
Ahmed Sultan Alhegami, Hussein Alkhader Alsaeedi / International Journal of Computing, 19(1) 2020, 106-117

 106

A FRAMEWORK FOR INCREMENTAL PARALLEL MINING
OF INTERESTING ASSOCIATION PATTERNS FOR BIG DATA

Ahmed Sultan Alhegami 1), Hussein Alkhader Alsaeedi 2)

1) University of Sana’a, Yemen, e-mail: Alhegami@su.edu.ye

2) University of Science and Technology, Yemen, e-mail: h.alkhadher@ust.edu

Paper history:
Received 12 August 2019
Received in revised form 13 December 2020
Accepted 13 February 2020
Available online 31 March 2020

Keywords:
Big Data Mining;
Association Pattern Mining;
Parallel Mining;
Incremental Mining;
Interesting;
Measure Novelty Measure;
KDD.

Abstract: Association rule mining plays a very important role in the distributed
environment for Big Data analysis. The massive volume of data creates
imminent needs to design novel, parallel and incremental algorithms for the
association rule mining in order to handle Big Data. In this paper, a framework is
proposed for incremental parallel interesting association rule mining algorithm
for Big Data. The proposed framework incorporates interestingness measures
during the process of mining. The proposed framework works to process the
incremental data, which usually comes at different times, the user's important
knowledge is explored by processing of new data only, without having to return
from scratch. One of the main features of this framework is to consider the user
domain knowledge, which is monotonically increased. The model that
incorporates the users’ belief during the extraction of patterns is attractive,
effective and efficient. The proposed framework is implemented on public
datasets as well as it is evaluated based on the interesting results that are found.

Copyright © Research Institute for Intelligent Computer Systems, 2020.
All rights reserved.

1. INTRODUCTION

Recent advances in digital data collection and
data acquisition technologies have opened new
avenues to acquire and store increasingly massive
volumes of data. This rapid growth of data leads to
several considerable issues such as storage, security,
scalability, and extraction of interesting knowledge
which are difficult to handle using conventional
techniques, methods, and tools. Data is useful only if
it can be interpreted, analyzed and if a conclusion
can be drawn from them [1-3].

Big Data mining refers to finding extraction
techniques that are performed on Big Data. Big Data
extracts and retrieves interesting patterns from a
massive volume of data [4]. Association rule mining
plays a very important role in a distributed
environment in Big Data analysis [5].

Although many efficient algorithms have been
developed to extract association rules, traditional
algorithms do not work well on Big Data [6-9]. The
main drawbacks with such algorithms are that they
don’t consider the data size and the time when the

data arrives and therefore build a model in batch
manner. In contrast, incremental algorithm
constructs and refines the model as long as new data
arrives at different times [10-13].

The aim of this paper is to propose a framework
for incremental parallel mining of interesting
association rules for big data. One of the main
advantages of the proposed framework is to handle
the time changing big data and user domain
knowledge. This is useful when many datasets arrive
at different times or from a distributed environment.
Certainly, it is desirable to update the discovered
patterns each time new data arrives. The incremental
and parallel nature of the proposed framework
makes it valuable to extract interesting patterns at a
current time with regard to the previously discovered
patterns, more willingly than comprehensively
extracting all patterns.

The parallel and incremental association rules
algorithms that incorporate the users’ domain
knowledge during the extraction of patterns are
attractive, effective and efficient for the knowledge
discovery in database (KDD) process.

computing@computingonline.net
www.computingonline.net

Print ISSN 1727-6209
On-line ISSN 2312-5381

International Journal of Computing

Ahmed Sultan Alhegami, Hussein Alkhader Alsaeedi / International Journal of Computing, 19(1) 2020, 106-117

