
Oscar Karnalim, Gisela Kurniawati / International Journal of Computing, 19(1) 2020, 27-38

 27

PROGRAMMING STYLE ON SOURCE CODE PLAGIARISM
AND COLLUSION DETECTION

Oscar Karnalim, Gisela Kurniawati

Maranatha Christian University, Prof. drg. Surya Sumantri, M.P.H. Street no 65, Bandung, 40164, Indonesia,
oscar.karnalim@it.maranatha.edu, https://orcid.org/000-0003-4930-6249, gisela.kurniawati@it.maranatha.edu

Paper history:
Received 12 August 2019
Received in revised form 7 December 2019
Accepted 21 February 2020
Available online 31 March 2020

Keywords:
source code;
plagiarism and collusion;
similarity detection;
programming style;
computing education.

Abstract: This paper utilises programming style on a source code plagiarism and
collusion detection to both capture obvious attempts of such academic
dishonesty (which characteristics are ignored on most detection techniques) and
prioritise non-coincidental similarity to the coincidental one (as only the former
can raise suspicion). The technique relies on pairwise programming style
similarity to deal with the former and dishonesty probability (how significant is
the programming style change between the author’s current submission and
previous submissions) to deal with the latter. According to our evaluation,
programming style similarity can increase precision since when a code is copied,
the programming style can be unconsciously shared (especially for novice
students). Dishonesty probability increases not only precision but also recall, f-
score, and the resulted similarity degree of suspected pairs; the copied code
commonly has different programming style in comparison with the student’s
usual style (captured from previous submissions). Our detection technique is
comparable to a common technique in academia except that it takes longer
processing time as more hints are generated and considered.

Copyright © Research Institute for Intelligent Computer Systems, 2020.
All rights reserved.

1. INTRODUCTION

Source code plagiarism and collusion occur when
source code is copied and reused with inadequate
acknowledgment toward the original authors [1], [2].
They are only different in a sense that on the former,
the original authors are not aware about it. Both are
emerging issues in computing education. They do
not only lead to unfair grading [3] (in which
plagiarists and colluders get the score they do not
deserve) but the institution reputation is also at stake
[4] (as student grades do not reflect the
programming skills).

Several preventive approaches have been
developed to deal with source code plagiarism and
collusion [5], where some of them consider student
motivation in doing such illegal behaviours [6].
Educating the students about what are encouraged
[7] and utilising a similarity detection tool (such as
JPlag [8]) to raise suspicion for plagiarism and
collusion are possibly two of the most practical ones.

A similarity detection tool commonly pairs

student works and alerts the lecturers if some (or all)
pairs share high similarity [9]. The pairs are then
observed further by the lecturers to assure whether
the cause is plagiarism or collusion (as high
similarity does not always entail academic
misconduct [10]).

Most techniques applied in the similarity
detection tools remove non-semantic-preserving
information (e.g., comments and whitespaces) prior
comparison. We are aware that this prevents trivial
disguises in altering source code similarity.
However, the similarity of this information can be a
strong hint for source code plagiarism and collusion
[11]. A pair of source code files with the same
program structure, for instance, will become more
suspicious if they also share the same comments.

Another limitation of those techniques is that no
distinction between coincidental and non-
coincidental similarity, even though only the latter
can raise suspicion for plagiarism or collusion. This
can be labour-intensive for lecturers as that
distinction should be done manually.

computing@computingonline.net
www.computingonline.net

Print ISSN 1727-6209
On-line ISSN 2312-5381

International Journal of Computing

Oscar Karnalim, Gisela Kurniawati / International Journal of Computing, 19(1) 2020, 27-38

 28

In response to the aforementioned issues, this
paper proposes a detection technique that considers
style similarity and dishonesty probability in
addition to content similarity. Style similarity
captures the similarity of non-semantic-preserving
information (represented as programming style).
Dishonesty probability prioritises non-coincidental
over coincidental similarity by giving higher degree
to the former, assuming it occurs when the students
suddenly change their programming style. The
impact of those two are set far smaller than content
similarity as we believe the content similarity should
still be prioritised in capturing the culprits.

This paper aims at reducing the number of false
results, suspected code pairs that are not resulted
from plagiarism and/or collusion, by differentiating
the coincidental from the non-coincidental ones via
style and dishonesty probabilities, derived from the
programming style. To the best of our knowledge,
the technique is the first of this type.

2. RELATED WORKS

In academia, most source code similarity
detection techniques convert given source code into
intermediate representation [12], a concise format
that contains only important information for
comparison. The representation varies from source
code attributes to program dependency graph.

Early techniques relied on source code attributes
in which most of them are indirectly related to
program semantic. A technique proposed in [13] is
arguably the oldest one for this category. It
determines similarity based on the number of
operators, operands, unique operators, and unique
operands. Many follow-up techniques were then
developed upon that, which details can be seen
in [14].

Instead of superficial attributes, several
techniques introduced source code token string, an
array-like representation storing source code tokens
based on their occurrence order [15]. This
representation is resistant to comments and
whitespace modification as those two are removed
prior comparison. The similarity is often calculated
with a string matching algorithm, such as Running-
Karp-Rabin Greedy-String-Tiling (RKRGST) [8],
[12], [15], [16] or string alignment [17], [18].

The similarity degree of source code token string
is often affected by syntactical change (e.g.,
replacing a for loop with a while loop). Therefore,
low-level token string was introduced [19]. This is
similar to source code token string except that it is
resulted from the compiled form of the source code.
As such a form is often optimised, many program
statements are converted into their semantic, which
automatically handles the syntactical change. In

terms of similarity measurement, it uses string
matching algorithms: RKRGST [20], [21] or string
alignment [18].

