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Abstract: This paper utilises programming style on a source code plagiarism and 
collusion detection to both capture obvious attempts of such academic 
dishonesty (which characteristics are ignored on most detection techniques) and 
prioritise non-coincidental similarity to the coincidental one (as only the former 
can raise suspicion). The technique relies on pairwise programming style 
similarity to deal with the former and dishonesty probability (how significant is 
the programming style change between the author’s current submission and 
previous submissions) to deal with the latter. According to our evaluation, 
programming style similarity can increase precision since when a code is copied, 
the programming style can be unconsciously shared (especially for novice 
students). Dishonesty probability increases not only precision but also recall, f-
score, and the resulted similarity degree of suspected pairs; the copied code 
commonly has different programming style in comparison with the student’s 
usual style (captured from previous submissions). Our detection technique is 
comparable to a common technique in academia except that it takes longer 
processing time as more hints are generated and considered. 

Copyright © Research Institute for Intelligent Computer Systems, 2020.  
All rights reserved. 

 
 

1. INTRODUCTION 

Source code plagiarism and collusion occur when 
source code is copied and reused with inadequate 
acknowledgment toward the original authors [1], [2]. 
They are only different in a sense that on the former, 
the original authors are not aware about it. Both are 
emerging issues in computing education. They do 
not only lead to unfair grading [3] (in which 
plagiarists and colluders get the score they do not 
deserve) but the institution reputation is also at stake 
[4] (as student grades do not reflect the 
programming skills). 

Several preventive approaches have been 
developed to deal with source code plagiarism and 
collusion [5], where some of them consider student 
motivation in doing such illegal behaviours [6]. 
Educating the students about what are encouraged 
[7] and utilising a similarity detection tool (such as 
JPlag [8]) to raise suspicion for plagiarism and 
collusion are possibly two of the most practical ones. 

A similarity detection tool commonly pairs 

student works and alerts the lecturers if some (or all) 
pairs share high similarity [9]. The pairs are then 
observed further by the lecturers to assure whether 
the cause is plagiarism or collusion (as high 
similarity does not always entail academic 
misconduct [10]). 

Most techniques applied in the similarity 
detection tools remove non-semantic-preserving 
information (e.g., comments and whitespaces) prior 
comparison. We are aware that this prevents trivial 
disguises in altering source code similarity. 
However, the similarity of this information can be a 
strong hint for source code plagiarism and collusion 
[11]. A pair of source code files with the same 
program structure, for instance, will become more 
suspicious if they also share the same comments. 

Another limitation of those techniques is that no 
distinction between coincidental and non-
coincidental similarity, even though only the latter 
can raise suspicion for plagiarism or collusion. This 
can be labour-intensive for lecturers as that 
distinction should be done manually. 
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In response to the aforementioned issues, this 
paper proposes a detection technique that considers 
style similarity and dishonesty probability in 
addition to content similarity. Style similarity 
captures the similarity of non-semantic-preserving 
information (represented as programming style). 
Dishonesty probability prioritises non-coincidental 
over coincidental similarity by giving higher degree 
to the former, assuming it occurs when the students 
suddenly change their programming style. The 
impact of those two are set far smaller than content 
similarity as we believe the content similarity should 
still be prioritised in capturing the culprits. 

This paper aims at reducing the number of false 
results, suspected code pairs that are not resulted 
from plagiarism and/or collusion, by differentiating 
the coincidental from the non-coincidental ones via 
style and dishonesty probabilities, derived from the 
programming style. To the best of our knowledge, 
the technique is the first of this type. 

 
2. RELATED WORKS 

In academia, most source code similarity 
detection techniques convert given source code into 
intermediate representation [12], a concise format 
that contains only important information for 
comparison. The representation varies from source 
code attributes to program dependency graph. 

Early techniques relied on source code attributes 
in which most of them are indirectly related to 
program semantic. A technique proposed in [13] is 
arguably the oldest one for this category. It 
determines similarity based on the number of 
operators, operands, unique operators, and unique 
operands. Many follow-up techniques were then 
developed upon that, which details can be seen 
in [14]. 

Instead of superficial attributes, several 
techniques introduced source code token string, an 
array-like representation storing source code tokens 
based on their occurrence order [15]. This 
representation is resistant to comments and 
whitespace modification as those two are removed 
prior comparison. The similarity is often calculated 
with a string matching algorithm, such as Running-
Karp-Rabin Greedy-String-Tiling (RKRGST) [8], 
[12], [15], [16] or string alignment [17], [18]. 