 107

2. RELATED WORKS

Frequent itemsets mining algorithms are such as
Apriori method [14] and Tree method [15]. Also
Parallel frequent itemsets mining algorithms are
based on Apriori methods [14] such as in [6-, 7, 16].
They are categorized as count distribution (e.g.,
parallel data mining (PDM) [6], fast parallel mining
[7]), and data distribution (DD) [17]. The
assumptions of these approaches are that each
processor of a parallel system calculates the local
support counts of all candidate itemsets. Then, all
processors compute the total support counts of the
candidates by exchanging the local support counts.
Other parallel frequent itemsets mining algorithms
are based on Tree methods [15]. For example,
Parallel FP-Growth algorithm (PFP-Growth) which
is based on the clustered system [18], load balanced
parallel FP Growth algorithm [19], an efficient
parallel algorithm using message passing interface
on a shared-nothing multiprocessor system [9], and
Parallel FP-Growth algorithm to mining frequent
patterns [8]. PFP algorithm makes use of the
MapReduce parallel programming model for the
purpose of analysis and mining of data [8, 20]. It
splits the database into small chunks and then uses
the MapReduce in three phases to count values,
group items, and build tree, and eventually integrates
as well as combines the results of the previous
phases. The main drawbacks of PFP-Growth are that
it does not work on an incremental database and
doesn’t use any subjective measure of
interestingness. Many works have been conducted
for developing algorithms based on mining
incremental association rules [21-25]. The main
hypothesis of these algorithms is to update the
discovered model when new data stream arrives. In
[24], DEMON algorithm is proposed to handle the
evolving data more effectively and efficiently. In
[25], DELI algorithm is proposed for monitoring the
environment changes of the data stream. It makes
use of statistical methods for the updating process.
DELI algorithm uses a sampling method to estimate
the support counts using an approximate
upper/lower bounds on the number of changes in the
newly discovred association rules. As the low bound
gets smaller, the changes of the association rules get
smaller, therefore the model maintenance is not
required. Although these algorithms are incremental,
they don’t reuse the previously discovered
knowledge when new data arrive at new time
instance. In [22, 23] a Fast UPdate (FUP) algorithm
is proposed which is incremental in nature for
mining association rules in huge databases. It works
by scanning the database to verify whether there are
large itemsets or not. FUP algorithm is proposed to
compute the large itemsets in the updated database.

The main purpose of this algorithm is to solve the
efficient update issue of association patterns in the
updated database. The algorithm is extended to
FUP* and FUP2 that scan the database kth time. In
[26] Paralle incremental FP-Growth (PIFP-Growth)
is proposed for improvement PFP algorithm [8] to
solve the problem of an incremental database. PIFP
Growth is based on MapReduce [20] for parallelized
incremental mining. The drawbacks of these
algorithms are the following ones: they have many
stages that are time consuming and perform
MapReduce several times, for instance, PFP uses
MapReduce in three stages out of seven stages while
PIFP uses MapReduce in four stages out of seven
stages. In addition, both algorithms don’t use any
subjective measure of interestingness. The novelty
measure of discovered patterns is proposed in [10-
12]. It is quantified with respect to known
knowledge and it eliminates the patterns that are not
interesting from the user’s point of view. In our
work, we take advantage of the novelty measure of
interestingness proposed in [10-12]. Although PFP
and PIFP are proposed to deal with parallel and
incremental Big Data mining, both approaches are
based on traditional FP Growth [15] and make use of
MapReduce programming model. Our framework
can use any frequent pattern mining algorithm which
uses MapReduce. It is similar to PFP and PIFP as it
uses MapReduce to achieve parallelism but it differs
from PIFP in its incremental manner. The major
differences between the proposed framework and
PFP and PIFP are:
 PFP uses MapReduce in three out of its five

stages and PIFP uses MapReduce in four out of
its seven stages while the proposed framework
uses MapReduce only twice out of its four
stages.

 Both PFP and PIFP don’t consider the previous,
discovered patterns when new data arrives while
the framework updates the model with novel
patterns as new data stream arrives.

 The PIFP resets the threshold value as new data
arrives and updates the old local tree while our
approach constructs different local tree as new
data arrives and generates new frequent items.

 To achieve parallelism, PFP and PIFP divide up
items into groups and perform Generating group
dependent transactions to build trees and extract
frequent items while the framework uses
MapReduce to construct trees directly from
transactions after pruning the infrequent items
that don’t meet the minimum support criterion.

Even though PFP and PIFP are based on FP-
Growth which includes two steps, the framework
adds extra steps in order to update the model as new
data arrives and guarantees that the discovered
patterns are interesting.

Ahmed Sultan Alhegami, Hussein Alkhader Alsaeedi / International Journal of Computing, 19(1) 2020, 106-117

 108

The rest of the paper is organized as follows. In
section 3, we present the problem statement. A
Framework for Incremental Parallel Mining of
Interesting Association Patterns is presented in
section 4. In section 5 a detailed example is
illustrated. In section 6, the experimental results are
presented and the conclusion is given in section 7.

3. PROBLEM STATEMENT

At time instance ti, an incremental Big Data Di,
i {1,…,n}, is collected. Suppose, Di is partitioned
into m parts, where �� ⊂ �. Each ��� �ℎ��� 1 ≤

� ≤ � is saved on processor ��, and F-List is

generated to construct local trees FP-Treem.
Subsequently, frequent items are extracted and
association rules are generated to form model Ti .

Let Mi and Mi+1 be two models discovered at time

instances ti and ti+1 from datasets
i

j

j 1

D

 and

i 1

j

j 1

D

respectively. The objective is to update Mi to Mi+1

using Di+1 and Mi. Mi is the model discovered at time
ti now represents the previously discovered
knowledge (PDK). Mi+1 is the up-to-date model
obtained by adding interesting patterns discovered
from Di+1. This is achieved by constructing a model
Ťi+1 from Di+1 such that association patterns in Ťi+1

have user specified degree of interestingness with
respect to the rules in Mi. Subsequently, Ťi+1 is used
to update Mi to Mi+1.

