.
According to Protic [17], model coevolution
describes the problem of adapting models when their

metamodels evolve. Other approaches in consistency
and coevolution based on transformational models
are presented in other studies [18-20]. Some UML
diagramming tools, such as the Visual Paradigm
tool, detect the impact analysis based on the physical
connection between the elements of UML diagrams.
The Visual Paradigm tool analyses the connection
between the diagrams’ elements based on the user
selection for the dependency between the diagrams.
Improving the effectiveness and the accuracy of
state-of-the-art coevolution techniques in managing
UML diagram changes is an important issue and
much work is still needs to be done to fully provide
flexibility, adaptability, and dynamic reaction to
changes. Previous approaches are concentrated on
checking the consistency by comparing two different
versions from the same model. Additionally, there
are limitations in managing the coevolution after
adding, modifying, or deleting new models or
diagrams or diagram elements. There is a need to
handle the coevolution between UML diagrams
perspectives and ensuring the consistency of all
diagrams comprehensively using all UML structural,
behavioural, and interaction diagrams including the
diagrams relations. Therefore, this research proposes
coevolution patterns to cover these limitations. A
formal modelling language based on CPNs is used to
model and simulate the proposed patterns. The
rational of using CPN stems from the fact that it
provides automatic validation and verification.
Formal methods improve software development
specification, verification and validation, and this is
very important for UML diagrams consistency
analysis.

3. PROPOSED COEVOLUTION

PATTERNS

In this research, coevolution patterns are
proposed in order to provide a systematic and
methodical approach for managing changes among
UML structural, behavioural, and interaction
diagrams. The proposed patterns are used to check
the consistency, impact, and traceability
incrementally after a diagram or diagram element
has been created, deleted, or modified. Additionally,
the provision of a change history between two
versions created from the same diagram is
addressed. Impact and traceability analysis is
important in order to identify the parts that require
retesting and to improve the overall efficiency of
software change management techniques. In this
research, information about change impact and
traceability analysis are identified for all types of
change to detect any elements affected by a change
to a system modelled using UML diagrams. The
nature of the change could be corrective or
evolutionary. Corrective changes are implemented to

Bassam Atieh Rajabi, Sai Peck Lee / International Journal of Computing, 18(4) 2019, 471-482

 474

correct a design error. Evolutionary changes are
required due to the redesign or reconfiguration of
processes. The change effect could be local if the
change in one diagram does not impact on other
diagrams or it could be global if it concerns relations
between diagrams. These changes are represented by
consistency and integrity rules. The proposed
coevolution patterns are identified and categorized
based on UML diagram categories and relations
(structural, behavioural, and interaction diagrams).
The formal approach is used to model, simulate, and
validate the proposed coevolution patterns using the
CPNs formal modelling tool. The steps of defining
the proposed patterns are shown in Figure 1 and
discussed in details in the following sub-sections.
Design of consistency rules and the methods and
algorithms in determining the components affected
by a change are proposed in the researcher previouse
work provided in [21]. The consistency rules are
checked and applied during the change impact and
traceability analysis process. Rule conditions,
actions, and pre and post conditions are also
considered. All consistency constraints are
maintained before and after the new changes have
been updated. If any one of these constraints is not
satisfied then it is rejected. Data integrity is a critical
issue and needs to be validated against certain
constraints before and after applying a change.
Integrity rules express constraints and define the
acceptable relationships between data elements, as
well as ensuring completeness. In this research,
these rules are checked incrementally after each
update operation, and any sequence of updates that
occurs must not result in a state that violates any of
the constraints.

Figure 1 – Steps of Defining Proposed Coevolution
Patterns

In the proposed patterns, the UML diagram
elements affected by a change are determined based
on the object dependency graph of the diagram
objects and their relations. Control flow dependency
and other dependencies such as inheritance,
aggregation, encapsulation, polymorphism, and
dynamic binding are supported by the patterns. Any
update operation in a structural diagram will cause a
change in the behavioural and interaction diagrams.
Also, the behavioural and interaction diagrams are
interdependent; if a change has happened in one of
the behavioural diagrams, then it will affect at least
one interaction diagram and vice versa based on the
formal definitions provided in [21]. Theses formal
definitions are used to find the impact-related
elements, reflexive relation, transitive relation,
relation between UML Diagram elements and
change types, and the relation between UML
Diagram versions.