Relying on a string matching algorithm can cause
time deficiency issues as most string matching
algorithms (RKRGST and string alignment in
particular) are not linear time. Consequently, several
techniques relied on Information Retrieval (IR)
measurement [22], which is generally fast to
compute since each token string is considered as a
bag of words. These techniques used either Latent
Semantic Analysis [9], [23], [24] or BM25 [25].

Some techniques [12], [26], [27] utilised an IR
measurement to filter source code pairs inputted to
string matching algorithm; only pairs which share
high IR similarity are further compared with the
string matching algorithm. This should be more
token-order-sensitive than standard IR techniques
but still more time efficient than standard string
matching techniques.

Abstract syntax tree, parse tree, and program
dependency graph can also be used as alternatives to
gain more semantic information. However, since
comparing those representations can be time
consuming due to their abstract nature, several
heuristics are often applied for either comparing the
code files (e.g., kernel methods in [28], [29]) or
filtering comparison candidates (such as the one
proposed in [30]).

Instead of applying heuristics in comparing
abstract syntax tree, a technique in [31] converts the
syntax trees to token strings through pre-order visit
and therefore compares them with a string matching
algorithm. This was followed by [32] but with
hashing mechanism involved.

Most techniques agree that program semantic is
important on determining similarity. Hence, they
remove all non-semantic-preserving information.
This can be beneficial for dealing with trivial
similarity disguises as most of them do not affect the
program semantic. Nevertheless, removing it
completely means such information cannot be used
as a hint for plagiarism and collusion, even though
they are strongly convincing if found [11]. For
example, two source code files with the same
content will become more suspicious if they share
the same layout.

Regarding this matter, a technique in [11]
incorporated comment and inconsistency similarity
in addition to content similarity. Comment similarity
is measured by extracting all the comments in
trigram format and performing the comparison with
Cosine Correlation. Inconsistency and content
similarities are measured in the same way except
that their features are unusual patterns and trigram
source code tokens respectively. All similarity
scores are then merged as a final score through their

Oscar Karnalim, Gisela Kurniawati / International Journal of Computing, 19(1) 2020, 27-38

 29

own defined equation.
Comment similarity was also used in [33] in

combination with variable type and content
similarity. Unique to this, each similarity factor is
determined with a specific measurement: comment
similarity relies on a string matching algorithm,
variable type similarity relies on Cosine Correlation,
and content similarity relies on program dependency
graph comparison.

A technique in [34] applied a five-staged string
matching based comparison, in which some of the
stages consider comments and/or whitespaces. It
starts processing given source code files as their
original forms and ends with their source code token
strings. This staging process was also followed by
[35] but with a different set of stages.

Whitespace occurrences were also considered in
[36] along with the statistics of code layout,
delimiter, identifier, and keyword. On that
technique, the similarity of such features (measured
with weighted mean) was displayed separately from
content similarity (measured with a string matching
algorithm).

Another issue is that most detection techniques
perceive coincidental and non-coincidental
similarities as the same. This can lead to a larger
amount of manual work for lecturers as only non-
coincidental similarity can lead to plagiarism or
collusion.

We believe few detection techniques can mitigate
such an effort for distinguishing even though it was
not one of their primary aims. A technique in [37]
for instance, can reduce the number of pairs with
coincidental similarity during an in-class offline
assessment as it limits the suspicion on source code
files which authors are adjacently seated. Another
example is a work proposed by [38] which
timestamps each save actions and embeds it on the
code. If a source code pair shares the same
timestamps, it can be assured to contain non-
coincidental similarity.

3. METHOD

This paper proposes a similarity detection
technique that considers non-semantic-preserving
information, which is programming style in our case.
Further, it prioritises pairs with non-coincidental
similarity via an assumption that such similarity can
involve a significant change of programming style
(as at least one code file is not created by the same
author).

Compared to other detection techniques which
consider non-semantic-preserving information [11],
[33]–[36], our technique is argued to be more
sensitive to such information as its coverage is not
limited to comments and whitespaces [11], [33–[35]

and it relies on many features (83 features in total
while the highest number of features used in existing
techniques is only 17 [36]).

Our technique is also more practical to be used
compared to other techniques that are able to
distinguish coincidental and non-coincidental
similarity. It requires no specific assessment
constraints [37] and IDE [38].

The technique accepts Java source code files as
its input (but can accommodate other languages with
some adjustments) and works in threefold. At first,
the code files are paired one another. To illustrate
this, if the code files are code1, code2, and code3,
the pairs will be code1-code2, code1-code3, and
code2-code3.

Secondly, the similarity degree for each pair is
calculated as in (1) by default; csim is content
similarity covering semantic-preserving information,
ssim is style similarity covering non-semantic-
preserving information, and dprob is dishonesty
probability differentiating non-coincidental from
coincidental similarity based on programming style
change toward previous submissions. The details of
how each component is calculated will be described
later

� = 0.8 ∗ ���� + 0.1 ∗ ���� + 0.1 ∗ �����, (1)

where csim is given the largest proportion in
determining the final similarity since we believe that
shared semantic-preserving information should still
be the main reason for capturing the culprits.

As dprob relies on previous submissions, it is not
suitable to be used at the beginning of a course. On
that situation, dprob can be ignored, resulting (2)

� = 0.9 ∗ ���� + 0.1 ∗ ����. (2)

Thirdly, all code pairs which similarity degree is

higher or equal to the maximum of 75% and the
mean of similarity degree will be considered as
suspicious. The threshold is determined in such a
way to assure that the suspected pairs share high
similarity (at least 75%), and if most pairs share high
similarity, the pairs are limited to those which
similarity is unusually high.