4. A FRAMEWORK FOR INCREMENTAL

PARALLEL MINING OF INTEREST

In this paper, we present a framework that
efficiently discovers interesting patterns from Big
Data. It makes use of MapReduce [20] to deal with
data in a parallel manner. Our proposed framework
is similar to the PFP [8] algorithm except that each
rule generated from frequent itemset list in PFP may
not be interesting. At time Ti, our framework
computes the novelty aspect of interestingness
measure with respect to the existing model MTi and
pruning uninteresting patterns that are not significant
in the current data set. The framework is shown in
Fig. 1. It comprises 3 phases namely, building local
tree, finding frequent itemset, and building
incremental interesting model. These phases are
explained in the following subsections:

4.1 BUILDING LOCAL TREES

In this phase, Big Data is divided into m small
parts, where m can be set manually, among P
processors using the MapReduce parallel
programming model for the purpose of analyzing
and mining data. Each P MapReduce first, reads

each small part to achieve parallel count and the
integrated count results into a frequent list called F-
List, then, it sorts the items of F-List in descending
order. Finally, MapReduce performs the second
iteration to read each small part and build a local FP
-Tree. The phase outputs are FP-Treem. The
following steps are required to build local trees and
the algorithm is presented in Algorithm 1.

1. Set m, Define and Clear F – List.
2. Division of Di into m parts where 1 ≤ j ≤ m,

and save each dpj on different processor
called P.

3. First scan each Transaction T into pj to
compute supports for all items in parallel
manner.

4. Integrate the count results into F-List.
5. Sort items of F-List in descending order.
6. Second scan each Transaction T into pj:

 Sort items in descending order of T
based on F- List.

 Building the local tree called
localTreej as algorithm FP-Tree in
[15].

7. Return localTreej

Algorithm 1: Building Local Trees

Procedure: Building LocalTrees (�� ,�)
Set of m;
Define and clear F-List : F [];
Division of �� into ��� �ℎ��� 1 ≤ � ≤ �

Send ���to ��different

In each ��

F []Mapper(���)

Sort F [];
Call Reduce(��� ,F[],�)

Procedure: Mapper(���);

{
Define and clear � − ��������� = ���[]

foreach Transactions � in dP do
foreach Item a in T do
��� [a] ++;

end
end
return ���;

}
Procedure: Reduce(��� ,F[])

{
Define and clear the root of ����������: r;

foreach Transactions T in ���do

Make �ordered according to F ;
Call Construct Tree(�; r);
end
Call Finding Frequent itemset(r,F[])
}

Ahmed Sultan Alhegami, Hussein Alkhader Alsaeedi / International Journal of Computing, 19(1) 2020, 106-117

 109

Figure 1 – The Framework for Incremental Parallel Mining of Interesting Association Patterns for Big Data

4.2 FINDING FREQUENT ITEMSETS

In this phase, the FP-Treem generated in the 1st
phase is taken by Mappers which connect trees with
each other from different nodes. Subsequently, the
Reducers extract the frequent itemset from trees, and
save them in memory temporarily. The output of this
phase is the list of frequent itemset. The following

steps are required to find the frequent itemsets and
the algorithm is presented in Algorithm 2.

1. Divide F-list to number of groups
(mGroups) called G-list.

2. Each G-list is sent to different processors
each of which has MapReduce.

3. For every processor, the items of descending
order of F-list (from that last item to first

Ahmed Sultan Alhegami, Hussein Alkhader Alsaeedi / International Journal of Computing, 19(1) 2020, 106-117

 110

item) are examined to find out whether these
items belong to G-list or not.
a. Mapper reads all paths of each item in

different FP Trees and extract l
temporary local F-list for each item.

b. Reduce constructs temporary local tree
for each item based on their paths and
temporary local F-list.

c. For every temporary local tree, Reduce
extracts local frequent items for the items
with unique paths, otherwise, the
previous steps are repeated.