The similarity degree of source code token string 
is often affected by syntactical change (e.g., 
replacing a for loop with a while loop). Therefore, 
low-level token string was introduced [19]. This is 
similar to source code token string except that it is 
resulted from the compiled form of the source code. 
As such a form is often optimised, many program 
statements are converted into their semantic, which 
automatically handles the syntactical change. In 

terms of similarity measurement, it uses string 
matching algorithms: RKRGST [20], [21] or string 
alignment [18]. 

Relying on a string matching algorithm can cause 
time deficiency issues as most string matching 
algorithms (RKRGST and string alignment in 
particular) are not linear time. Consequently, several 
techniques relied on Information Retrieval (IR) 
measurement [22], which is generally fast to 
compute since each token string is considered as a 
bag of words. These techniques used either Latent 
Semantic Analysis [9], [23], [24] or BM25 [25].  

Some techniques [12], [26], [27] utilised an IR 
measurement to filter source code pairs inputted to 
string matching algorithm; only pairs which share 
high IR similarity are further compared with the 
string matching algorithm. This should be more 
token-order-sensitive than standard IR techniques 
but still more time efficient than standard string 
matching techniques. 

Abstract syntax tree, parse tree, and program 
dependency graph can also be used as alternatives to 
gain more semantic information. However, since 
comparing those representations can be time 
consuming due to their abstract nature, several 
heuristics are often applied for either comparing the 
code files (e.g., kernel methods in [28], [29]) or 
filtering comparison candidates (such as the one 
proposed in [30]). 

Instead of applying heuristics in comparing 
abstract syntax tree, a technique in [31] converts the 
syntax trees to token strings through pre-order visit 
and therefore compares them with a string matching 
algorithm. This was followed by [32] but with 
hashing mechanism involved. 

Most techniques agree that program semantic is 
important on determining similarity. Hence, they 
remove all non-semantic-preserving information. 
This can be beneficial for dealing with trivial 
similarity disguises as most of them do not affect the 
program semantic. Nevertheless, removing it 
completely means such information cannot be used 
as a hint for plagiarism and collusion, even though 
they are strongly convincing if found [11]. For 
example, two source code files with the same 
content will become more suspicious if they share 
the same layout. 

Regarding this matter, a technique in [11] 
incorporated comment and inconsistency similarity 
in addition to content similarity. Comment similarity 
is measured by extracting all the comments in 
trigram format and performing the comparison with 
Cosine Correlation. Inconsistency and content 
similarities are measured in the same way except 
that their features are unusual patterns and trigram 
source code tokens respectively. All similarity 
scores are then merged as a final score through their 
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own defined equation. 
Comment similarity was also used in [33] in 

combination with variable type and content 
similarity. Unique to this, each similarity factor is 
determined with a specific measurement: comment 
similarity relies on a string matching algorithm, 
variable type similarity relies on Cosine Correlation, 
and content similarity relies on program dependency 
graph comparison. 

A technique in [34] applied a five-staged string 
matching based comparison, in which some of the 
stages consider comments and/or whitespaces. It 
starts processing given source code files as their 
original forms and ends with their source code token 
strings. This staging process was also followed by 
[35] but with a different set of stages. 

Whitespace occurrences were also considered in 
[36] along with the statistics of code layout, 
delimiter, identifier, and keyword. On that 
technique, the similarity of such features (measured 
with weighted mean) was displayed separately from 
content similarity (measured with a string matching 
algorithm). 

Another issue is that most detection techniques 
perceive coincidental and non-coincidental 
similarities as the same. This can lead to a larger 
amount of manual work for lecturers as only non-
coincidental similarity can lead to plagiarism or 
collusion. 

We believe few detection techniques can mitigate 
such an effort for distinguishing even though it was 
not one of their primary aims. A technique in [37] 
for instance, can reduce the number of pairs with 
coincidental similarity during an in-class offline 
assessment as it limits the suspicion on source code 
files which authors are adjacently seated. Another 
example is a work proposed by [38] which 
timestamps each save actions and embeds it on the 
code. If a source code pair shares the same 
timestamps, it can be assured to contain non-
coincidental similarity. 

 

3. METHOD 

This paper proposes a similarity detection 
technique that considers non-semantic-preserving 
information, which is programming style in our case. 
Further, it prioritises pairs with non-coincidental 
similarity via an assumption that such similarity can 
involve a significant change of programming style 
(as at least one code file is not created by the same 
author). 

Compared to other detection techniques which 
consider non-semantic-preserving information [11], 
[33]–[36], our technique is argued to be more 
sensitive to such information as its coverage is not 
limited to comments and whitespaces [11], [33–[35] 

and it relies on many features (83 features in total 
while the highest number of features used in existing 
techniques is only 17 [36]). 