Content similarity (csim) refers to how much
semantic-preserving information shared between
two source code files. It is measured by converting
both code files to token strings using ANTLR [39]
(with comments and whitespaces removed). After
that, 4-gram tokens are extracted from the strings. n-
gram token is a concatenated form of extracted
tokens, which considers n adjacent tokens as one. In
this case, each token is formed by considering four

Oscar Karnalim, Gisela Kurniawati / International Journal of Computing, 19(1) 2020, 27-38

 30

adjacent tokens as n=4. Finally, the resulted 4-gram
token sets of both code files are compared with
Cosine Correlation in Vector Space Model [22].

Style similarity (ssim) is the counterpart of
content similarity. It measures how much non-
semantic-preserving information (as programming
style features) shared between two source code files
using Cosine Correlation in Vector Space Model
[22]. Each code file is converted to a vector covering
four style features (comment content, identifier
name, code layout, and program flow keyword, with
83 features in total) prior comparison.

Comment content features describe how the
author chooses words to express their intention on
comments. The features can be seen in Table 1. Top-
5 n-gram comment words used in com01-com20
refer to five n-gram comment words which
occurrence are the most common on given code pair;
each n-gram word is formed by concatenating n
adjacent words. Comment words are generated by
tokenising the comments based on whitespaces and
punctuation, in which each word is then lowercased
and stemmed with Porter Stemmer. If some of the
words look like identifiers with concatenated
subwords, these words will be split further using a
domain-specific tokenisation [40] prior lowercasing
and stemming. This, for example, will convert
MusicController to music and controller. com21-
com24 are about the proportion of a particular type
of character, normalised toward the total number of
comment characters including whitespaces. com25 is
about the average length of comment words.

Identifier name features describe how the author
selects words to form their identifiers. The features
can be seen in Table 2. idn01-idn20 are similar to
com01-com20 except that they rely on identifier
words instead of comment words. Identifier words
are generated by splitting each identifier with a
domain-specific tokenisation [40] in which the
results are then stemmed with Porter Stemmer [22].
idn21-idn24 are about the proportion of a particular
type of character, normalised toward the total
number of identifier characters. idn25 and idn26 are
about the average length of identifiers and identifier
words respectively. The former is the input of the
splitting mechanism while the latter is the output.

Code layout features describe how the author
incorporates whitespaces (space, tab, and newline)
while creating the code. The features can be seen on
Table 3. Layout tokens for lay01-lay05 are extracted
from a source code token string that accentuates the
impact of whitespaces. That string is generated using
ANTLR [39] but with whitespaces recognised as
tokens and the counterparts anonymised. lay06-
lay11 are about the proportion of a particular type of
character, normalised toward the total number of
source code characters including whitespaces.

Table 1. Comment Content Features for Style
Similarity

ID Description

com01-
com05

The occurrence frequency of top-5 1-gram
comment words from given code pair,
normalised by the total number of words.

com06-
com10

The occurrence frequency of top-5 2-gram
comment words from given code pair,
normalised by the total number of words.

com11-
com15

The occurrence frequency of top-5 3-gram
comment words from given code pair,
normalised by the total number of words.

com16-
com20

The occurrence frequency of top-5 4-gram
comment words from given code pair,
normalised by the total number of words.

com21
Comment vocal proportion toward the total
number of comment characters including
whitespaces.

com22
Comment consonant proportion toward the
total number of comment characters
including whitespaces.

com23
Comment digit proportion toward the total
number of comment characters including
whitespaces.

com24
Comment punctuation proportion toward
the total number of comment characters
including whitespaces.

com25 Average length of comment words.

Table 2. Identifier Name Features for Style Similarity

ID Description

idn01-
idn05

The occurrence frequency of top-5 1-gram
identifier words from given code pair,
normalised by the total number of words.

idn06-
idn10

The occurrence frequency of top-5 2-gram
identifier words from given code pair,
normalised by the total number of words.

idn11-
idn15

The occurrence frequency of top-5 3-gram
identifier words from given code pair,
normalised by the total number of words.

idn16-
idn20

The occurrence frequency of top-5 4-gram
identifier words from given code pair,
normalised by the total number of words.

idn21
Identifier vocal proportion toward the total
number of identifier characters.

idn22
Identifier consonant proportion toward the
total number of identifier characters.

idn23
Identifier digit proportion toward the total
number of identifier characters.

idn24
Identifier punctuation proportion toward
the total number of identifier characters.

idn25 Average length of identifiers.
idn26 Average length of identifier words.

Program flow keyword features describe how the

author chooses program flow keywords in solving
the problem. The features can be seen in Table 4.
For pro01-pro15, structure tokens are extracted from
a source code token string that accentuates the

Oscar Karnalim, Gisela Kurniawati / International Journal of Computing, 19(1) 2020, 27-38

 31

impact of program structure. The string replaces all
identifiers with the same token called ident, and
removes all whitespaces, brackets, and semicolons.
pro16-pro21 are about the proportion of a particular
program flow keyword toward all keywords used on
the code file.

Table 3. Code Layout Features for Style Similarity

ID Description

lay01-
lay05

The occurrence frequency of top-5 4-gram
layout tokens from given code pair,
normalised by the total number of such
tokens.

lay06
Semicolon proportion toward the total
number of source code characters including
whitespaces.

lay07
Curly bracket proportion toward the total
number of source code characters including
whitespaces.

lay08
Standard bracket proportion toward the
total number of source code characters.

lay09
Space proportion toward the total number
of source code characters including
whitespaces.

lay10
Tabulation proportion toward the total
number of source code characters including
whitespaces.

lay11
Newline proportion toward the total
number of source code characters including
whitespaces.