4. Merge all local frequent item list on
different processor to form frequent items.

Algorithm 2: Finding Frequent Itemset

4.3 BUILDING INCREMENTAL
INTERESTING MODEL

In this phase, association patterns are extracted
from the frequent itemsets. These patterns are
evaluated using confidence measure and prune the
patterns that do not satisfy this criterion resulting in
a set of strong association patterns which are
subjected to the novelty criterion [11] with the aim
of deciding either these patterns are interesting or
not. This phase takes into consideration the existing
model Mi representing the known association rules
and consequently resulting in discovering of Mi+1.
For each frequent itemsets, only novel rules are
extracted and used to update the model Mi+1. We
compute novelty degree rule with the novelty
measure (NM), (NM) presented in [10] as shown in
equation 1:

�� =
(|�1| + |�2| − 2 ∗ �) + ∑ �(��

�, ��
��

���)

|�1| + |�2|
, (1)

where S1 and S2 are two conjunct sets with
cardinalities |S1| and |S2| respectively. K = the pairs
of compatible conjuncts between S1 and S2. ���

�, ��
� �

is the ith pair of compatible conjuncts. The algorithm
computes novelty measure (NM) at every stage of
rules generation to determine whether a rule is likely
to lead to an interesting rule, or not. A rule becomes
a candidate for next stage rule generation if its
novelty measure (NM) value is 1 or the relevance
factor of the closest rule in M is less than the
relevance factor threshold value. An interestingness
value of 1 of the partial temporal rule indicates that
this rule is unlikely to expand to any existing
temporal association rule. The following steps are
required to build the incremental interesting model
and the algorithm is presented in Algorithm 3.

1. Generate association rules R from frequent
item list.

2. Compute the Confidence of the rule (R)
3. If Confidence (R)>= � Go step 4 else Go step

1
4. Compute the novelty measure (NM) of R with

respect to Model Mi
5. If NM(R)> Φ Go step 6 else Go step1
6. Update Model ��/����

5. A DETAILED EXAMPLE

For better understanding of our framework,
consider a Big Data D arrived at time T1, denoted by
D0. It contains 6 transactions as shown in Table 1.
Suppose, D0 is partitioned into 3 parts for the sake of
parallel mining, i.e., m = 3, each of which is called
dPi, i = 1; 2; 3 whereas �� ⊂ �. Table 2 shows the
data in every partition which has to be sent to
different computers Pi. The computers Pi in turn
computes support of its items by using Mapper and
store the counts into f-list local. The following F-list
local are generated from P1, P2 and P3 respectively:
f − listL�= {A=1,B=2,C=1,D=2,E=1}, f − listL�=
{A=2,B=2,C=1,D=2,E=1,F=1,G=1}, and f − listL�=
{A=1,B=2,E=2,C=2,D=1,G=1}.

Table 1. The transactions of D0

ID Items

1 A B C D

2 B E D

3 A B C D F

4 A B E D G

5 A B E C D

6 B E G C

Procedure: Finding Frequent itemset
(Trees local, F-List, σ)
Division of F-List in to m Groups G-List
Send G-List to P different
In each P different
For(i=F-List.Size-1;i=0;i--)
{
a: F-List[i]

If (a⊏G-List)
{

 Mapper Read all paths in Local Trees
to F- List local Temp of a Reduce
building TreelocalTemp of item(a)

If (TreelocalTemp of item (a) is single path)
 {

Output(Frequent Items list Local
Temp)

}
}

}
Integration Frequent items local lists to
Frequent Items List

Ahmed Sultan Alhegami, Hussein Alkhader Alsaeedi / International Journal of Computing, 19(1) 2020, 106-117

 111

Table 2. D0 into 3 parts

ID Items
 Ordered

frequent
items

1 A B C D ��� B D A C

2 BE D B D E
3 A B C D F ��� B D A C
4 A B E D G B D A E
5 A B E C D

���
B D C E

6 B E G C B C E

Subsequently, the f-local lists are merged into

cumulative list called F-List as follows: F-list =
{A=4, B=6, C=4, D=5, E=4, F=1, G=2}. Now if we
consider that the minimum, support � =50%, the
items G and F will be eliminated from F-list. Then,
F-list is sorted on the basis of support in descending
order as follows: F-list= {B=6,D=5,A=4,C=4,E=4}.
The final F-list represents the reference for every Pi
where local trees are constructed using Reduce.
During construction of local trees, the items in every
transaction are sorted in descending order according
to their position in F-list and ignore items which are
not in F-list as shown in the third column of Table 2.
The ordered frequent items are used to construct
local trees in which the roots are set to null. The
local trees are constructed using FP-growth
algorithm in every computer Pi as shown in Fig. 2.
These local trees and F-list, which are maintained in
the memory of Pi by using MapReduce, are the
outcome of the first stage of the proposed