3.1 PROPOSED COEVOLUTION
PATTERNS

Generaly, developers have focused on using
patterns in software modelling as design patterns and
in the workflow software management system. In
comparing with other approaches, previous
approaches are concentrated on checking the
consistency by comparing two different versions
from the same model. Additionally, there are
limitations in managing the coevolution after adding,
modifying, or deleting new models or diagrams or
diagram elements. There is a need to handle the
coevolution between UML diagrams perspectives
and ensuring the consistency and coevolution of all
diagrams comprehensively. In this research, a new
pattern design for the coevolution between UML
diagrams is suggested. The proposed pattern design
includes the change impact and traceability analysis
information. In this research, coevolution patterns
are identified and categorized based on UML
diagrams categories and relations. Several issues
related to the checking of the correctness of rules
(changes) including the checking of data integrity
and consistency, and versions history and control are
discussed. Pattern simulation methodologies and
results are also analyzed. The proposed patterns
modifies Gamma , et al [1] and Gamma , et al [2]
patterns to include the change impact and
traceability analysis information. The proposed
pattern is defined as follows:

Pattern Name: The identifier of a pattern that
captures the main idea of what the pattern does;

Intent: What does the design pattern do? What is
its rationale and intent? What particular design
issue or problem does it address?

Formulate the change as a rule
(Rule Design)

New Change Integration (Change
Impact and Traceability Analysis)

New Change (Rule)

Coevolution Patterns

Structural, Behavioral, Interaction,
Versions History and Control Patterns

Change Type Examples
Change to correct errors, enhance
functionalities, adapt new data, and
improve efficiency

Bassam Atieh Rajabi, Sai Peck Lee / International Journal of Computing, 18(4) 2019, 471-482

 475

Motivation: A scenario that illustrates a design
problem. The scenario helps to understand the more
abstract description of the pattern that follows.

Problem description: Presents the problem
addressed by the pattern;

Solution/Diagram: Describes possible solutions
to the problem; a graphical representation of the
pattern using a notation based on CPN modelling
techniques.

Change impact and traceability analysis:
The proposed impact and traceability analysis

information is defined by the tuple n = (CT, CI,
AffectedD, ConstR), where:

CT is the change type that represents the rule,
which could be creating, deleting, or modifying a
diagram element;

CI is the change impact value, where ‘LC’
denotes a local change, ‘GC’ denotes a change that
affects the elements of other diagrams, and ‘Null’ is
where the update operation is not allowed;

AffectedD defines affected diagrams
(dependency), i.e. is a list of affected diagrams; and

ConstR defines the consistency and integrity
rules to maintain the consistency between UML
diagrams and their relations. These rules are checked
and applied during the change impact and
traceability analysis process.

Example: One or more examples of the pattern
found in real systems when needed. CPN places
initial and final marking examples are provided.

Related patterns: What design patterns are
closely related to this one? What are the important
differences? With which other patterns should this
one be used?

The proposed patterns are interconnected patterns
that enable incremental coevolution in a software
system, which means decomposing the coevolution
process into a manageable set of scenarios that can
be addressed in a step-wise manner assuming that
each pattern provides a solution to a given
coevolution scenario. The following are the
proposed patterns for the class, object, activity,
statechart, and sequence diagrams, respectively,
grouped by the change type in addition to the change
control patterns. The proposed patterns design
includes information about the change impact and
traceability analysis. In order to include this
information in the patterns design and simulation, a
new structure for the mutual integration of UML and
CPNs modelling languages is proposed in [22, 23] to
support the coevolution between UML diagrams and
for framework modelling and simulation. In the
proposed structure, consistency and integrity rules
are part of the transformation process and integrated
in the transformed CPNs model. The consistency
rules include a set of rules to check and maintain the
consistency and integrity based on the relations

between UML diagrams. The proposed OOCPN
structure is defined by the tuple n = (∑, Pg, P, Fp, T,
SubT, A, N, C, G, E, M0, R), where:

∑: is a finite set of non-empty types, called colour
sets
Pg: {Pg0, Pg1….Pgn} is a set of pages, where Pg0
is the main page
P: is a finite set of places
Fp: is a finite set of fusion places
T: is a finite set of transitions
SubT: is a finite set of substitution transitions
A: represents a set of directed arcs
N: is a node function
C: is a colour function
G: is a guard function
E: is an arc expression function
M0: P → C is the initial (coloured) marking
R: is a finite set of consistency and integrity rules