Our technique is also more practical to be used 
compared to other techniques that are able to 
distinguish coincidental and non-coincidental 
similarity. It requires no specific assessment 
constraints [37] and IDE [38].  

The technique accepts Java source code files as 
its input (but can accommodate other languages with 
some adjustments) and works in threefold. At first, 
the code files are paired one another. To illustrate 
this, if the code files are code1, code2, and code3, 
the pairs will be code1-code2, code1-code3, and 
code2-code3.  

Secondly, the similarity degree for each pair is 
calculated as in (1) by default; csim is content 
similarity covering semantic-preserving information, 
ssim is style similarity covering non-semantic-
preserving information, and dprob is dishonesty 
probability differentiating non-coincidental from 
coincidental similarity based on programming style 
change toward previous submissions. The details of 
how each component is calculated will be described 
later 
 

� = 0.8 ∗ ���� + 0.1 ∗ ���� + 0.1 ∗ �����, (1) 

 
where csim is given the largest proportion in 
determining the final similarity since we believe that 
shared semantic-preserving information should still 
be the main reason for capturing the culprits.  

As dprob relies on previous submissions, it is not 
suitable to be used at the beginning of a course. On 
that situation, dprob can be ignored, resulting (2) 

 

� = 0.9 ∗ ���� + 0.1 ∗ ����. (2) 

 
Thirdly, all code pairs which similarity degree is 

higher or equal to the maximum of 75% and the 
mean of similarity degree will be considered as 
suspicious. The threshold is determined in such a 
way to assure that the suspected pairs share high 
similarity (at least 75%), and if most pairs share high 
similarity, the pairs are limited to those which 
similarity is unusually high. 

Content similarity (csim) refers to how much 
semantic-preserving information shared between 
two source code files. It is measured by converting 
both code files to token strings using ANTLR [39] 
(with comments and whitespaces removed). After 
that, 4-gram tokens are extracted from the strings. n-
gram token is a concatenated form of extracted 
tokens, which considers n adjacent tokens as one. In 
this case, each token is formed by considering four 
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adjacent tokens as n=4. Finally, the resulted 4-gram 
token sets of both code files are compared with 
Cosine Correlation in Vector Space Model [22]. 

Style similarity (ssim) is the counterpart of 
content similarity. It measures how much non-
semantic-preserving information (as programming 
style features) shared between two source code files 
using Cosine Correlation in Vector Space Model 
[22]. Each code file is converted to a vector covering 
four style features (comment content, identifier 
name, code layout, and program flow keyword, with 
83 features in total) prior comparison. 

Comment content features describe how the 
author chooses words to express their intention on 
comments. The features can be seen in Table 1. Top-
5 n-gram comment words used in com01-com20 
refer to five n-gram comment words which 
occurrence are the most common on given code pair; 
each n-gram word is formed by concatenating n 
adjacent words. Comment words are generated by 
tokenising the comments based on whitespaces and 
punctuation, in which each word is then lowercased 
and stemmed with Porter Stemmer. If some of the 
words look like identifiers with concatenated 
subwords, these words will be split further using a 
domain-specific tokenisation [40] prior lowercasing 
and stemming. This, for example, will convert 
MusicController to music and controller. com21-
com24 are about the proportion of a particular type 
of character, normalised toward the total number of 
comment characters including whitespaces. com25 is 
about the average length of comment words. 

Identifier name features describe how the author 
selects words to form their identifiers. The features 
can be seen in Table 2. idn01-idn20 are similar to 
com01-com20 except that they rely on identifier 
words instead of comment words. Identifier words 
are generated by splitting each identifier with a 
domain-specific tokenisation [40] in which the 
results are then stemmed with Porter Stemmer [22]. 
idn21-idn24 are about the proportion of a particular 
type of character, normalised toward the total 
number of identifier characters. idn25 and idn26 are 
about the average length of identifiers and identifier 
words respectively. The former is the input of the 
splitting mechanism while the latter is the output. 

Code layout features describe how the author 
incorporates whitespaces (space, tab, and newline) 
while creating the code. The features can be seen on 
Table 3. Layout tokens for lay01-lay05 are extracted 
from a source code token string that accentuates the 
impact of whitespaces. That string is generated using 
ANTLR [39] but with whitespaces recognised as 
tokens and the counterparts anonymised. lay06-
lay11 are about the proportion of a particular type of 
character, normalised toward the total number of 
source code characters including whitespaces. 