framework. As the FP-Growth makes use of bottom-
up strategy, the last item in F-list is considered first
which is E in our example. All paths of E are
examined in all local trees resulting the following:
dP1:[D,B:1], dP2:[A,D,B:1], dP3[C,D,B:1]. These
paths are used to generate temporary F-list using
Mapper as follows: F-Listnew-
E=[D=3,B=3,A=1,C=1]. Then, the items C and A
are removed as they don’t meet the support criterion
and F-Listnew-E are reordered in descending order
and also reorder the paths according to F-Listnew-E.
Finally, the frequent items for item E are extracted
using Reduce as the path is unique. The next item
which is considered is C in which all paths of this
item are examined resulting in the following:
dP1:[A,D,B:1], dP2:[A,D,B:1], dP3[D,B:1], [B:1].
Then, Mapper is used to generate a temporary F-list
for the item C contains F-listnew-
C=[D=3,B=4,A=2]. Note that the item A will be
removed due to minimum support criterion. Finally,
the frequent items are generated as the path of the
item C is unique. Similarly, the same process is
executed for the remaining items and all frequent
items are merged together which form the outcome
of this stage. In our example, the frequent items list
is = {[B,D,E:3] and [A,B,C,D:3]}. The next stage is
to generate association rules from frequent item sets
generated in the previous stage. Table 3 shows the
corresponding set of discovered association rules
assuming that the confidence threshold value is 0.6
for the frequent items {B,D,E:3}.

Table 3. The Association Rules Discovered at Time T1

Novelty>50
Add to PDK

Novel �
Compare
with Rule

Accept
Confidenc

e
Association

rules
Rule
No.

------- ------- ------- No 3/6=.50 BD R1

Yes
0 + 1 − 2 ∗ 0 + 0

0 + 1
= 1 Null Yes 3/5=.60 DB R2

------- ------- ------- No 3/6=.50 BE R3

Yes
2 + 2 − 2 ∗ 1

2 + 2
= .5 R2 Yes 3/4=.75 EB R4

Yes
2 + 2 − 2 ∗ 1 + 0

2 + 2
= .5 R2,R4 Yes 3/5=.60 DE R5

Yes
2 + 2 − 2 ∗ 1

2 + 2
= .5 R2,R4,R5 Yes 3/4=.75 ED R6

-- ------- ------- No 3/6=.50 BDE R7

No
2 + 3 − 2 ∗ 2

2 + 3
= .2 R5 Yes 3/5=.60 BDE R8

No
2 + 3 − 2 ∗ 2

2 + 3
= .2 R6 Yes 3/4=.75 BED R9

No
2 + 3 − 2 ∗ 2

2 + 3
= .2 R5 Yes 3/5=.60 DBE R10

No
2 + 3 − 2 ∗ 2

2 + 3
= .2 R2 Yes 3/4=.75 DEB R11

No
2 + 3 − 2 ∗ 2

2 + 3
= .2 R2 Yes 3/4=.75 EBD R12

Ahmed Sultan Alhegami, Hussein Alkhader Alsaeedi / International Journal of Computing, 19(1) 2020, 106-117

 112

Figure 2 – The Local Trees on Different Pi

Notice that in Table 3, the rules R1, R3, and R7
are eliminated due to confidence criterion which is
set to be 60%.

The remaining rules are subjected to novelty
measure which is set in the example to be %50. As
the data arrived at time T1, no comparison will be
made against Model M1 because there are no novel
rules discovered so far at time T1. The last two
columns of Table 3 show the computation of novelty
degree of the rules and therefore the rules which are
not novel are eliminated as they are uninteresting.
Subsequently, the model M1 is updated as shown in
Fig. 3. Now suppose another data D1 arrives at time
T2 as shown in Table 4. The same stages are
repeated taking into consideration the novel rules in

the model M1. Table 5 shows the corresponding set
of the discovered association rules assuming that the
confidence threshold value is 0.6 for the frequent
items {B,C,E : 2}. Notice that in Table 5, the rules
{R13,R17,R18} are found to be novel and hence the
model M1 is updated incrementally to form model
M2 as shown in Fig. 4.

Table 4. The transactions of D1

ID Items
1 A C D

2 B C E
3 A B C E
4 B E

Table 5. The Association Rules Discovered at Time T2

Novelty>50
Add to PDK

Novel �
Compare
with Rule

Accept Confidence
Association

rules
Rule
No.

Yes
2 + 2 − 2 ∗ 1

2 + 2
= .5 R2,R4 Yes 2/3=.67 BC R13

No
2 + 2 − 2 ∗ 2

2 + 2
= .0 R13 Yes 2/3=.67 CB R14

No
2 + 2 − 2 ∗ 2

2 + 2
= .0 R4 Yes 2/2=1 BE R15

No
2 + 2 − 2 ∗ 2

2 + 2
= .0 R4 Yes 2/3=1 EB R16

Yes
2 + 2 − 2 ∗ 1

2 + 2
= .5 R5,R13 Yes 2/3=.67 CE R17

Yes
2 + 2 − 2 ∗ 1

2 + 2
= .5 R13 Yes 2/3=.67 EC R18

No
2 + 3 − 2 ∗ 2

2 + 3
= .2 R4 Yes 2/3=.67 BCE R19

No
2 + 3 − 2 ∗ 2

2 + 3
= .2 R4 Yes 2/2=1 CEB R20

No
2 + 3 − 2 ∗ 2

2 + 3
= .2 R4 Yes 2/3=.67 CBE R21

No
2 + 3 − 2 ∗ 2

2 + 3
= .2 R13 Yes 2/3=.67 BEC R22

No
2 + 3 − 2 ∗ 2

2 + 3
= .2 R13 Yes 2/3=.67 EBC R23

No
2 + 3 − 2 ∗ 2

2 + 3
= .2 R17 Yes 2/2=1 BCE R24

Ahmed Sultan Alhegami, Hussein Alkhader Alsaeedi / International Journal of Computing, 19(1) 2020, 106-117