Table 4. Program Flow Keyword Features for Style
Similarity

 ID Description

pro01 -
pro05

The occurrence frequency of top-5 2-gram
structure tokens from given code pair,
normalised by the total number of such
tokens.

pro06 -
pro10

The occurrence frequency of top-5 3-gram
structure tokens from given code pair,
normalised by the total number of such
tokens.

pro11 -
pro15

The occurrence frequency of top-5 4-gram
structure tokens from given code pair,
normalised by the total number of such
tokens.

pro16
If keyword proportion toward the number
of keywords.

pro17
Switch keyword proportion toward the
number of keywords.

pro18
While keyword proportion toward the
number of keywords.

pro19
Do-While keyword proportion toward the
number of keywords.

pro20
For keyword proportion toward the number
of keywords.

pro21
Try keyword proportion toward the number
of keywords.

Dishonesty probability (dprob) refers to how
confident a source code pair can be considered to
contain non-coincidental similarity, assuming that
such similarity occurs when the authors’
programming style is suddenly changed. This is
calculated as in (3) where dauth(code) refers to
disauthorship probability, depicting how convincing
the parameterised code has different programming
style compared to the author’s previous submissions.

Disauthorship probability is determined with the
help of Multinomial Naive Bayes (MNB) [41] in
which each author is exclusively assigned with one
MNB learning model, built from the author’s
previous submissions. Each submission is converted
to style features (which are also used for calculating
style similarity). However, com01-com20, idn01-
idn20, lay01-lay05, and pro01-pro15 consider all
code files written by that author instead of only a
code pair. In our case, MNB is implemented with
WEKA [42]

����� =
�����(�����)������(�����)

�
. (3)

On each learning model, the target class is

binary, representing whether one code file’s
programming style is similar to the author’s style.
To represent code files which style is different from
the author’s, an equal number of random source
code files taken from other students will be used.

Disauthorship probability is generated in twofold.
First of all, style features from the author’s
currently-submitted code file are generated and then
fed to the author’s learning model for classification.
Such classification returns two probabilities: a
probability suggesting the same programming style
and a probability suggesting the counterpart.
Commonly, the classification result is determined by
the highest probability. However, that step is ignored
in our case and disauthorship probability is assigned
with a probability suggesting different programming
style.

It is important to note that style similarity and
dishonesty probability can also be treated as separate
metrics for further hints in suspecting source code
plagiarism and collusion. A pair with suspiciously
high style similarity is an obvious attempt of such
academic dishonesty. Dishonesty probability, even
though it is only applicable after several
submissions, can assure that a pair shares non-
coincidental similarity once the programming style
is suddenly changed.

Disauthorship probability (a part of dishonesty
probability) can also be used to distinguish the
culprits from the victims if high content similarity is
on board. Such distinction can be used to educate

Oscar Karnalim, Gisela Kurniawati / International Journal of Computing, 19(1) 2020, 27-38

 32

them separately [37] or setting the appropriate
penalty (if not all dishonesty acts are considered
equal). Let us assume we have a code pair with high
content similarity in which A and B are the students.
If A’s code results in high disauthorship probability
while B’s does not, it can be stated that B is the
original creator of the code and A has copied the
code. This also works in reverse if B’s code is the
one which results in high disauthorship probability.
If both student code files result in high disauthorship
probability, then they copy the code from another
student. It can also be a potential case for
ghostwriting in which the students ask someone to
help (who is commonly an expert in programming)
to do their assignments. If both student code files
result in low disauthorship probability, the case is
convinced to be collusion instead of plagiarism; the
students may create the code together.

4. EVALUATION

The proposed technique was evaluated under six
research questions:
R1 How effective is style similarity in capturing

non-semantic-preserving information?
R2 What is the impact of style similarity on

detection performance?
R3 How effective is Multinomial Naive Bayes

(MNB) in classifying programming style?
R4 Which style features do affect the accuracy of

MNB?
R5 What is the impact of dishonesty probability on

detection performance?
R6 How effective and efficient is our proposed

technique with both style and dishonesty
probabilities on board compared to a common
technique in academia?

To address those questions, three datasets were

introduced: artificial, introductory, and historical
dataset. Artificial dataset was created by an author in
which the differences between code files are focused
on non-semantic-preserving information relating to
programming style. It covers four categories:
comment content (how the comment words are
chosen), identifier name (how the names are
formed), code layout (how the whitespaces are
used), and program flow keyword (how some
keywords are preferred to others).

We used the same Java original code files as in
[20], describing seven introductory programming
materials: output (T1), input (T2), branching (T3),
looping (T4), function (T5), array (T6), matrix (T7)
[43]. On each category, the original files were then
copied and modified by a particular treatment. For
comment content category, a descriptive comment is

added for each instruction. For identifier name
category, all identifiers are renamed. For code layout
category, empty lines and tabs are removed. Further,
standard brackets on arithmetic expressions are
added or removed if possible. For program flow
keyword category, each program flow statement is
replaced with its equivalent statement but with
different keyword (e.g., a for loop is converted to a
while loop). Additionally, each main program is
encapsulated with a dummy try-catch statement. In
total, artificial dataset has 28 source code pairs
where each category has seven of them.

Introductory dataset contains student works taken
from several cohorts of Java introductory
programming course. In total, there are 1,028 source
code files mapped to 94 assessments (each of them
has three to 22 assessments). Per assessment, the
suspected pairs were determined using JPlag [8]
with average normalisation. To be suspected, the
pairs should have similarity degree higher or equal
to the maximum value between 75% and the mean
of all similarity degree. This threshold is defined
with the same reasons as such a threshold on
proposed technique. Further, it is also supported by
the fact that on each assessment, a pair with the
lowest similarity degree was suspicious from an
author’s perspective and they believe it can be
generalised to other pairs with the same or higher
similarity degree.

Historical dataset contains 219 Java source code
files created by five undergraduate students for
solving problems in Open Kattis
(https://open.kattis.com/). The students are denoted
as SA, SB, SC, SD, and SE where their number of
source code files are 40, 75, 40, 30, and 32
respectively. The suspected pairs were determined in
the same way as introductory dataset but all code
files were considered as an assessment and each pair
in which both code files were created by the same
student is excluded.

