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Abstract: Association rule mining plays a very important role in the distributed 
environment for Big Data analysis. The massive volume of data creates 
imminent needs to design novel, parallel and incremental algorithms for the 
association rule mining in order to handle Big Data. In this paper, a framework is 
proposed for incremental parallel interesting association rule mining algorithm 
for Big Data. The proposed framework incorporates interestingness measures 
during the process of mining. The proposed framework works to process the 
incremental data, which usually comes at different times, the user's important 
knowledge is explored by processing of new data only, without having to return 
from scratch. One of the main features of this framework is to consider the user 
domain knowledge, which is monotonically increased. The model that 
incorporates the users’ belief during the extraction of patterns is attractive, 
effective and efficient. The proposed framework is implemented on public 
datasets as well as it is evaluated based on the interesting results that are found. 
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1. INTRODUCTION 

Recent advances in digital data collection and 
data acquisition technologies have opened new 
avenues to acquire and store increasingly massive 
volumes of data. This rapid growth of data leads to 
several considerable issues such as storage, security, 
scalability, and extraction of interesting knowledge 
which are difficult to handle using conventional 
techniques, methods, and tools. Data is useful only if 
it can be interpreted, analyzed and if a conclusion 
can be drawn from them [1-3]. 

Big Data mining refers to finding extraction 
techniques that are performed on Big Data. Big Data 
extracts and retrieves interesting patterns from a 
massive volume of data [4]. Association rule mining 
plays a very important role in a distributed 
environment in Big Data analysis [5]. 

Although many efficient algorithms have been 
developed to extract association rules, traditional 
algorithms do not work well on Big Data [6-9]. The 
main drawbacks with such algorithms are that they 
don’t consider the data size and the time when the 

data arrives and therefore build a model in batch 
manner. In contrast, incremental algorithm 
constructs and refines the model as long as new data 
arrives at different times [10-13]. 

The aim of this paper is to propose a framework 
for incremental parallel mining of interesting 
association rules for big data. One of the main 
advantages of the proposed framework is to handle 
the time changing big data and user domain 
knowledge. This is useful when many datasets arrive 
at different times or from a distributed environment. 
Certainly, it is desirable to update the discovered 
patterns each time new data arrives. The incremental 
and parallel nature of the proposed framework 
makes it valuable to extract interesting patterns at a 
current time with regard to the previously discovered 
patterns, more willingly than comprehensively 
extracting all patterns. 

The parallel and incremental association rules 
algorithms that incorporate the users’ domain 
knowledge during the extraction of patterns are 
attractive, effective and efficient for the knowledge 
discovery in database (KDD) process. 
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2. RELATED WORKS 

Frequent itemsets mining algorithms are such as 
Apriori method [14] and Tree method [15]. Also 
Parallel frequent itemsets mining algorithms are 
based on Apriori methods [14] such as in [6-, 7, 16]. 
They are categorized as count distribution (e.g., 
parallel data mining (PDM) [6], fast parallel mining 
[7]), and data distribution (DD) [17]. The 
assumptions of these approaches are that each 
processor of a parallel system calculates the local 
support counts of all candidate itemsets. Then, all 
processors compute the total support counts of the 
candidates by exchanging the local support counts. 
Other parallel frequent itemsets mining algorithms 
are based on Tree methods [15]. For example, 
Parallel FP-Growth algorithm (PFP-Growth) which 
is based on the clustered system [18], load balanced 
parallel FP Growth algorithm [19], an efficient 
parallel algorithm using message passing interface 
on a shared-nothing multiprocessor system [9], and 
Parallel FP-Growth algorithm to mining frequent 
patterns [8]. PFP algorithm makes use of the 
MapReduce parallel programming model for the 
purpose of analysis and mining of data [8, 20]. It 
splits the database into small chunks and then uses 
the MapReduce in three phases to count values, 
group items, and build tree, and eventually integrates 
as well as combines the results of the previous 
phases. The main drawbacks of PFP-Growth are that 
it does not work on an incremental database and 
doesn’t use any subjective measure of 
interestingness. Many works have been conducted 
for developing algorithms based on mining 
incremental association rules [21-25]. The main 
hypothesis of these algorithms is to update the 
discovered model when new data stream arrives. In 
[24], DEMON algorithm is proposed to handle the 
evolving data more effectively and efficiently. In 
[25], DELI algorithm is proposed for monitoring the 
environment changes of the data stream. It makes 
use of statistical methods for the updating process. 
DELI algorithm uses a sampling method to estimate 
the support counts using an approximate 
upper/lower bounds on the number of changes in the 
newly discovred association rules. As the low bound 
gets smaller, the changes of the association rules get 
smaller, therefore the model maintenance is not 
required. Although these algorithms are incremental, 
they don’t reuse the previously discovered 
knowledge when new data arrive at new time 
instance. In [22, 23] a Fast UPdate (FUP) algorithm 
is proposed which is incremental in nature for 
mining association rules in huge databases. It works 
by scanning the database to verify whether there are 
large itemsets or not. FUP algorithm is proposed to 
compute the large itemsets in the updated database. 