 113

Figure 3 – Model M1 Figure 4 – Model M2

6. EXPERIMENTAL STUDIES

In this section, experimental results are
presented, in particular those related to the proposed
framework performance. We conducted two
experiments, the first experiment is shown in section
6.1 and the second experiment is in section 6.2. The
proposed framework and other algorithms are
written in Java and implemented on Hadoop. All
experiments were conducted on a PC with Intel Core
i5 2.6 GHz and 4G main memory, running on
Microsoft Windows 10 64-bit. The experiments are
conducted using real-life datasets available at
http://kdd.ics.uci.edu. The datasets are considered as
evolving with time, and divided up into three
increments: D1, D2, and D3 assumed that they have
arrived at times T1, T2, and T3 respectively. Table 6
shows the characteristics of these datasets.

Table 6. Dataset Characteristics

Dataset Time
Size of
Dataset

No of
items

Items
densit

y

Kosarak
T1 330001 31783 8
T2 330001 32098 8
T3 330000 32218 8

Accidents
T1 113395 395 33
T2 113394 398 33
T3 113394 385 33

T40I10D10
0K

T1 33334 942 39
T2 33333 941 39
T3 33333 942 39

T10I4D100
K

T1 33334 868 10
T2 33333 870 10
T3 33333 869 10

6.1 FIRST EXPERIMENT

In this experiment, the performance of the
proposed framework is compared to the FP-Growth
algorithm, PFP-Growth, and PIFP. Since the number
of discovered rules of the FP-Growth algorithm,
PFP-Growth and PIFP are similar, we perform the
comparison to the FP-Growth algorithm only.

Table 7. The discovered rules on Kosarak dataset
using FP-Growth and T1; T2; T3 in our Framework

M
in

im
u

m
 s

u
p

p
or

t
�

M
in

im
u

m

co
n

fi
d

en
ce

 �

FP-
Growth

Algorithm

Our framework
with Novelty

threshold
Φ=0.50

Discover-
ed rules

Novel rules

T1+T2
+T3

T1
T1+T

2
T1+T2

+T3

0.004

0.60 5789 1200 1478 1567
0.65 5384 1168 1392 1452
0.70 5061 1034 1203 1237

0.006

0.60 2303 478 566 582
0.65 2180 453 531 548

0.70 2034 423 487 502

0.008

0.60 981 213 253 264
0.65 923 200 238 246
0.70 843 185 218 225

0.010

0.60 577 133 152 158
0.65 537 125 142 146
0.70 492 115 130 133

0.012

0.60 372 87 98 99
0.65 344 81 91 91
0.70 309 74 82 82

Ahmed Sultan Alhegami, Hussein Alkhader Alsaeedi / International Journal of Computing, 19(1) 2020, 106-117

 114

The performance is measured in term of the
number of discovered rules with various thresholds
of minimum support and confidence and fixed
novelty threshold Φ = 0.50. The dataset used is
(Kosarak) and it is considered evolving with time
and partitioned into three parts representing times
T1; T2; T3 respectively as shown in Table 6. As we

can notice in Table 7, the number of discovered
rules is reduced in the proposed framework
compared to FP-Growth in all various minimum
support and confidence.

Fig. 5, Fig. 6, and Fig. 7 show the reduction of
the discovered rules using (Kosarak) dataset at T1,T2,
and T3 times.

Figure 5 – The Comparison between FP-Growth and the Proposed Framework in term of number of discovered
rules using (Kosarak) dataset

Figure 6 – Discovered rules and Novel Rules for dataset at T2

Ahmed Sultan Alhegami, Hussein Alkhader Alsaeedi / International Journal of Computing, 19(1) 2020, 106-117

 115

Figure 7 – Discovered rules and Novel Rules for dataset at T3

6.2 SECOND EXPERIMENT

The objective of the second experiment is to
show the effectiveness of our framework in reducing
the number of discovered rules against PIFP
algorithm. It is expected that the number of
discovered rules keeps on decreasing over the time.
We work with four datasets and considered these
datasets as evolving with time, and partitioned them
into 3 increments: D1, D2 and D3 mined at times T1,
T2 and T3 respectively. For each dataset used, the
minimum support � and minimum confidence � are
fixed and Novelty threshold Φ varies. It is observed

that the number of interesting rules decreases in our
framework in contrast to the number of rules
discovered by PIFP algorithm at T1,T2, and T3.
Intuitively, the interesting rules discovered by our
framework at time T1 is no more interesting at time
T2 and the interesting rules discovered at time T2 is
no more interesting at time T3. Consequently, as the
value of Novelty threshold Φ increases, the number
of discovered interesting rules decreases at each time
as per our expectations. The results are demonstrated
in Table 8.