Table 1. Comment Content Features for Style 
Similarity 

ID Description 

com01- 
com05 

The occurrence frequency of top-5 1-gram 
comment words from given code pair, 
normalised by the total number of words. 

com06- 
com10 

The occurrence frequency of top-5 2-gram 
comment words from given code pair, 
normalised by the total number of words. 

com11- 
com15 

The occurrence frequency of top-5 3-gram 
comment words from given code pair, 
normalised by the total number of words. 

com16- 
com20 

The occurrence frequency of top-5 4-gram 
comment words from given code pair, 
normalised by the total number of words. 

com21 
Comment vocal proportion toward the total 
number of comment characters including 
whitespaces. 

com22 
Comment consonant proportion toward the 
total number of comment characters 
including whitespaces. 

com23 
Comment digit proportion toward the total 
number of comment characters including 
whitespaces. 

com24 
Comment punctuation proportion toward 
the total number of comment characters 
including whitespaces. 

com25 Average length of comment words. 

 

Table 2. Identifier Name Features for Style Similarity 

ID  Description  

idn01- 
idn05  

The occurrence frequency of top-5 1-gram 
identifier words from given code pair, 
normalised by the total number of words.  

idn06- 
idn10  

The occurrence frequency of top-5 2-gram 
identifier words from given code pair, 
normalised by the total number of words. 

idn11- 
idn15  

The occurrence frequency of top-5 3-gram 
identifier words from given code pair, 
normalised by the total number of words. 

idn16- 
idn20  

The occurrence frequency of top-5 4-gram 
identifier words from given code pair, 
normalised by the total number of words. 

idn21  
Identifier vocal proportion toward the total 
number of identifier characters. 

idn22  
Identifier consonant proportion toward the 
total number of identifier characters. 

idn23  
Identifier digit proportion toward the total 
number of identifier characters. 

idn24  
Identifier punctuation proportion toward 
the total number of identifier characters. 

idn25  Average length of identifiers. 
idn26  Average length of identifier words. 

 
Program flow keyword features describe how the 

author chooses program flow keywords in solving 
the problem. The features can be seen in Table 4. 
For pro01-pro15, structure tokens are extracted from 
a source code token string that accentuates the 
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impact of program structure. The string replaces all 
identifiers with the same token called ident, and 
removes all whitespaces, brackets, and semicolons. 
pro16-pro21 are about the proportion of a particular 
program flow keyword toward all keywords used on 
the code file. 

Table 3. Code Layout Features for Style Similarity 

ID  Description  

lay01- 
lay05  

The occurrence frequency of top-5 4-gram 
layout tokens from given code pair, 
normalised by the total number of such 
tokens.  

lay06  
Semicolon proportion toward the total 
number of source code characters including 
whitespaces. 

lay07  
Curly bracket proportion toward the total 
number of source code characters including 
whitespaces. 

lay08  
Standard bracket proportion toward the 
total number of source code characters. 

lay09  
Space proportion toward the total number 
of source code characters including 
whitespaces. 

lay10  
Tabulation proportion toward the total 
number of source code characters including 
whitespaces. 

lay11  
Newline proportion toward the total 
number of source code characters including 
whitespaces. 

 

Table 4. Program Flow Keyword Features for Style 
Similarity 

  ID    Description  

pro01 - 
pro05  

The occurrence frequency of top-5 2-gram 
structure tokens from given code pair, 
normalised by the total number of such 
tokens.  

pro06 - 
pro10  

The occurrence frequency of top-5 3-gram 
structure tokens from given code pair, 
normalised by the total number of such 
tokens. 

pro11 - 
pro15  

The occurrence frequency of top-5 4-gram 
structure tokens from given code pair, 
normalised by the total number of such 
tokens. 

pro16  
If  keyword proportion toward the number 
of keywords. 

pro17  
Switch keyword proportion toward the 
number of keywords. 

pro18  
While keyword proportion toward the 
number of keywords. 

pro19  
Do-While keyword proportion toward the 
number of keywords. 

pro20  
For keyword proportion toward the number 
of keywords. 

pro21  
Try keyword proportion toward the number 
of keywords. 

 

Dishonesty probability (dprob) refers to how 
confident a source code pair can be considered to 
contain non-coincidental similarity, assuming that 
such similarity occurs when the authors’ 
programming style is suddenly changed. This is 
calculated as in (3) where dauth(code) refers to 
disauthorship probability, depicting how convincing 
the parameterised code has different programming 
style compared to the author’s previous submissions. 