Three detection techniques were involved in this
evaluation. S-VSM and SH-VSM are our proposed
techniques; the former relies on content and style
similarity while the latter is expanded from the
former by considering dishonesty probability. Their
similarity calculations can be seen in (2) and (1)
respectively. STD-GST is a common technique in
academia that converts both given source code files
to token strings via ANTLR [39] (with comments
and whitespaces excluded), and compares the strings
using Running-Karp-Rabin Greedy-String-Tiling
(RKRGST) with two as its minimum matching
length. This technique is considered as our baseline
for evaluating our proposed techniques (S-VSM and
SH-VSM).

Oscar Karnalim, Gisela Kurniawati / International Journal of Computing, 19(1) 2020, 27-38

 33

4.1 THE EFFECTIVENESS OF STYLE
SIMILARITY IN CAPTURING NON-
SEMANTIC-PRESERVING
INFORMATION

Our style similarity is considered as effective in
capturing non-semantic-preserving information if for
each pair on artificial dataset (which modification is
mainly not semantic preserving), S-VSM (our
technique which relies on content and style
similarity) provides slightly lower similarity degree
than a common technique in academia (STD-GST,
our baseline that only considers content similarity).
This is based on our expectation that such
modification should be considered in comparison (to
capture obvious attempts of plagiarism or collusion)
but with limited impact (so that the culprits cannot
obfuscate their academic dishonesty via that
modification).

Figure 1 shows that S-VSM generates slightly
lower similarity degree than STD-GST toward
comment content change. On some cases (T2, T3,
T4, and T6), the difference is extremely small, lower
than 1%. This is expected since only 10% of the
resulted similarity degree comes from style
similarity and not all programming style features are
related to comment content.

Figure 1 – Resulted similarity degree on pairs with
comment content change

In dealing with identifier name change (see

Figure 2), both S-VSM and STD-GST are able to
capture the change since while measuring content
similarity, renamed identifiers are commonly
considered as different tokens from their originals.
Nevertheless, S-VSM still leads to slightly lower
similarity degree than STD-GST since the change
also affects style similarity. Further, on S-VSM’s
content similarity, the impact of such change is
propagated through n-gram mechanism; each
renamed identifier leads to four mismatched 4-gram
tokens [26].

Code layout change, if only affects whitespaces
(see T1, T6, and T7 in Figure 3), slightly favours S-

VSM even though its difference is lower than 1%;
whitespace change is exclusively considered by that
technique.

When the change affects other tokens such as
brackets (see T2-T5 in Figure 3), both techniques are
able to capture the change as these tokens are also
considered by content similarity. On half cases (T4
and T5), S-VSM generates slightly lower similarity
degree than STD-GST since each additional bracket
leads to four mismatched 4-gram tokens at content
level and the use of brackets is also considered by
style similarity. However on the other half (T2 and
T3), this works in reverse. These brackets
successfully split some STD-GST’s matched token
substrings unequally, resulting in the shorter ones
not recognisable as matched tokens (their length is
shorter than RKRGST minimum matching length).

Figure 2 – Resulted similarity degree on pairs with
identifier name change

Figure 3 – Resulted similarity degree on pairs with
code layout change

Figure 4 depicts that both S-VSM and STD-GST

are able to capture program flow keyword change
since such change results in altering the program
structure and therefore affects content similarity. S-
VSM provides slightly lower similarity degree on
T4, T5, and T7 due to n-gram mechanism on content
similarity and the consideration of keyword usage on
style similarity. For remaining cases, it generates
higher similarity degree as the change successfully

Oscar Karnalim, Gisela Kurniawati / International Journal of Computing, 19(1) 2020, 27-38

 34

split some STD-GST’s matched token substrings
unequally, making the shorter ones not recognisable
by its matching algorithm.

To sum up, S-VSM is more capable than STD-
GST in capturing non-semantic-preserving
information; it provides slightly lower similarity
degree on most code pairs which difference is
mainly focused on that kind of information.

Figure 4 – Resulted similarity degree on pairs with
program flow keyword change

4.2 THE IMPACT OF STYLE SIMILARITY
ON DETECTION PERFORMANCE

This subsection evaluates the impact of
considering style similarity when dealing with semi-
real cases of source code plagiarism and collusion
detection (i.e., introductory dataset). S-VSM (our
proposed technique that considers style similarity)
was compared to STD-GST (the baseline technique)
with five metrics on board:
 The similarity degree of dataset-suspected

pairs checks how effective a technique is in
assigning high similarity to suspicious pairs.

 Precision [22] measures how accurate a
technique is. It is calculated as in (4) where
dpairs are dataset-suspected pairs and tpairs
are technique-suspected pairs

� =
|������∩������|

|������|
. (4)

 Recall [22] measures how sensitive a

technique is. It is calculated as in (5) where
dpairs are dataset-suspected pairs and tpairs
are technique-suspected pairs

� =
|������∩������|

|������|
. (5)

 F-score [22] is the harmonic mean between

precision and recall, calculated as in (6) where
P is precision and R is recall

������ =
�∗�∗�

|���|
. (6)

 Execution time (in nanoseconds) measures

how long a technique takes time to process the
whole dataset.

S-VSM generates 2.6% lower averaged similarity
degree than STD-GST on dataset-suspected pairs
(see Figure 5); S-VSM is more prone to
modification as it considers style similarity in
addition to the content one. Further by nature, S-
VSM’s content similarity leads to more mismatched
tokens due to its n-gram mechanism. Each
mismatched content token is a member of four 4-
gram tokens and all of these 4-gram tokens are
considered as mismatches.