The main purpose of this algorithm is to solve the 
efficient update issue of association patterns in the 
updated database. The algorithm is extended to 
FUP* and FUP2 that scan the database kth time. In 
[26] Paralle incremental FP-Growth (PIFP-Growth) 
is proposed for improvement PFP algorithm [8] to 
solve the problem of an incremental database. PIFP 
Growth is based on MapReduce [20] for parallelized 
incremental mining. The drawbacks of these 
algorithms are the following ones: they have many 
stages that are time consuming and perform 
MapReduce several times, for instance, PFP uses 
MapReduce in three stages out of seven stages while 
PIFP uses MapReduce in four stages out of seven 
stages. In addition, both algorithms don’t use any 
subjective measure of interestingness. The novelty 
measure of discovered patterns is proposed in [10-
12]. It is quantified with respect to known 
knowledge and it eliminates the patterns that are not 
interesting from the user’s point of view. In our 
work, we take advantage of the novelty measure of 
interestingness proposed in [10-12]. Although PFP 
and PIFP are proposed to deal with parallel and 
incremental Big Data mining, both approaches are 
based on traditional FP Growth [15] and make use of 
MapReduce programming model. Our framework 
can use any frequent pattern mining algorithm which 
uses MapReduce. It is similar to PFP and PIFP as it 
uses MapReduce to achieve parallelism but it differs 
from PIFP in its incremental manner. The major 
differences between the proposed framework and 
PFP and PIFP are:  
 PFP uses MapReduce in three out of its five 

stages and PIFP uses MapReduce in four out of 
its seven stages while the proposed framework 
uses MapReduce only twice out of its four 
stages. 

 Both PFP and PIFP don’t consider the previous, 
discovered patterns when new data arrives while 
the framework updates the model with novel 
patterns as new data stream arrives. 

 The PIFP resets the threshold value as new data 
arrives and updates the old local tree while our 
approach constructs different local tree as new 
data arrives and generates new frequent items. 

 To achieve parallelism, PFP and PIFP divide up 
items into groups and perform Generating group 
dependent transactions to build trees and extract 
frequent items while the framework uses 
MapReduce to construct trees directly from 
transactions after pruning the infrequent items 
that don’t meet the minimum support criterion. 

Even though PFP and PIFP are based on FP-
Growth which includes two steps, the framework 
adds extra steps in order to update the model as new 
data arrives and guarantees that the discovered 
patterns are interesting. 
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The rest of the paper is organized as follows. In 
section 3, we present the problem statement. A 
Framework for Incremental Parallel Mining of 
Interesting Association Patterns is presented in 
section 4. In section 5 a detailed example is 
illustrated. In section 6, the experimental results are 
presented and the conclusion is given in section 7. 

 

3. PROBLEM STATEMENT 

At time instance ti, an incremental Big Data Di,  
i {1,…,n}, is collected. Suppose, Di is partitioned 
into m parts, where �� ⊂ �. Each ��� �ℎ��� 1 ≤

� ≤ � is saved on processor ��, and F-List is 

generated to construct local trees FP-Treem. 
Subsequently, frequent items are extracted and 
association rules are generated to form model Ti . 

Let Mi and Mi+1 be two models discovered at time 

instances ti and ti+1 from datasets 
i

j

j 1

D

  and 

i 1

j

j 1

D





respectively. The objective is to update Mi to Mi+1 

using Di+1 and Mi. Mi is the model discovered at time 
ti now represents the previously discovered 
knowledge (PDK). Mi+1 is the up-to-date model 
obtained by adding interesting patterns discovered 
from Di+1. This is achieved by constructing a model 
Ťi+1 from Di+1 such that association patterns in Ťi+1 

have user specified degree of interestingness with 
respect to the rules in Mi. Subsequently, Ťi+1 is used 
to update Mi to Mi+1. 