A. Proposed Class Diagram Patterns
Create an element: class, attribute, operation,

class inheritance, association relationship,
aggregation relationship, composition relationship.
Modify an element: class name, attribute name,
attribute visibility, attribute property,attribute type,
attribute value, operation property, operation type,
operation visibility, operation name, generalization
relationship, association destination multiplicity,
association source multiplicity, role name. Delete an
element: class, attribute, operation, generalization
relationship, association relationship, aggregation
relationship, composition relationship. Search about
an element: class, attribute, operation, generalization
relationship, association relationship, aggregation
relationship, and composition relationship.
Consistency check: class redundancy check, class
with no operation or attribute consistency check,
Class element redundancy check, class with no
relation consistency check, attribute redundancy
check, operation redundancy check.

B. Proposed Object Diagram Patterns

Create an element: message data type, variable/
message. Modify an element: object name, message
data type, variable/message. Delete an element:
object, variable/message. Search about an element:
instance name, object exist, instance class.
Consistency check: check object name, objects not
created.

C. Proposed Activity Diagram Patterns

Create an element: activity, a sub-activity,
control node, action, iteration, guard condition.
Modify an element: sub-activity, control node,
action, iteration, guard condition. Delete an element:
activity, sub-activity, control node, action, iteration,
guard condition. Search about an element: activity,
sub-activity, action, fork, join, decision, merge,
object, loop, guard, call behaviour action.

Bassam Atieh Rajabi, Sai Peck Lee / International Journal of Computing, 18(4) 2019, 471-482

 476

Consistency check: objects not in Ads, ADs not
created, AD elements not created, modify AD name

D. Proposed Statechart Diagram Patterns

Create an element: start/end node, event, state,
action, iteration, guard condition. Modify an
element: event, action, iteration, guard condition.
Delete an element: event, start/end node, action,
iteration, guard condition. Search about an element:
event, action, guard, loop. Consistency check: SCDs
not created ,SCD elements not created, modify SCD
name.

E. Proposed Sequence Diagram Patterns

Create/Modify/Delete an element: object,
message, Create/ Delete/ Modify iteration,
Create/Delete/Modify guard condition,
Create/Delete/Modify operators. Search about an
element: object, message, loop, guard, Opt, Ref, Alt,
Par. Consistency check: SDs not created, SD search,
SD elements not created, objects not in SDs, Modify
SD name patterns.

F. Proposed Change Control Patterns

Search Patterns: find a diagram element. Class
Diagram Search Patterns: find a class diagram
element. Object Diagram Search Patterns: find an
object diagram element. Activity Diagram Search
Patterns: find an activity diagram element. Sequence
Diagram Search Patterns: find a sequence diagram
element. Change History Patterns: Changes history
selection, Store in file. Update new version

The following is an example about creating new
operation pattern.

CD Create New Operation Patterns
Intent: To maintain the coevolution between

diagrams based on the change ‘creating new
operation’.

Motivation: The adding of new operations is
mandatory in any class update. Maintaining the
coevolution of the class diagram after this update
operation is important.

Problem description: To add a new operation, a
set of consistency rules should be maintained before
applying the change. Additionally, checking the
redundancy of the operation names is important as
discussed in relation to Помилка! Джерело
посилання не знайдено..

Solution/Diagram: This pattern is solves the
above problem by performing the following steps:

1. Applying Помилка! Джерело посилання
не знайдено. to check the redundancy of the
new operation name and the consistency rules
before adding the operation.

2. If the result of Step 1 is ‘this operation name
exists’ the new operation name will be
rejected.

3. If the result of Step 1 shows that the
operation name is unique and the consistency
rules are checked, then the change will be
made.

4. The new operation will be added to the list of
class diagram operations.

5. The new operation will be added to the list
operations not created in the activity,
statechart, and sequence diagrams in order to
maintain the consistency between diagrams.

6. The new changes will be stored in a file for
change history management.
Figure 2 shows the solution diagram.

Change impact and traceability analysis:
Change Type: Create a new operation

Change Impact: GC Affected
Diagrams: All

Consistency and Integrity Rules:
If (a new operation is created) Then (No

private/protected attribute or operation can be
accessed by an operation of another class)

If (an operation has a pre or post condition
attribute) Then ((All diagrams’ attributes/operations
must be defined in the CD) ∩ (attribute type must be
compatible))

If (an operation realizes an interface operation)
Then

- (Its ((owner scope values) ∩ (polymorphic
properties) ∩ (precondition) ∩ (concurrency
values) ∩ (query properties)) must be the same
as that of the interface operation)

- (The directions of all the parameters must
match the directions of the parameters of the
interface operation)

If (an attribute changeability is not “changeable”)
Then (A diagram element cannot update an attribute
if the attribute changeability is not “changeable”).