Figure 5 – Resulted similarity degree on the suspected
pairs of introductory dataset

As seen in Figure 6, S-VSM results in higher
precision than STD-GST (+2.1%) since on the
dataset (which students are novice programmers),
not all style features on the copied code are changed,
and they can provide more hints in determining
similarity. That improvement, however, should be
exchanged with lower recall and f-score as more
factors are introduced on the similarity
measurement.

In terms of efficiency, S-VSM can save 30.5%
execution time. S-VSM only takes 10.7 seconds to
process the whole dataset while STD-GST takes
15.5 seconds.

4.3 THE EFFECTIVENESS OF
MULTINOMIAL NAIVE BAYES IN
CLASSIFYING PROGRAMMING
STYLE

Dishonesty probability used in our detection
technique relies on Multinomial Naive Bayes
(MNB) in capturing student programming style.
Hence, this subsection evaluated the effectiveness of
such a classifier with accuracy as the evaluation

Oscar Karnalim, Gisela Kurniawati / International Journal of Computing, 19(1) 2020, 27-38

 35

metric and 10-fold cross validation as the
instrument.

Figure 6 – Effectiveness metrics on introductory
dataset

The accuracy of MNB was measured on
historical dataset. Per student, their own code files
refers to positive instances while an equal number of
other students’ code files (taken randomly)
representing the counterpart. Figure 7 depicts that
MNB is considerably effective in capturing
programming style with 67.1% as the averaged
resulted accuracy. The highest accuracy occurs on
SE (82.9%) while the lowest one occurs on SB
(56.7%).

Figure 7 – 10-fold cross validation accuracy on
historical dataset

4.4 STYLE FEATURES AFFECTING THE

ACCURACY OF MULTINOMIAL NAIVE
BAYES

Style features affecting Multinomial Naive Bayes
(MNB)’s accuracy were determined with WEKA’s
information gain [42] under the same setting as
previous subsection. Table 5 shows that the number
of affecting features varies per student as each
student has his own programming style. The lowest
one occurs on SB (12 features) while the highest one
occurs on SE (30 features).

Among the affecting features, most top-5 features
are related to comments. This is natural since
comments can be freely written in natural language

without being constrained by programming syntax
rules. Other style categories also affect MNB’s
accuracy. However, their occurrences are not as
frequent as the comment ones.

Table 5. Style Features Affecting MNB per Student

Student
Total
Affecting
Features

Top-5 Affecting Features

SA 14
one of com01-com05, two of
com06-com10, com22, and com24

SB 12
one of com01-com05, com22,
idn26, one of lay01-lay05, and
lay11

SC 22
one of com01-com05, one of
com06-com10, com22, com24,
and com25

SD 27
two of com01-com05, com21,
com24, com25

SE 30
 com22, com24, com25, and two
of pro11-pro15

In summary, style features affecting MNB’s

accuracy can vary depending on the student’s
programming style. However, most of the features
are related to comments as free text can be
embedded on such part.

4.5 THE IMPACT OF DISHONESTY

PROBABILITY ON DETECTION
PERFORMANCE

The impact of dishonesty probability was
evaluated with two techniques on board: S-VSM and
SH-VSM. They are our proposed detection
techniques in which the latter is exclusively featured
with dishonesty probability. The performance of
both techniques were measured on historical dataset
– the only dataset in which the author of each code
file is known – using five metrics used for
measuring the impact of style similarity (see
subsection 1.2): the similarity degree of dataset-
suspected pairs, precision, recall, f-score, and
execution time.

In average, SH-VSM yields slightly higher
similarity degree on dataset-suspected pairs
compared to S-VSM (see Figure 8 with 1.6%
improvement). It also provides higher precision and
recall (see Table 6.). Precision is increased by 25%
while recall is increased by 0.3%. This therefore
slightly increases the f-score by 0.6%. In other
words, the use of dishonesty probability (which is
exclusive to SH-VSM) makes suspected code pairs
become more identical and therefore leads to higher
effectiveness, precision in particular.

Integrating dishonesty probability has a drawback
of efficiency: SH-VSM takes 3.7 minutes to process
the historical dataset while S-VSM only takes about

Oscar Karnalim, Gisela Kurniawati / International Journal of Computing, 19(1) 2020, 27-38

 36

13 seconds. In addition to creating the learning
model, SH-VSM needs time to create the learning
vectors per comparison and classify them based on
the learning model.

Figure 8 – Resulted similarity degree on the suspected
pairs of historical dataset

Table 6 - Effectiveness Metrics on Historical Dataset

Metrics SH-VSM S-VSM STD-GST
Precision 100% 75.00% 100%
Recall 1.2% 0.9% 2.4%
F-Score 2.3% 1.8% 4.7%

4.6 THE PERFORMANCE OF OUR

PROPOSED TECHNIQUE COMPARED
TO A COMMON TECHNIQUE IN
ACADEMIA

This subsection compares our proposed technique
that incorporates both style and disauthorship
probabilities (SH-VSM) with a common technique
in academia (STD-GST) under the same setting as
the previous subsection. Table 6 shows that SH-
VSM is as effective as STD-GST in terms of
precision; both of them lead to 100% precision.
However, SH-VSM provides lower recall (-1.1%), f-
score (-2.3%), and averaged similarity degree of
suspected pairs (-5.2%) as more factors are
considered in the comparison.

In terms of execution time, SH-VSM is still
slower than STD-GST. The former takes 3.7 minutes
while the latter only takes half a minute, processing
15.045 code pairs from historical dataset on Intel
Core i5-8350U.

It is true that on historical dataset, SH-VSM is
outperformed by STD-GST in most metrics.
However, we believe that such low performance can
be compensated with the introduction of two
additional hints for suspecting plagiarism and
collusion. Style similarity can be used to capture
students with obvious attempts of plagiarism or
collusion. Dishonesty probability can be used to
either differentiate non-coincidental from

coincidental similarity, or identify who are the
culprits and what kind of dishonesty they do.