Disauthorship probability is determined with  the 
help of Multinomial Naive Bayes (MNB) [41] in 
which each author is exclusively assigned with one 
MNB learning model, built from the author’s 
previous submissions. Each submission is converted 
to style features (which are also used for calculating 
style similarity). However, com01-com20, idn01-
idn20, lay01-lay05, and pro01-pro15 consider all 
code files written by that author instead of only a 
code pair. In our case, MNB is implemented with 
WEKA [42] 

 

����� =
�����(�����)������(�����)

�
. (3) 

 
On each learning model, the target class is 

binary, representing whether one code file’s 
programming style is similar to the author’s style. 
To represent code files which style is different from 
the author’s, an equal number of random source 
code files taken from other students will be used. 

Disauthorship probability is generated in twofold. 
First of all, style features from the author’s 
currently-submitted code file are generated and then 
fed to the author’s learning model for classification. 
Such classification returns two probabilities: a 
probability suggesting the same programming style 
and a probability suggesting the counterpart. 
Commonly, the classification result is determined by 
the highest probability. However, that step is ignored 
in our case and disauthorship probability is assigned 
with a probability suggesting different programming 
style. 

It is important to note that style similarity and 
dishonesty probability can also be treated as separate 
metrics for further hints in suspecting source code 
plagiarism and collusion. A pair with suspiciously 
high style similarity is an obvious attempt of such 
academic dishonesty. Dishonesty probability, even 
though it is only applicable after several 
submissions, can assure that a pair shares non-
coincidental similarity once the programming style 
is suddenly changed. 

Disauthorship probability (a part of dishonesty 
probability) can also be used to distinguish the 
culprits from the victims if high content similarity is 
on board. Such distinction can be used to educate 
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them separately [37] or setting the appropriate 
penalty (if not all dishonesty acts are considered 
equal). Let us assume we have a code pair with high 
content similarity in which A and B are the students. 
If A’s code results in high disauthorship probability 
while B’s does not, it can be stated that B is the 
original creator of the code and A has copied the 
code. This also works in reverse if B’s code is the 
one which results in high disauthorship probability. 
If both student code files result in high disauthorship 
probability, then they copy the code from another 
student. It can also be a potential case for 
ghostwriting in which the students ask someone to 
help (who is commonly an expert in programming) 
to do their assignments. If both student code files 
result in low disauthorship probability, the case is 
convinced to be collusion instead of plagiarism; the 
students may create the code together. 

 

4. EVALUATION 

The proposed technique was evaluated under six 
research questions:   
R1 How effective is style similarity in capturing 

non-semantic-preserving information?  
R2 What is the impact of style similarity on 

detection performance?  
R3 How effective is Multinomial Naive Bayes 

(MNB) in classifying programming style?  
R4 Which style features do affect the accuracy of 

MNB?  
R5 What is the impact of dishonesty probability on 

detection performance?  
R6 How effective and efficient is our proposed 

technique with both style and dishonesty 
probabilities on board compared to a common 
technique in academia? 

 
To address those questions, three datasets were 

introduced: artificial, introductory, and historical 
dataset. Artificial dataset was created by an author in 
which the differences between code files are focused 
on non-semantic-preserving information relating to 
programming style. It covers four categories: 
comment content (how the comment words are 
chosen), identifier name (how the names are 
formed), code layout (how the whitespaces are 
used), and program flow keyword (how some 
keywords are preferred to others). 

We used the same Java original code files as in 
[20], describing seven introductory programming 
materials: output (T1), input (T2), branching (T3), 
looping (T4), function (T5), array (T6), matrix (T7) 
[43]. On each category, the original files were then 
copied and modified by a particular treatment. For 
comment content category, a descriptive comment is 

added for each instruction. For identifier name 
category, all identifiers are renamed. For code layout 
category, empty lines and tabs are removed. Further, 
standard brackets on arithmetic expressions are 
added or removed if possible. For program flow 
keyword category, each program flow statement is 
replaced with its equivalent statement but with 
different keyword (e.g., a for loop is converted to a 
while loop). Additionally, each main program is 
encapsulated with a dummy try-catch statement. In 
total, artificial dataset has 28 source code pairs 
where each category has seven of them. 

Introductory dataset contains student works taken 
from several cohorts of Java introductory 
programming course. In total, there are 1,028 source 
code files mapped to 94 assessments (each of them 
has three to 22 assessments). Per assessment, the 
suspected pairs were determined using JPlag [8] 
with average normalisation. To be suspected, the 
pairs should have similarity degree higher or equal 
to the maximum value between 75% and the mean 
of all similarity degree. This threshold is defined 
with the same reasons as such a threshold on 
proposed technique. Further, it is also supported by 
the fact that on each assessment, a pair with the 
lowest similarity degree was suspicious from an 
author’s perspective and they believe it can be 
generalised to other pairs with the same or higher 
similarity degree. 