Table 8. The Comparison between PIFP and the Proposed Framework in term of number of discovered rules

using many datasets with various novelty threshold Φ

Dataset

m
in

im
u

m

su
p

p
o

rt

�

m
in

im
u

m

co
n

fi
d

en
ce

 �

PIFP-Growth

N
o

v
el

ty

th
re

sh
ol

d
 Φ

Our framework

T1 T2 T3 T1 T2 T3

Kosarak 0.004 0.5 7049 6808 6906

0.5 1396 656 256
0.6 1055 496 193
0.7 983 462 180
0.8 932 438 171
0.9 831 391 152

Accidents 0.3 0.8 4422352 4413405 4491707

0.5 884504 318422 89158
0.6 751834 270660 75785
0.7 530712 191056 53496
0.8 309612 111460 31209
0.9 221132 79607 22290

T40I10D100K 0.025 0.2 625 625 630

0.5 207 74 21
0.6 194 70 20
0.7 157 56 16
0.8 125 45 13
0.9 107 38 11

T10I4D100K 0.0005 0.3 1480 1295 1481

0.5 508 183 51
0.6 370 133 37
0.7 276 99 28
0.8 235 85 24
0.9 156 56 16

Ahmed Sultan Alhegami, Hussein Alkhader Alsaeedi / International Journal of Computing, 19(1) 2020, 106-117

 116

7. CONCLUSION AND FUTURE WORK

In this research, we proposed a framework for
incremental parallel interesting association rule
mining for Big Data. The proposed approach
incorporates interestingness measure during the
process of mining. It makes a self-upgrading model
that utilizes novelty criterion to reflect the user
subjectivity and extract patterns, incrementally, from
datasets arrive at different points in time. Our future
work includes enhancing the framework to create an
association system in which the model can adapt to a
data stream environment.

8. REFERENCES

[1] J. Manyika, M. Chui, B. Brown, J. Bughin, R.
Dobbs, C. Roxburgh, et al., Big data: The Next
Frontier for Innovation, Competition, and
Productivity, McKinsey Global Institute, June
2011, pp. 156.

[2] A. Kejariwal, “Big data challenges: a program
optimization perspective,” Proceedings of the
2012 Second International Conference on
Cloud and Green Computing, 2012, pp. 702-
707.

[3] S. Kaisler, F. Armour, J. A. Espinosa, and W.
Money, “Big data: Issues and challenges
moving forward,” Proceedings of the 2013 46th
Hawaii International Conference on System
Sciences, 2013, pp. 995-1004.

[4] S. Moens, E. Aksehirli, and B. Goethals,
“Frequent itemset mining for big data,”
Proceedings of the 2013 IEEE International
Conference on Big Data, 2013, pp. 111-118.

[5] R. Agrawal, T. Imieliski, and A. Swami,
“Mining association rules between sets of items
in large databases,” Proceedings of the 1993
ACM SIGMOD Conference, 1993, pp. 207-216.

[6] J. Park, M. Chen, and P. Yu, “Efficient parallel
data mining for association rules,” Proceedings
of the fourth International Conference on
Information and Knowledge Management
CIKM’95, 1995, pp. 31-36

[7] O.R. Zaane, M. El-Hajj, and P. Lu, “Fast
parallel association rule mining without
candidacy generation,” Proceedings of the
2001 IEEE International Conference on Data
Mining, 2001, pp. 665-668.

[8] H. Li, Y. Wang, D. Zhang, M. Zhang, and E.Y.
Chang, “Pfp: parallel fp-growth for query
recommendation,” Proceedings of the 2008
ACM Conference on Recommender Systems,
2008, pp. 107-114.

[9] L. Liu, E. Li, Y. Zhang, and Z. Tang,
“Optimization of frequent itemset mining on
multiple-core processor,” Proceedings of the

33rd International Conference on Very Large
Data Bases, Vienna, Austria, 2007, pp. 1275–
1285.

[10] V. Bhatnagar, A. S. Al-Hegami, and N. Kumar,
“A hybrid approach for quantification of
novelty in rule discovery,” Proceedings of the
WEC, vol. 2, 2005, pp. 39-42.

[11] V. Bhatnagar, A.S. Al-Hegami, and N. Kumar,
“Novelty as a measure of interestingness in
knowledge discovery,” International Journal of
Information Technology, vol. 2, no. 1, pp. 36-
41, 2005.