5. CONCLUSIONS AND FUTURE WORK

This paper proposes a similarity detection for
source code plagiarism and collusion in academia
via style and dishonesty probabilities, derived from
the programming style. The technique is more
effective than a common technique in academia for
capturing non-semantic-preserving information,
increasing precision with a trade-off in recall if
applied on novice student code files. The technique
is also able to capture student programming style
with different distinguishing features, which
provides higher effectiveness of our technique.

For future work, we plan to evaluate the impact
of disauthorship probability (a part of dishonesty
probability) in differentiating the culprits and the
victims. As suggested by [37], they should be
educated differently; the former should learn
academic integrity while the latter should learn how
to secure their files from being copied (including
how to reject a request for their code). We also plan
to propose a detailed approach to educate both
culprits and victims, complementing existing
approaches for maintaining academic integrity [5].

6. ACKNOWLEDGMENT

The authors would like to thank Sendy Ferdian
from Maranatha Christian University, Indonesia for
providing some parts of the introductory dataset.

7. REFERENCES

[1] M. Joy, G. Cosma, J. Y.-K. Yau, and J.
Sinclair, “Source code plagiarism – a student
perspective,” IEEE Transactions on Education,
vol. 54, no. 1, pp. 125–132, Feb. 2011.

[2] R. Fraser, “Collaboration, collusion and
plagiarism in computer science coursework,”
Informatics in Education, vol. 13, no. 2, pp.
179–195, Sep. 2014.

[3] T. Lancaster, “Academic integrity for computer
science instructors,” in Higher Education
Computer Science, Cham: Springer
International Publishing, 2018, pp. 59–71.

[4] M. Devlin, “Policy, Preparation, and
Prevention: Proactive minimization of student
plagiarism,” Journal of Higher Education
Policy and Management, vol. 28, no. 1, pp. 45–
58, Mar. 2006.

[5] J. Sheard, Simon, M. Butler, K. Falkner, M.
Morgan, and A. Weerasinghe, “Strategies for
maintaining academic integrity in first-year
computing courses,” Proceedings of the 2017
ACM Conference on Innovation and

Oscar Karnalim, Gisela Kurniawati / International Journal of Computing, 19(1) 2020, 27-38

 37

Technology in Computer Science Education,
2017, pp. 244–249.

[6] J. Sheard, A. Carbone, and M. Dick,
“Determination of factors which impact on IT
students’ propensity to cheat,” Proceedings of
the 5th Australasian conference on Computing
education - Volume 20, 2003, pp. 119–126.

[7] Simon et al., “Negotiating the maze of
academic integrity in computing education,”
Proceedings of the 2016 ITiCSE Working
Group Reports, 2016, pp. 57–80.

[8] L. Prechelt, G. Malpohl, and M. Philippsen,
“Finding plagiarisms among a set of programs
with JPlag,” Journal of Universal Computer
Science, vol. 8, no. 11, pp. 1016–1038, 2002.

[9] G. Cosma and M. Joy, “An approach to source-
code plagiarism detection and investigation
using Latent Semantic Analysis,” IEEE
Transactions on Computers, vol. 61, no. 3, pp.
379–394, Mar. 2012.

[10] F.-P. Yang, H. C. Jiau, and K.-F. Ssu, “Beyond
plagiarism: an active learning method to
analyze causes behind code-similarity,”
Computers and Education, vol. 70, pp. 161–
172, Jan. 2014.

[11] U. Inoue and S. Wada, “Detecting plagiarisms
in elementary programming courses,”
Proceedings of the 9th International
Conference on Fuzzy Systems and Knowledge
Discovery, 2012, pp. 2308–2312.

[12] L. Sulistiani and O. Karnalim, “ES-Plag:
efficient and sensitive source code plagiarism
detection tool for academic environment,”
Computer Applications in Engineering
Education, vol. 27, no. 1, pp. 166–182, 2019.

[13] K. J. Ottenstein, “An algorithmic approach to
the detection and prevention of plagiarism,”
ACM SIGCSE Bulletin, vol. 8, no. 4, pp. 30–41,
Dec. 1976.

[14] A. Parker and J. O. Hamblen, “Computer
algorithms for plagiarism detection,” IEEE
Transactions on Education, vol. 32, no. 2, pp.
94–99, 1989.

[15] M. J. Wise, “Yap3: improved detection of
similarities in computer program and other
texts,” Proceedings of the 27th SIGCSE
Technical Symposium on Computer Science
Education, 1996, vol. 28, no. 1, pp. 130–134.

[16] A. M. Bejarano, L. E. García, and E. E. Zurek,
“Detection of source code similitude in
academic environments,” Computer
Applications in Engineering Education, vol. 23,
no. 1, pp. 13–22, Jan. 2015.

[17] J.-H. Ji, G. Woo, and H.-G. Cho, “A source
code linearization technique for detecting
plagiarized programs,” Proceedings of the 12th
Annual ITiCSE Conference on Innovation and

Technology in Computer Science Education,
2007, pp. 73-77.

[18] J.-S. Lim, J.-H. Ji, H.-G. Cho, and G. Woo,
“Plagiarism detection among source codes
using adaptive local alignment of keywords,”
Proceedings of the 5th International
Confernece on Ubiquitous Information
Management and Communication, 2011, p. 24.

[19] J.-H. Ji, G. Woo, and H.-G. Cho, “A plagiarism
detection technique for Java program using
bytecode analysis,” Proceedings of the 3rd
International Conference on Convergence and
Hybrid Information Technology, 2008, pp.
1092–1098.