Historical dataset contains 219 Java source code 
files created by five undergraduate students for 
solving problems in Open Kattis 
(https://open.kattis.com/). The students are denoted 
as SA, SB, SC, SD, and SE where their number of 
source code files are 40, 75, 40, 30, and 32 
respectively. The suspected pairs were determined in 
the same way as introductory dataset but all code 
files were considered as an assessment and each pair 
in which both code files were created by the same 
student is excluded. 

Three detection techniques were involved in this 
evaluation. S-VSM and SH-VSM are our proposed 
techniques; the former relies on content and style 
similarity while the latter is expanded from the 
former by considering dishonesty probability. Their 
similarity calculations can be seen in (2) and (1) 
respectively. STD-GST is a common technique in 
academia that converts both given source code files 
to token strings via ANTLR [39] (with comments 
and whitespaces excluded), and compares the strings 
using Running-Karp-Rabin Greedy-String-Tiling 
(RKRGST) with two as its minimum matching 
length. This technique is considered as our baseline 
for evaluating our proposed techniques (S-VSM and 
SH-VSM). 
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4.1 THE EFFECTIVENESS OF STYLE 
SIMILARITY IN CAPTURING NON-
SEMANTIC-PRESERVING 
INFORMATION 

Our style similarity is considered as effective in 
capturing non-semantic-preserving information if for 
each pair on artificial dataset (which modification is 
mainly not semantic preserving), S-VSM (our 
technique which relies on content and style 
similarity) provides slightly lower similarity degree 
than a common technique in academia (STD-GST, 
our baseline that only considers content similarity). 
This is based on our expectation that such 
modification should be considered in comparison (to 
capture obvious attempts of plagiarism or collusion) 
but with limited impact (so that the culprits cannot 
obfuscate their academic dishonesty via that 
modification). 

Figure 1 shows that S-VSM generates slightly 
lower similarity degree than STD-GST toward 
comment content change. On some cases (T2, T3, 
T4, and T6), the difference is extremely small, lower 
than 1%. This is expected since only 10% of the 
resulted similarity degree comes from style 
similarity and not all programming style features are 
related to comment content. 

 

 

Figure 1 – Resulted similarity degree on pairs with 
comment content change 

 
In dealing with identifier name change (see 

Figure 2), both S-VSM and STD-GST are able to 
capture the change since while measuring content 
similarity, renamed identifiers are commonly 
considered as different tokens from their originals. 
Nevertheless, S-VSM still leads to slightly lower 
similarity degree than STD-GST since the change 
also affects style similarity. Further, on S-VSM’s 
content similarity, the impact of such change is 
propagated through n-gram mechanism; each 
renamed identifier leads to four mismatched 4-gram 
tokens [26]. 

Code layout change, if only affects whitespaces 
(see T1, T6, and T7 in Figure 3), slightly favours S-

VSM even though its difference is lower than 1%; 
whitespace change is exclusively considered by that 
technique. 

When the change affects other tokens such as 
brackets (see T2-T5 in Figure 3), both techniques are 
able to capture the change as these tokens are also 
considered by content similarity. On half cases (T4 
and T5), S-VSM generates slightly lower similarity 
degree than STD-GST since each additional bracket 
leads to four mismatched 4-gram tokens at content 
level and the use of brackets is also considered by 
style similarity. However on the other half (T2 and 
T3), this works in reverse. These brackets 
successfully split some STD-GST’s matched token 
substrings unequally, resulting in the shorter ones 
not recognisable as matched tokens (their length is 
shorter than RKRGST minimum matching length). 

 

 

Figure 2 – Resulted similarity degree on pairs with 
identifier name change 

 

 

Figure 3 – Resulted similarity degree on pairs with 
code layout change 

 
Figure 4 depicts that both S-VSM and STD-GST 

are able to capture program flow keyword change 
since such change results in altering the program 
structure and therefore affects content similarity. S-
VSM provides slightly lower similarity degree on 
T4, T5, and T7 due to n-gram mechanism on content 
similarity and the consideration of keyword usage on 
style similarity. For remaining cases, it generates 
higher similarity degree as the change successfully 
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split some STD-GST’s matched token substrings 
unequally, making the shorter ones not recognisable 
by its matching algorithm. 