Example: 1`(["Class1"],"Op1").
Related patterns:
Pattern 2. Operation Redundancy Check
Pattern.
Pattern 4. Class with No Operation or Attribute
Consistency Check.
Pattern 5. Class Element Redundancy Check
Pattern 9. Class Diagram Operation Search
Pattern 19. Activity Diagrams Not Created
Pattern 20. Activity Search
Pattern 22. Activity Diagram Elements Not
Created
Pattern 23. Activity Diagram Action Search
Pattern 33. Sequence Diagram Not Created
Pattern 34. Sequence Diagram Search
Pattern 49. Class Diagram Create New
Operation
Pattern 59. Class Diagram Delete Operation

Bassam Atieh Rajabi, Sai Peck Lee / International Journal of Computing, 18(4) 2019, 471-482

 477

Pattern 70. Class Diagram Modify Operation
Property
Pattern 71. Class Diagram Modify Operation
Type
Pattern 72. Class Diagram Modify Operation
Visibility
Pattern 73. Modify Sequence Diagram Name
Pattern 74. Modify Operation Name
Pattern 78. Modify Activity Diagram Name

3.2 CASE STUDY MODELS

Case study models are modelled for the class,
object, activity, statechart, and sequence diagram..
All the patterns are applied based on these models.
CPNs Tools simulation and monitoring toolboxes
are used to validate the case study models and for
monitoring and analyses. The case study models are
divided in the following main sections: Class
Diagram: The CD elements that are modelled in
CPNs are attributes, values, operations, classes,
abstract classes, communication methods and
dynamic binding, generalization/class inheritance,

associations, aggregation, composition, navigability
arrow, polymorphism, multiplicity, role name, an
interface, and dependency. Object Diagram: The
OD that are modelled in CPNs are object (class
instance), and object state. Activity Diagram: The
AD elements that are modelled in CPNs are sub-
activity, action, call behaviour action, control flow,
object flow, object node, start node, guard
expression, join, fork, decision nodes, branch,
merge, activity sequence, activity iteration/loop, and
end state. Sequence Diagram: The SD elements
that are modelled in CPNs are objects, messages,
operation call and self call, synchronous and
asynchronous messages, condition, alt (alternative
choice), opt (optional operator), ref, par,
iteration/loop, note, creation and deletion, action
bars/lifelines. Statechart Diagram: The SCD
elements that are modelled in CPNs are event, state,
action, start/end node, iteration/loop, and guard
condition. These elements are modelled based on the
diagrams relations.

Figure 2 – CD Create New Operation

3.3 PATTERNS SIMULATION AND
VALIDATION

In this research, the benefits of the graphical
representation, simplicity, and executable nature of a
CPNs model, are exploited to check the correctness
of the proposed patterns and to simulate them. The
correctness of the proposed patterns is checked
based on the following stages: designing the pattern
diagram, running the simulation, and the CPN
simulator represents the ongoing simulation directly

on the model by highlighting the enabled and
occurring transitions and by showing how the
markings of the individual places change. Some of
the interactive simulation steps are controlled by
some test cases to check the correctness of the model
using more than one test case. Some test cases are
based on automatic simulation steps. CPNs Tools
provides all the means of creating the model’s
elements (places, transitions, arcs expressions,
functions …etc). Moreover, simulation based
performance analysis is supported via automatic

#1 CDconsistLists

(classesList1,
oprdefinitionlst1,
allattributes1)

allclassopratr1

RedundencyMsg

oprerationsListstrAtr

oprdefinitionlst1

classesList1classesList

classesListstrAtr

classesList
(classesList,strAtr)

(allclassesnoconst,CDconsistLists,
ODconsistlist,ADconsistlists,
SCDconsistlists,SDconsistlists,
allupdates)

(allclassesnoconst,CDconsistLists,
ODconsistlist,ADconsistlists,
SCDconsistlists,SDconsistlists,
allupdates)

allclassopratr1

oprerationsList

ins_Opr
oprerationsList
 strAtr

strAtr

#1 oprdefinition

oprdefinition

(classesList1,
oprdefinitionlst1,
allattributes1)

allclassopratr1

T7

[mem
oprerationsList
strAtr]