[20] O. Karnalim, “Detecting source code
plagiarism on introductory programming
course assignments using a bytecode
approach,” Proceedings of the 10th
International Conference on Information &
Communication Technology and Systems,
2016, pp. 63–68.

[21] O. Karnalim, “A low-level structure-based
approach for detecting source code plagiarism,”
IAENG International Journal of Computer
Science, vol. 44, no. 4, pp. 501–522, 2017.

[22] W. B. Croft, D. Metzler, and T. Strohman,
Search Engines : Information Retrieval in
Practice. Addison-Wesley, 2010.

[23] E. Flores, A. Barrón-Cedeño, L. Moreno, and
P. Rosso, “Cross-language source code re-use
detection using Latent Semantic Analysis,”
Journal of Universal Computer Science, vol.
21, no. 13, pp. 1708–1725, 2015.

[24] F. Ullah, J. Wang, M. Farhan, S. Jabbar, Z. Wu,
and S. Khalid, “Plagiarism detection in
students’ programming assignments based on
semantics: multimedia e-learning based smart
assessment methodology,” Multimedia Tools
and Applications, pp. 1-18, Mar. 2018.

[25] C. Arwin and S. M. M. Tahaghoghi,
“Plagiarism detection across programming
languages,” Proceedings of the 29th
Australasian Computer Science Conference,
2006, pp. 277-286.

[26] M. Mozgovoy, S. Karakovskiy, and V. Klyuev,
“Fast and reliable plagiarism detection system,”
Proceedings of the 37th Annual Frontiers in
Education Conference, 2007, pp. 11–14.

[27] S. Burrows, S. M. M. Tahaghoghi, and J.
Zobel, “Efficient plagiarism detection for large
code repositories,” Software: Practice and
Experience, vol. 37, no. 2, pp. 151–175, 2007.

[28] D. Fu, Y. Xu, H. Yu, and B. Yang, “WASTK: a
weighted abstract syntax tree kernel method for
source code plagiarism detection,” Scientific
Programming, vol. 2017, pp. 1–8, Feb. 2017.

[29] H.-J. Song, S.-B. Park, and S. Y. Park,

Oscar Karnalim, Gisela Kurniawati / International Journal of Computing, 19(1) 2020, 27-38

 38

“Computation of program source code
similarity by composition of parse tree and call
graph,” Mathematical Problems in
Engineering, vol. 2015, pp. 1–12, Apr. 2015.

[30] C. Liu, C. Chen, J. Han, and P. S. Yu, “Gplag:
detection of software plagiarism by program
dependence graph analysis,” Proceedings of the
12th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining,
2006, pp. 872-881.

[31] H. Kikuchi, T. Goto, M. Wakatsuki, and T.
Nishino, “A source code plagiarism detecting
method using alignment with abstract syntax
tree elements,” Proceedings of the 15th
IEEE/ACIS International Conference on
Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed
Computing, 2014, pp. 1–6.

[32] L. Wang, L. Jiang, and G. Qin, “A search of
verilog code plagiarism detection method,”
Proceedings of the 13th International
Conference on Computer Science & Education,
2018, pp. 1–5.

[33] J.-Y. Kuo, H.-K. Cheng, and P.-F. Wang,
“Program plagiarism detection with dynamic
structure,” Proceedings of the 7th International
Symposium on Next Generation Electronics,
2018, pp. 1–3.

[34] M. Joy and M. Luck, “Plagiarism in
programming assignments,” IEEE Transactions
on Education, vol. 42, no. 2, pp. 129–133,
1999.

[35] J. Petrik, D. Chuda, and B. Steinmüller,
“Source code plagiarism detection: the Unix
way,” Proceedings of the 15th International
Symposium on Applied Machine Intelligence
and Informatics, 2017, pp. 467–472.

[36] M. El Bachir Menai and N. S. Al-Hassoun,
“Similarity detection in Java programming
assignments,” Proceedings of the 5th
International Conference on Computer Science
& Education, 2010, pp. 356–361.

[37] A. E. Budiman and O. Karnalim, “Automated
hints generation for investigating source code
plagiarism and identifying the culprits on in-
class individual programming assessment,”
Computers, vol. 8, no. 1, p. 11, Feb. 2019.

[38] P. Vamplew and J. Dermoudy, “An anti-

plagiarism editor for software development
courses,” Proceedings of the 7th Australasian
Conference on Computing Education, 2010, pp.
83–90.

[39] T. Parr, The definitive ANTLR 4 reference.
Pragmatic Bookshelf, 2013.

[40] O. Karnalim and R. Mandala, “Java Archives
Search Engine using Byte Code as Information
Source,” Proceedings of the 2014 International
Conference on Data and Software Engineering
(ICODSE), 2014, pp. 1–6.

[41] T. Mitchell, Machine Learning. McGraw-Hill
Education, 1997.

[42] I. H. Witten, E. Frank, and M. A. Hall, Data
mining : practical machine learning tools and
techniques. Morgan Kaufmann, 2011.

[43] Y. D. Liang, Introduction to Java
programming, comprehensive version (9th
Edition). Pearson, 2013.

Oscar Karnalim, graduated
with a Bachelor of Engineering
degree from Parahyangan
Catholic University in 2011, and
completed his Master degree at
Bandung Institute of Technology
(ITB) in 2014. His interest is
about computer science
education, focusing on source

code plagiarism and collusion. He works at
Maranatha Christian University as a full-time
lecturer. Currently, he is pursuing a PhD in
Information Technology at University of Newcastle,
Australia.

Gisela Kurniawati, graduated
with a Bachelor of Computer
degree from Maranatha
Christian University in 2019. Her
interest is about computer
science education, focusing on
student behaviours and
educational tools. She works at
Maranatha Christian University

as a full-time lecturer. She is also a software
developer and designer on various freelance
projects.