 
4. A FRAMEWORK FOR INCREMENTAL 

PARALLEL MINING OF INTEREST 

In this paper, we present a framework that 
efficiently discovers interesting patterns from Big 
Data. It makes use of MapReduce [20] to deal with 
data in a parallel manner. Our proposed framework 
is similar to the PFP [8] algorithm except that each 
rule generated from frequent itemset list in PFP may 
not be interesting. At time Ti, our framework 
computes the novelty aspect of interestingness 
measure with respect to the existing model MTi and 
pruning uninteresting patterns that are not significant 
in the current data set. The framework is shown in 
Fig. 1. It comprises 3 phases namely, building local 
tree, finding frequent itemset, and building 
incremental interesting model. These phases are 
explained in the following subsections: 

 

4.1 BUILDING LOCAL TREES 

In this phase, Big Data is divided into m small 
parts, where m can be set manually, among P 
processors using the MapReduce parallel 
programming model for the purpose of analyzing 
and mining data. Each P MapReduce first, reads 

each small part to achieve parallel count and the 
integrated count results into a frequent list called F-
List, then, it sorts the items of F-List in descending 
order. Finally, MapReduce performs the second 
iteration to read each small part and build a local FP 
-Tree. The phase outputs are FP-Treem. The 
following steps are required to build local trees and 
the algorithm is presented in Algorithm 1. 

1. Set m, Define and Clear F – List. 
2. Division of Di into m parts where 1 ≤ j ≤ m, 

and save each dpj on different processor 
called P. 

3. First scan each Transaction T into pj to 
compute supports for all items in parallel 
manner. 

4. Integrate the count results into F-List. 
5. Sort items of F-List in descending order. 
6. Second scan each Transaction T into pj: 

 Sort items in descending order of T 
based on F- List. 

 Building the local tree called 
localTreej as algorithm FP-Tree in 
[15]. 

7. Return localTreej 

 
Algorithm 1: Building Local Trees 

 
 

Procedure: Building LocalTrees (�� ,�) 
Set of m; 
Define and clear F-List : F []; 
Division of ��  into ��� �ℎ��� 1 ≤ � ≤ � 

Send ���to ��different  

In each �� 

F []Mapper(���) 

Sort F []; 
Call Reduce(��� ,F[],�) 

Procedure: Mapper(���); 

{ 
Define and clear � − ��������� = ���[] 

foreach Transactions � in dP do 
foreach Item a in T do 
��� [a] ++; 

end 
end 
return ���; 

} 
Procedure: Reduce(��� ,F[]) 

{ 
Define and clear the root of ����������: r; 

foreach Transactions T in ���do 

Make �ordered according to F ; 
Call Construct Tree(�; r); 
end 
Call Finding Frequent itemset(r,F[]) 
} 
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Figure 1 – The Framework for Incremental Parallel Mining of Interesting Association Patterns for Big Data 

 
4.2 FINDING FREQUENT ITEMSETS 

In this phase, the FP-Treem generated in the 1st 
phase is taken by Mappers which connect trees with 
each other from different nodes. Subsequently, the 
Reducers extract the frequent itemset from trees, and 
save them in memory temporarily. The output of this 
phase is the list of frequent itemset. The following 

steps are required to find the frequent itemsets and 
the algorithm is presented in Algorithm 2. 

1. Divide F-list to number of groups 
(mGroups) called G-list. 

2. Each G-list is sent to different processors 
each of which has MapReduce. 

3. For every processor, the items of descending 
order of F-list (from that last item to first 
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item) are examined to find out whether these 
items belong to G-list or not. 
a. Mapper reads all paths of each item in 

different FP Trees and extract l 
temporary local F-list for each item. 

b. Reduce constructs temporary local tree 
for each item based on their paths and 
temporary local F-list. 

c. For every temporary local tree, Reduce 
extracts local frequent items for the items 
with unique paths, otherwise, the 
previous steps are repeated. 