[12] A.S. Al-Hegami, V. Bhatnagar, and N. Kumar,
“Novelty framework for knowledge discovery
in databases,” Proceedings of the International
Conference on Data Warehousing and
Knowledge Discovery, 2004, pp. 48-57.

[13] E. Yafi, A.S. Al-Hegami, M.A. Alam, and R.
Biswas, “YAMI: incremental mining of
interesting association patterns,” Int. Arab J.
Inf. Technol., vol. 9, pp. 504-510, 2012.

[14] R. Agrawal and R. Srikant, “Fast algorithms for
mining association rules,” Proceedings of the
20th Int. Conf. on Very Large Data Bases,
VLDB, 1994, pp. 487-499.

[15] J. Han, J. Pei, and Y. Yin, “Mining frequent
patterns without candidate generation,”
Proceedings of the ACM SIGMOD Conference,
2000, pp. 1-12.

[16] A. Pradeepa and A. Thanamani, “Parallelized
comprising for apriori algorithm using
mapreduce framework,” International Journal
of Advanced Research in Computer and
Communication Engineering, vol. 2, pp. 4365-
4368, 2013.

[17] Y. Xun, J. Zhang, and X. Qin, “Fidoop: Parallel
mining of frequent itemsets using mapreduce,”
IEEE Transactions on Systems, Man, and
Cybernetics, vol. 46, pp. 313-325, 2016.

[18] J. M. Kunkel, “Simulating parallel programs on
application and system level,” Computer
Science-Research and Development, vol. 28,
pp. 167-174, 2013.

[19] Z. Zeng, C. Yang, and Y. Tao, “Research of
load balance FP-growth algorithm in parallel,”
Computer Engineering and Applications, vol.
46, pp. 125-126, 2010.

[20] J. Dean and S. Ghemawat, “MapReduce:
simplified data processing on large clusters,”
Communications of the ACM, vol. 51, pp. 107-
113, 2008.

[21] D.W. Cheung, J. Han, V.T. Ng, and C. Wong,
“Maintenance of discovered association rules in
large databases: An incremental updating
technique,” Proceedings of the Twelfth

Ahmed Sultan Alhegami, Hussein Alkhader Alsaeedi / International Journal of Computing, 19(1) 2020, 106-117

 117

International Conference on Data Engineering,
1996, pp. 106-114.

[22] D.W.-L. Cheung, V.T. Ng, and B.W. Tam,
“Maintenance of discovered knowledge: A case
in multi-level association rules,” Proceedings
of the KDD, 1996, pp. 307-310.

[23] D.W. Cheung, S.D. Lee, and B. Kao, “A
general incremental technique for maintaining
discovered association rules,” Proceedings of
the Conference on Database Systems for
Advanced Applications’97, ed: World
Scientific, 1997, pp. 185-194.

[24] V. Ganti and R. Ramakrishnan, “Mining and
monitoring evolving data,” in Handbook of
Massive Data Sets, ed: Springer, 2002, pp. 593-
642.

[25] S.D. Lee and D.W.-L. Cheung, “Maintenance
of discovered association rules: When to
update?,” Proceedings of the DMKD, 1997, pp.
1-14.

[26] X. Wei, Y. Ma, F. Zhang, M. Liu and W. Shen,
“Incremental FP-Growth mining strategy for
dynamic threshold value and database based on
MapReduce,” Proceedings of the 2014 IEEE
18th International Conference on Computer
Supported Cooperative Work in Design
(CSCWD), Hsinchu, 2014, pp. 271-276. DOI:
10.1109/CSCWD.2014.6846854

[27] M.J. Zaki and C.-J. Hsiao, “CHARM: An
efficient algorithm for closed itemset mining,”
Proceedings of the 2002 SIAM International

Conference on Data Mining, 2002, pp. 457-
473.

[28] M. Riondato, J.A. DeBrabant, R. Fonseca, and
E. Upfal, “PARMA: a parallel randomized
algorithm for approximate association rules
mining in MapReduce,” Proceedings of the
21st ACM International Conference on
Information and Knowledge Management,
2012, pp. 85-94.

Ahmed Sultan Al-Hegami, a
Professor at the Faculty of Compu-
ters and Information Technology,
Sana’a University, Yemen. His
research interest includes artificial
intelligence, machine learning, big
data, temporal databases, real time
systems, data mining, and know-

ledge discovery in databases.

Hussein Alkhader Alsaeedi, PhD
scholar at the University of Science
and Technology of Yemen. He is a
lecturer in Data Mining at the
Department of Computer Science,
University of Science and Tech-
nology,Yemen, Sana’a. He received
his Master’s Degree in Computer

Information Systems from the Arab Academy,
Sana'a.