T4

[classesList=
classesList1]

T3

T1

T8

T6

T5

T2P4

ClassOprAtr

P12

STRING

P6

ClassesList

P11

STRING

P7

ClassesList

P5

In
ClassAtrName

P2

Out
AllClassesList

P1

In
AllClassesList

P10
empty
AttributesList

P9
STRING

P8

OprDefinition

P13

ClassOprAtr

P3

AllClassOprAtr

In Out

In

Bassam Atieh Rajabi, Sai Peck Lee / International Journal of Computing, 18(4) 2019, 471-482

 478

simulation combined with data collection. The CPNs
Tools toolboxes can perform a model simulation in
one step or in a certain number of steps.
Additionally, design verification is one of the
important features in CPNs Tools.

A. Validation threats:
In CPNs Tools, models are verified by using

different graphs. One of these graphs is a directed
graph called the State Space Graph (SSG), which
represents the reachable states and state changes of
the model. The state explosion problem makes the
verification of a large system extremely difficult. In
this research, validation and verification of the
proposed patterns was done through following and
tracing the simulation steps (one or a certain number
of simulation steps). A set of notifications and error
messages is provided in these models in order to
check the reachability of the nodes (places and
transitions). In the simulation steps of the proposed
patterns, the simulation starts with the diagram
simulation. Then, the pattern models are simulated
to check pattern correctness. In all steps, an initial
token is provided for each of the nodes in order to
trace the simulation process by transferring these
tokens from the input to output places. Table 1
summarizes the simulation steps needed for the case
study models.

Table 1. Summary of Simulation Steps for Case Study
Models

Diagram Element Simulation Steps
Count

Class Diagram Models 445
Object Diagram Models 246
Activity Diagram Models 503
Statechart Diagram Models 96
Sequence Diagram Models 768
Proposed Patterns Models 1301

4. ANALYSIS AND DISCUSSION

In this section, the performance of the proposed
patterns is analysed and discussed also compared
with the state-of-the-art.

4.1 CHANGE IMPACT AND
TRACEABILITY ANALYSIS EVALUATION
METRICS

In this research, quantification of the change
impact is based on two metrics: the set of diagrams/
diagrams elements affected by the change and the
change levels.

A. Metrics for Change Level
An algorithm has been proposed to determine the

change impact and the dependency between the
elements the UML diagrams. Corrective and

evolutionary changes are supported. The change
level is used to determine the distance between the
changed element and the impacted elements. The
change distance is calculated according to the
following rule: If (the change in S, B, or I is
local) Then (change distance is 1) Else (change
distance is 2). //the number of affected diagrams
(n) by the change is n ≥ 1.

B. Metrics for Affected Diagrams and
Elements

This metric is related to the set of diagrams or
diagram elements affected by a change. It is also
referred to as the cost of the change. The higher
impact on the diagrams and elements, the more
severe the change. The results show that the relation
between the class diagram and other models is
strong. This explains number of patterns proposed
for the class diagram. The dependency between
UML diagrams has also been defined formally in
Definitions 1 to 5. The change impact on the
diagrams’ elements can be defined based on the
dependency relations; some examples of these
relations are given below:
 ∃ e(diagram element) ∈ CD: If (e is changed)

Then (all diagrams are affected) Classes,
attributes, and operations in the class diagram
are used or invoked in all UML diagrams.

 ∃ e ∈ OD: If (e is changed) Then (all diagrams
are affected except the CD) Objects are used in
the structural, behavioural, and interaction
diagrams

 ∃ e ∈ AD: If (e is changed) Then (SCD and SD
are affected).

 ∃ e ∈ SCD: If (e is changed) Then (AD and SD
are affected) The dynamic behaviour of the SCD
is described using the AD, SD.

 ∃ e ∈ SD: If (e is changed) Then (AD and SCD
are affected)

The number of update operations supported for
each diagram is provided in Figure 3. Self, direct,
and indirect dependencies are considered. In
comparison with the approaches it is not check only
the consistency between two versions from the same
diagram.