4. Merge all local frequent item list on 
different processor to form frequent items. 

 
Algorithm 2: Finding Frequent Itemset 

 
 

4.3 BUILDING INCREMENTAL 
INTERESTING MODEL 

In this phase, association patterns are extracted 
from the frequent itemsets. These patterns are 
evaluated using confidence measure and prune the 
patterns that do not satisfy this criterion resulting in 
a set of strong association patterns which are 
subjected to the novelty criterion [11] with the aim 
of deciding either these patterns are interesting or 
not. This phase takes into consideration the existing 
model Mi representing the known association rules 
and consequently resulting in discovering of Mi+1. 
For each frequent itemsets, only novel rules are 
extracted and used to update the model Mi+1. We 
compute novelty degree rule with the novelty 
measure (NM), (NM) presented in [10] as shown in 
equation 1: 

�� =
(|�1| + |�2| − 2 ∗ �) + ∑ �(��

�, ��
��

��� )

|�1| + |�2|
,   (1) 

 
where S1 and S2 are two conjunct sets with 
cardinalities |S1| and |S2| respectively. K = the pairs 
of compatible conjuncts between S1 and S2. ���

�, ��
� � 

is the ith pair of compatible conjuncts. The algorithm 
computes novelty measure (NM) at every stage of  
rules generation to determine whether a rule is likely 
to lead to an interesting rule, or not. A rule becomes 
a candidate for next stage rule generation if its 
novelty measure (NM) value is 1 or the relevance 
factor of the closest rule in M is less than the 
relevance factor threshold value. An interestingness 
value of 1 of the partial temporal rule indicates that 
this rule is unlikely to expand to any existing 
temporal association rule. The following steps are 
required to build the incremental interesting model 
and the algorithm is presented in Algorithm 3. 

1. Generate association rules R from frequent 
item list. 

2. Compute the Confidence of the rule (R) 
3. If Confidence (R)>= � Go step 4 else Go step 

1 
4. Compute the novelty measure (NM) of R with 

respect to Model Mi 
5. If NM(R)> Φ Go step 6 else Go step1 
6. Update Model ��/���� 
 

5. A DETAILED EXAMPLE 

For better understanding of our framework, 
consider a Big Data D arrived at time T1, denoted by 
D0. It contains 6 transactions as shown in Table 1. 
Suppose, D0 is partitioned into 3 parts for the sake of 
parallel mining, i.e., m = 3, each of which is called 
dPi, i = 1; 2; 3 whereas �� ⊂ �. Table 2 shows the 
data in every partition which has to be sent to 
different computers Pi. The computers Pi in turn 
computes support of its items by using Mapper and 
store the counts into f-list local. The following F-list 
local are generated from P1, P2 and P3 respectively:  
f − listL�= {A=1,B=2,C=1,D=2,E=1}, f − listL�= 
{A=2,B=2,C=1,D=2,E=1,F=1,G=1}, and f − listL�= 
{A=1,B=2,E=2,C=2,D=1,G=1}. 
 

Table 1. The transactions of D0 

ID Items 

1 A B C D 

2 B E D  

3 A B C D F 

4 A B E D G 

5 A B E C D 

6 B E G C 

 

Procedure: Finding Frequent itemset 
(Trees local, F-List, σ) 
Division of F-List in to m  Groups G-List 
Send G-List to P different  
In each P different  
For(i=F-List.Size-1;i=0;i--) 
{ 
a: F-List[i] 

If (a⊏G-List) 
{ 

               Mapper Read all paths in Local Trees 
to F- List local Temp of a Reduce 
building      TreelocalTemp of item(a) 

If (TreelocalTemp of item (a) is single path) 
                      { 

Output(Frequent Items list Local   
Temp) 

} 
} 

} 
Integration Frequent items local lists to 
Frequent Items List 
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Table 2. D0 into 3 parts 

ID Items 
 Ordered 

frequent 
items 

1 A B C D ��� B D A C 

2 BE D B D E  
3 A B C D F ��� B D A C  
4 A B E D G B D A E  
5 A B E C D 

��� 
B D C E 

6 B E G C B C E  

 
Subsequently, the f-local lists are merged into 

cumulative list called F-List as follows: F-list = 
{A=4, B=6, C=4, D=5, E=4, F=1, G=2}. Now if we 
consider that the minimum, support � =50%, the 
items G and F will be eliminated from F-list. Then, 
F-list is sorted on the basis of support in descending 
order as follows: F-list= {B=6,D=5,A=4,C=4,E=4}. 
The final F-list represents the reference for every Pi 
where local trees are constructed using Reduce. 
During construction of local trees, the items in every 
transaction are sorted in descending order according 
to their position in F-list and ignore items which are 
not in F-list as shown in the third column of Table 2. 
The ordered frequent items are used to construct 
local trees in which the roots are set to null. The 
local trees are constructed using FP-growth 
algorithm in every computer Pi as shown in Fig. 2. 
These local trees and F-list, which are maintained in 
the memory of Pi by using MapReduce, are the 
outcome of the first stage of the proposed 