To sum up, S-VSM is more capable than STD-
GST in capturing non-semantic-preserving 
information; it provides slightly lower similarity 
degree on most code pairs which difference is 
mainly focused on that kind of information. 

 

Figure 4 – Resulted similarity degree on pairs with 
program flow keyword change 

 

4.2 THE IMPACT OF STYLE SIMILARITY 
ON DETECTION PERFORMANCE 

This subsection evaluates the impact of 
considering style similarity when dealing with semi-
real cases of source code plagiarism and collusion 
detection (i.e., introductory dataset). S-VSM (our 
proposed technique that considers style similarity) 
was compared to STD-GST (the baseline technique) 
with five metrics on board: 
 The similarity degree of dataset-suspected 

pairs checks how effective a technique is in 
assigning high similarity to suspicious pairs. 

 Precision [22] measures how accurate a 
technique is. It is calculated as in (4) where 
dpairs are dataset-suspected pairs and tpairs 
are technique-suspected pairs 

 

� =
|������∩������|

|������|
. (4) 

 
 Recall [22] measures how sensitive a 

technique is. It is calculated as in (5) where 
dpairs are dataset-suspected pairs and tpairs 
are technique-suspected pairs 

 

� =
|������∩������|

|������|
. (5) 

 
 F-score [22] is the harmonic mean between 

precision and recall, calculated as in (6) where 
P is precision and R is recall 

 

������ =
�∗�∗�

|���|
. (6) 

 
 Execution time (in nanoseconds) measures 

how long a technique takes time to process the 
whole dataset. 

S-VSM generates 2.6% lower averaged similarity 
degree than STD-GST on dataset-suspected pairs 
(see Figure 5); S-VSM is more prone to 
modification as it considers style similarity in 
addition to the content one. Further by nature, S-
VSM’s content similarity leads to more mismatched 
tokens due to its n-gram mechanism. Each 
mismatched content token is a member of four 4-
gram tokens and all of these 4-gram tokens are 
considered as mismatches. 

 

 

Figure 5 – Resulted similarity degree on the suspected 
pairs of introductory dataset 

As seen in Figure 6, S-VSM results in higher 
precision than STD-GST (+2.1%) since on the 
dataset (which students are novice programmers), 
not all style features on the copied code are changed, 
and they can provide more hints in determining 
similarity. That improvement, however, should be 
exchanged with lower recall and f-score as more 
factors are introduced on the similarity 
measurement. 

In terms of efficiency, S-VSM can save 30.5% 
execution time. S-VSM only takes 10.7 seconds to 
process the whole dataset while STD-GST takes 
15.5 seconds. 

 

4.3 THE EFFECTIVENESS OF 
MULTINOMIAL NAIVE BAYES IN 
CLASSIFYING PROGRAMMING 
STYLE 

Dishonesty probability used in our detection 
technique relies on Multinomial Naive Bayes 
(MNB) in capturing student programming style. 
Hence, this subsection evaluated the effectiveness of 
such a classifier with accuracy as the evaluation 
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metric and 10-fold cross validation as the 
instrument. 

 

 

Figure 6 – Effectiveness metrics on introductory 
dataset 

The accuracy of MNB was measured on 
historical dataset. Per student, their own code files 
refers to positive instances while an equal number of 
other students’ code files (taken randomly) 
representing the counterpart. Figure 7 depicts that 
MNB is considerably effective in capturing 
programming style with 67.1% as the averaged 
resulted accuracy. The highest accuracy occurs on 
SE (82.9%) while the lowest one occurs on SB 
(56.7%). 

 

Figure 7 – 10-fold cross validation accuracy on 
historical dataset 

 
4.4 STYLE FEATURES AFFECTING THE 

ACCURACY OF MULTINOMIAL NAIVE 
BAYES 

Style features affecting Multinomial Naive Bayes 
(MNB)’s accuracy were determined with WEKA’s 
information gain [42] under the same setting as 
previous subsection. Table 5 shows that the number 
of affecting features varies per student as each 
student has his own programming style. The lowest 
one occurs on SB (12 features) while the highest one 
occurs on SE (30 features). 

Among the affecting features, most top-5 features 
are related to comments. This is natural since 
comments can be freely written in natural language 

without being constrained by programming syntax 
rules. Other style categories also affect MNB’s 
accuracy. However, their occurrences are not as 
frequent as the comment ones. 