Figure 3 – Number of Update Operations Supported
for Each UML Diagram

CD OD AD SD

of Update
Operations

41 9 17 23

0

10

20

30

40

50

Bassam Atieh Rajabi, Sai Peck Lee / International Journal of Computing, 18(4) 2019, 471-482

 479

4.2 COEVOLUTION PATTERNS

In this research, coevolution patterns are
proposed as a way to determine and classify the
types of changes in UML diagrams and their impact
on other diagrams. The consistency between
diagrams is checked according to the consistency
and integrity rules provided in each pattern. Vertical,
horizontal, and evolutionary consistency types are
checked. The proposed patterns trace the
dependency and determine the effect of a change in
the UML diagrams elements incrementally; the
patterns are used to check the consistency, impact,
and traceability after creating, deleting, or modifying
any diagram element by applying the same idea of
syntax checking incrementally to CPNs. A
comparison of two versions derived from the same
diagram is supported. The main goal was to find a
way to utilize patterns as a source of sound solutions
for problems that may appear during modelling. In
order to help developers in selecting a suitable
pattern, this research classifies the patterns and
analyses the relationships between the patterns to
enable easy navigation through the patterns. This
research proposes 84 patterns to support changes in
the diagrams elements as shown in Figures 4 and 6.
The proposed pattern design supports the automatic
checking of consistency during the diagrams design
process not just the checking the consistency of the
diagrams when they are updated. This can be
considered a major advantage over the state-of-the-
art approaches. It also helps in solving the
inconsistency detection problem. The search patterns
proposed in this research can be used to detect
inconsistencies before applying any diagrams
changes. For example, the pattern design includes
the following rule: Each message in a sequence
diagram needs to have a corresponding operation
that needs to be owned by the message receiver's
class; when there is any contradiction with this rule
the change is rejected. The same things are applied
for all the consistency rules proposed in this
research. The metrics for quantifying the change
impact/cost of the change in each coevolution
pattern are based on the set of diagrams/diagrams
elements affected by the change. The higher
numbers explain the degree of coevolution between
the diagrams also explain the high number of
patterns proposed for the class diagram.

Figure 4 – Diagrams Patterns

Figure 5 – Number of Proposed Patterns

4.3 VALIDATION AND PERFORMANCE
ANALYSIS

The proposed patterns validation and
performance analysis is based on the CPNs Tools
simulation and monitoring tool-boxes options, the
results of which are shown in the following tables
and figures. The monitoring and simulation tool-
boxes allow checking at runtime that the system is
behaving correctly.

A. Patterns Validation

The simulation capabilities of CPNs Tools are
used to execute the patterns model over a set of test
cases. The appropriate inputs for each test case were
provided by placing tokens on the CPN places. The
CPN model was then executed using the simulator
toolbox to determine if the correct output was
generated and if the correct logical paths were
chosen. It should be noted that due to the state
explosion problem it is very difficult to generate
state space reports for the proposed patterns.
Therefore, in this research, the reachability of the
places and transitions were detected through the use
of marking size monitoring for all patterns as shown
in Figures 6 and 7.

Figure 6 – Analysis of Patterns Marking Size Sum

Figure 7 – Analysis of Patterns Marking Size Average

0

10

20

30

CD OD AD SCD SD

of Patterns

0
5

10
15
20

Create

Modify

Delete

Search

Change History

0

2000

4000

6000

8000

0 20 40 60 80 100M
ar

ki
n

g
Su

m
 V

al
u

e
s

Pattern No.

0

1

2

3

4

5

6

0 20 40 60 80 100M
ar

ki
n

g
Si

ze
 A

ve
ra

ge

Pattern No.

Bassam Atieh Rajabi, Sai Peck Lee / International Journal of Computing, 18(4) 2019, 471-482

 480

B. Data Collector and Marking Size
Monitoring

Table 2 illustrates the proposed patterns model
elements statistics. These statistics were derived
from the CPNs Tools monitoring toolbox. These
data also represent the model size or the scalability
of the model.

Table 3 summarizes the marking size monitoring
data and data analysis results. The average metrics
are calculated by Sum/Count.