framework. As the FP-Growth makes use of bottom-
up strategy, the last item in F-list is considered first 
which is E in our example. All paths of E are 
examined in all local trees resulting the following: 
dP1:[D,B:1], dP2:[A,D,B:1], dP3[C,D,B:1]. These 
paths are used to generate temporary F-list using 
Mapper as follows: F-Listnew-
E=[D=3,B=3,A=1,C=1]. Then, the items C and A 
are removed as they don’t meet the support criterion 
and F-Listnew-E are reordered in descending order 
and also reorder the paths according to F-Listnew-E. 
Finally, the frequent items for item E are extracted 
using Reduce as the path is unique. The next item 
which is considered is C in which all paths of this 
item are examined resulting in the following: 
dP1:[A,D,B:1], dP2:[A,D,B:1], dP3[D,B:1], [B:1]. 
Then, Mapper is used to generate a temporary F-list 
for the item C contains F-listnew-
C=[D=3,B=4,A=2]. Note that the item A will be 
removed due to minimum support criterion. Finally, 
the frequent items are generated as the path of the 
item C is unique. Similarly, the same process is 
executed for the remaining items and all frequent 
items are merged together which form the outcome 
of this stage. In our example, the frequent items list 
is = {[B,D,E:3] and [A,B,C,D:3]}. The next stage is 
to generate association rules from frequent item sets 
generated in the previous stage. Table 3 shows the 
corresponding set of discovered association rules 
assuming that the confidence threshold value is 0.6 
for the frequent items {B,D,E:3}. 

 

Table 3. The Association Rules Discovered at Time T1 

Novelty>50 
Add to PDK 

Novel � 
Compare 
with Rule 

Accept 
Confidenc

e 
Association 

rules 
Rule 
No. 

------- ------- ------- No 3/6=.50 BD R1 

Yes 
0 + 1 − 2 ∗ 0 + 0 

0 + 1
= 1 Null Yes 3/5=.60 DB R2 

------- ------- ------- No 3/6=.50 BE R3 

Yes 
2 + 2 − 2 ∗ 1

2 + 2
= .5 R2 Yes 3/4=.75 EB R4 

Yes 
2 + 2 − 2 ∗ 1 + 0 

2 + 2
= .5 R2,R4 Yes 3/5=.60 DE R5 

Yes 
2 + 2 − 2 ∗ 1 

2 + 2
= .5 R2,R4,R5 Yes 3/4=.75 ED R6 

-- ------- ------- No 3/6=.50 BDE R7 

No 
2 + 3 − 2 ∗ 2 

2 + 3
= .2 R5 Yes 3/5=.60 BDE R8 

No 
2 + 3 − 2 ∗ 2 

2 + 3
= .2 R6 Yes 3/4=.75 BED R9 

No 
2 + 3 − 2 ∗ 2 

2 + 3
= .2 R5 Yes 3/5=.60 DBE R10 

No 
2 + 3 − 2 ∗ 2 

2 + 3
= .2 R2 Yes 3/4=.75 DEB R11 

No 
2 + 3 − 2 ∗ 2 

2 + 3
= .2 R2 Yes 3/4=.75 EBD R12 



Ahmed Sultan Alhegami, Hussein Alkhader Alsaeedi / International Journal of Computing, 19(1) 2020, 106-117 

 

 112

 

Figure 2 – The Local Trees on Different Pi 

Notice that in Table 3, the rules R1, R3, and R7 
are eliminated due to confidence criterion which is 
set to be 60%.  