Table 5. Style Features Affecting MNB per Student 

Student 
Total 
Affecting 
Features  

Top-5 Affecting Features  

SA   14  
one of com01-com05, two of 
com06-com10, com22, and com24 

SB   12  
one of com01-com05, com22, 
idn26, one of lay01-lay05, and 
lay11  

SC   22  
one of com01-com05, one of 
com06-com10, com22, com24, 
and com25  

SD   27  
two of com01-com05, com21, 
com24, com25  

SE   30  
 com22, com24, com25, and two 
of pro11-pro15  

 
In summary, style features affecting MNB’s 

accuracy can vary depending on the student’s 
programming style. However, most of the features 
are related to comments as free text can be 
embedded on such part. 
 
4.5 THE IMPACT OF DISHONESTY 

PROBABILITY ON DETECTION 
PERFORMANCE 

The impact of dishonesty probability was 
evaluated with two techniques on board: S-VSM and 
SH-VSM. They are our proposed detection 
techniques in which the latter is exclusively featured 
with dishonesty probability. The performance of 
both techniques were measured on historical dataset 
– the only dataset in which the author of each code 
file is known – using five metrics used for 
measuring the impact of style similarity (see 
subsection 1.2): the similarity degree of dataset-
suspected pairs, precision, recall, f-score, and 
execution time. 

In average, SH-VSM yields slightly higher 
similarity degree on dataset-suspected pairs 
compared to S-VSM (see Figure 8 with 1.6% 
improvement). It also provides higher precision and 
recall (see Table 6.). Precision is increased by 25% 
while recall is increased by 0.3%. This therefore 
slightly increases the f-score by 0.6%. In other 
words, the use of dishonesty probability (which is 
exclusive to SH-VSM) makes suspected code pairs 
become more identical and therefore leads to higher 
effectiveness, precision in particular. 

Integrating dishonesty probability has a drawback 
of efficiency: SH-VSM takes 3.7 minutes to process 
the historical dataset while S-VSM only takes about 
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13 seconds. In addition to creating the learning 
model, SH-VSM needs time to create the learning 
vectors per comparison and classify them based on 
the learning model. 

 

 

Figure 8 – Resulted similarity degree on the suspected 
pairs of historical dataset 

Table 6 - Effectiveness Metrics on Historical Dataset 

Metrics  SH-VSM  S-VSM  STD-GST  
Precision  100%  75.00%  100%  
Recall  1.2%  0.9%  2.4%  
F-Score  2.3%  1.8%  4.7% 

 
4.6  THE PERFORMANCE OF OUR 

PROPOSED TECHNIQUE COMPARED 
TO A COMMON TECHNIQUE IN 
ACADEMIA 

This subsection compares our proposed technique 
that incorporates both style and disauthorship 
probabilities (SH-VSM) with a common technique 
in academia (STD-GST) under the same setting as 
the previous subsection. Table 6 shows that SH-
VSM is as effective as STD-GST in terms of 
precision; both of them lead to 100% precision. 
However, SH-VSM provides lower recall (-1.1%), f-
score (-2.3%), and averaged similarity degree of 
suspected pairs (-5.2%) as more factors are 
considered in the comparison.  

In terms of execution time, SH-VSM is still 
slower than STD-GST. The former takes 3.7 minutes 
while the latter only takes half a minute, processing 
15.045 code pairs from historical dataset on Intel 
Core i5-8350U.  

It is true that on historical dataset, SH-VSM is 
outperformed by STD-GST in most metrics. 
However, we believe that such low performance can 
be compensated with the introduction of two 
additional hints for suspecting plagiarism and 
collusion. Style similarity can be used to capture 
students with obvious attempts of plagiarism or 
collusion. Dishonesty probability can be used to 
either differentiate non-coincidental from 

coincidental similarity, or identify who are the 
culprits and what kind of dishonesty they do. 

 

5. CONCLUSIONS AND FUTURE WORK 

This paper proposes a similarity detection for 
source code plagiarism and collusion in academia 
via style and dishonesty probabilities, derived from 
the programming style. The technique is more 
effective than a common technique in academia for 
capturing non-semantic-preserving information, 
increasing precision with a trade-off in recall if 
applied on novice student code files. The technique 
is also able to capture student programming style 
with different distinguishing features, which 
provides higher effectiveness of our technique.  

For future work, we plan to evaluate the impact 
of disauthorship probability (a part of dishonesty 
probability) in differentiating the culprits and the 
victims. As suggested by [37], they should be 
educated differently; the former should learn 
academic integrity while the latter should learn how 
to secure their files from being copied (including 
how to reject a request for their code). We also plan 
to propose a detailed approach to educate both 
culprits and victims, complementing existing 
approaches for maintaining academic integrity [5]. 
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