Table 2. The Model Elements in the Proposed Patterns
Model

Diagram Element Statistics (Number of
Elements)

Places 2126
Place Instances 2274
Transitions 942
Transitions Instances 1418
Arcs 3638
Arcs Instances 4450
Pages 191
Pages Instances 267
Declaration) 262
Types 132
Variables 141

Table 3. Analysis of Marking Size Monitoring Data

Name Count Sum Average

Class Diagrams 445 8 0.017937

Object Diagrams 246 19 0.076923

Activity Diagrams 503 11 0.021825

Sequence Diagrams 768 8 0.010296

Statechart Diagram 97 2 0.020619

Patterns 1301 1217 0.935434

Change History 1297 1206 0.929838

4.4 DISCUSSION

In related works, patterns that are provided are
specified only for modelling the business process
and workflow software management systemand the
patterns approach are used as design patterns. In
contrast, the patterns proposed in this research can
be used to deal with software changes in any OO
diagrams design. According to [3], patterns exist not
only as design patterns, but for every phase of
software development, including requirements
analysis, architectural design, implementation , and
testing. The proposed patterns can also be applied to
these phases in addition to the software maintenance
phase. The proposed patterns produce a precise set
of dynamic impacts for UML diagrams by
eliminating the changes through incremental

consistency checks during the design stage and by
identifying the change impact in the software
maintenance/evolution stage. In comparision with
the state of the art approaches:

 Effectiveness and Soundness: The proposed
patterns help developers to build their models
efficiently, while avoiding reinvention of already
existing solutions of problems. The proposed
patterns express sound solutions for problems
frequently recurring in a certain domain in a pattern
format. Knowing a problem at hand, a developer can
look up a solution for the problem in the pattern
catalog, while spending less effort on the
development and also ensuring the soundness of a
solution. This research classifies the patterns and
analyses the relationships between the patterns to
enable easy navigation through the patterns and this
makes the evolution tasks easier. The modularity in
the hierarchical structure of the proposed patterns
reduces interdependencies between the model
components, and facilitates easy maintenance and
updates without impacting the entire model. The
proposed patterns are not a comparison between two
versions only.

 Maintainability: Enhances the diagrams’
change support through building a consistent model
at the design time, and then, applying the changes to
these models. Not just the checking of the
consistency of the diagrams when they are updated.
This will provide incremental and automatic
coevolution and consistency check. Executable
models (Incremental and Automatic correctness
check using CPNs simulation and monitoring tools).

 Integrity: Integrate the new changes with the
current diagrams.

The main limitations of this research are as
follows: The proposed patterns are restricted on term
of the range of UML diagrams supported in the
patterns design (specifically class, object, activity,
statechart, and sequence diagrams). Hence more
comprehensive patterns are required to cover all
diagrams. This research does not cover all the
possible inconsistency checking rules for all
diagrams. This is because the research focuses on
the most important diagrams elements and rules.

5. SUMMARY AND FUTURE WORK

In this research, a novel approach for coevolution
patterns were proposed to manipulate the change
effect in the UML diagrams’ elements. The
proposed patterns can be applied to detect the
diagram elements affected by a change in a system
design modelled using UML diagrams. These
patterns can be used to control the evolution of UML
diagrams by identifying and managing the model
changes, ensuring the correctness and consistency of

Bassam Atieh Rajabi, Sai Peck Lee / International Journal of Computing, 18(4) 2019, 471-482

 481

the models, identifying the impact of changes based
on the relationships between diagrams, and
analyzing the performance. The proposed
coevolution patterns support the UML class, object,
activity, statechart, and sequence diagrams because
the coevolution between these diagrams is very high.
The proposed patterns support the checking of the
consistency between UML diagrams during the
design process not just checking of the consistency
when the diagrams are updated. The coevolution is
incremental; this means that if the Addition for a
new diagram element is related to other diagrams
elements it must exist, The work done in this thesis
could be extended in several directions: The
proposed patterns cover some of the UML diagrams,
more comprehensive patterns could be attempted in
a future research study. Additionally, extending the
research by considering the semantic meanings of
the model and considering the coevolution between
models and the source code.[5]

6. REFERENCES

[1] E. Gamma, et al., Design Patterns: Rlements of
Reusable Object Oriented Software,: Addison-
Wesley Longman Publishing Co., Inc. Boston,
MA, USA, 1995.

[2] E. Gamma, et al., Design patterns: Abstraction
and Reuse of Object-oriented Design, Springer,
2001.

[3] I. Côté, and M. Heisel, “Supporting evolution
by models, components, and patterns,”
Proceedings of the 1 Workshop des GI-
Arbeitskreises Langlebige Softwaresysteme
(L2S2): “Design for Future – Langlebige
Softwaresysteme”, 2009, pp. 39-51.

[4] B. Zamani, and G. Butler, “Pattern language
verification in model driven design,”
Information Sciences, vol. 237, pp. 343-355,
2013.

[5] A.A. Abbasi, A Pattern Language for Evolution
Reuse in Component-based Software
Architectures,” Dublin City University, 2015.

[6] P. Sapna, and H. Mohanty, “Ensuring
consistency in relational repository of UML
models,” Proceedings of the 10th IEEE
International Conference on Information
Technology, (ICIT'2007), 2007, pp. 217-222.

[7] S. Lehnert, A Review of Software Change
Impact Analysis, Ilmenau University of
Technology, Tech. Rep, 2011.

[8] A. Khalil, and J. Dingel, Supporting the
Evolution of UML Models in Model Driven
Software Development: A Survey, School of
Computing, Queen’s University, Technical
Report 2013-602, 2013.

[9] A. Egyed, “Automatically detecting and
tracking inconsistencies in software design
models,” IEEE Transactions on Software
Engineering, vol. 37, issue 2, pp. 188-204,
2011.

[10] A. Egyed, et al., “Maintaining consistency
across engineering artifacts,” Computer, vol.
51, issue 2, pp. 28-35, 2018.

[11] M. Elaasar, and L. Briand, An Overview of
UML Consistency Management, Carleton
University, Canada, Technical Report SCE-04-
18, 2004.

[12] A. Sharaff, “A methodology for validation of
OCL constraints using coloured Petri nets,”
International Journal of Scientific &
Engineering Research, vol. 4, no. 1, pp. 1-6,
2013.

[13] J.P. Puissant, Resolving Inconsistencies in
Model-Driven Engineering using Automated
Planning, PhD thesis, University de Mons,
2012.

[14] F.J. Lucas, F. Molina, and A. Toval, “A
systematic review of UML model consistency
management,” Information and Software
Technology, vol. 51, issue 12, pp. 1631-1645,
2009.

[15] M. Langhammer, “Co-evolution of component-
based architecture-model and object-oriented
source code,” Proceedings of the 18th
International Doctoral Symposium on
Components and Architecture, 2013, pp. 37-42.

[16] J. García, O. Diaz, and M. Azanza, “Model
transformation co-evolution: A semi-automatic
approach,” Software Language Engineering,
Springer, 2013, pp. 144-163.

[17] Z. Protic, Configuration Management for
Models: Generic Methods for Model
Comparison and Model Co-evolution, PhD
Thesis, Eindhoven University of Technology,
Eindhoven, The Netherlands, 2011.

[18] A. Kusel, et al., “Systematic co-evolution of
OCL expressions,” Proceedings of the 11th
Asia-Pacific Conference on Conceptual
Modelling (APCCM 2015), Sydney, Australia,
27-30 January 2015, pp. 33-42.

[19] A. Demuth, et al., “Co-evolution of
metamodels and models through consistent
change propagation,” Journal of Systems and
Software, vol. 111, pp. 281-297, 2016.

[20] D. Torre, et al., “A systematic identification of
consistency rules for UML diagrams,” Journal
of Systems and Software, vol. 144, pp. 121-142,
2018.

[21] B.A. Rajabi, and S.P. Lee, “Change
management technique for supporting object
oriented diagrams changes,” Computer Systems

Bassam Atieh Rajabi, Sai Peck Lee / International Journal of Computing, 18(4) 2019, 471-482

 482

Science and Engineering, vol. 32, no. 1, pp. 49-
63, 2017.

[22] B.A. Rajabi, and S.P. Lee, “Consistent
integration between object oriented and
coloured Petri nets models,” The International
Arab Journal of Information Technology, vol.
11, issue 4, pp. 406-415, 2014.

[23] B.A. Rajabi, and L. Sai Peck, “Change
management framework to support UML
diagrams changes,” The International Arab
Journal of Information Technology, vol. 16,
issue 4, pp. 720-730, 2019.

Bassam Rajabi received his
PhD degree in Software
Engineering from University of
Malaya, Malaysia. Currently, he
is the dean of Ibrahimieh
Community College. His areas
of interest are Software Design
and Modeling Techniques.

Sai Peck Lee is a Professor at
University of Malaya. She
obtained her Ph.D. degree in
Computer Science from
Université Paris 1 Panthéon-
Sorbonne. Her current research
interests include Object-
Oriented Techniques and CASE

tools, Software Reuse, Requirements Engineering
and software quality.