The remaining rules are subjected to novelty 
measure which is set in the example to be %50. As 
the data arrived at time T1, no comparison will be 
made against Model M1 because there are no novel 
rules discovered so far at time T1. The last two 
columns of Table 3 show the computation of novelty 
degree of the rules and therefore the rules which are 
not novel are eliminated as they are uninteresting. 
Subsequently, the model M1 is updated as shown in 
Fig. 3. Now suppose another data D1 arrives at time 
T2 as shown in Table 4. The same stages are 
repeated taking into consideration the novel rules in 

the model M1. Table 5 shows the corresponding set 
of the discovered association rules assuming that the 
confidence threshold value is 0.6 for the frequent 
items {B,C,E : 2}. Notice that in Table 5, the rules 
{R13,R17,R18} are found to be novel and hence the 
model M1 is updated incrementally to form model 
M2 as shown in Fig. 4. 

Table 4. The transactions of D1 

ID Items 
1 A C D 

2 B C E 
3 A B C E 
4 B E 

 

Table 5. The Association Rules Discovered at Time T2 

Novelty>50 
Add to PDK 

Novel � 
Compare 
with Rule 

Accept Confidence 
Association 

rules 
Rule 
No. 

Yes 
2 + 2 − 2 ∗ 1 

2 + 2
= .5 R2,R4 Yes 2/3=.67 BC R13 

No 
2 + 2 − 2 ∗ 2 

2 + 2
= .0 R13 Yes 2/3=.67 CB R14 

No 
2 + 2 − 2 ∗ 2 

2 + 2
= .0 R4 Yes 2/2=1 BE R15 

No 
2 + 2 − 2 ∗ 2 

2 + 2
= .0 R4 Yes 2/3=1 EB R16 

Yes 
2 + 2 − 2 ∗ 1 

2 + 2
= .5 R5,R13 Yes 2/3=.67 CE R17 

Yes 
2 + 2 − 2 ∗ 1 

2 + 2
= .5 R13 Yes 2/3=.67 EC R18 

No 
2 + 3 − 2 ∗ 2 

2 + 3
= .2 R4 Yes 2/3=.67 BCE R19 

No 
2 + 3 − 2 ∗ 2 

2 + 3
= .2 R4 Yes 2/2=1 CEB R20 

No 
2 + 3 − 2 ∗ 2 

2 + 3
= .2 R4 Yes 2/3=.67 CBE R21 

No 
2 + 3 − 2 ∗ 2 

2 + 3
= .2 R13 Yes 2/3=.67 BEC R22 

No 
2 + 3 − 2 ∗ 2 

2 + 3
= .2 R13 Yes 2/3=.67 EBC R23 

No 
2 + 3 − 2 ∗ 2 

2 + 3
= .2 R17 Yes 2/2=1 BCE R24 
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Figure 3 – Model M1 Figure 4 – Model M2 

 
6. EXPERIMENTAL STUDIES 

In this section, experimental results are 
presented, in particular those related to the proposed 
framework performance. We conducted two 
experiments, the first experiment is shown in section 
6.1 and the second experiment is in section 6.2. The 
proposed framework and other algorithms are 
written in Java and implemented on Hadoop. All 
experiments were conducted on a PC with Intel Core 
i5 2.6 GHz and 4G main memory, running on 
Microsoft Windows 10 64-bit. The experiments are 
conducted using real-life datasets available at 
http://kdd.ics.uci.edu. The datasets are considered as 
evolving with time, and divided up into three 
increments: D1, D2, and D3 assumed that they have 
arrived at times T1, T2, and T3  respectively. Table 6 
shows the characteristics of these datasets. 

Table 6. Dataset Characteristics 

Dataset Time 
Size of 
Dataset 

No of 
items 

Items 
densit

y 

Kosarak 
T1 330001 31783  8 
T2 330001 32098  8 
T3 330000 32218 8 

Accidents 
T1 113395 395 33 
T2 113394 398 33 
T3 113394 385 33 

T40I10D10
0K 

T1 33334 942 39 
T2 33333 941 39 
T3 33333 942 39 

T10I4D100
K 

T1 33334 868 10 
T2 33333 870 10 
T3 33333 869 10 

 

6.1 FIRST EXPERIMENT 

In this experiment, the performance of the 
proposed framework is compared to the FP-Growth 
algorithm, PFP-Growth, and PIFP. Since the number 
of discovered rules of the FP-Growth algorithm, 
PFP-Growth and PIFP are similar, we perform the 
comparison to the FP-Growth algorithm only.  

Table 7. The discovered rules on Kosarak dataset 
using FP-Growth and T1; T2; T3 in our Framework 

M
in

im
u

m
  s

u
p

p
or

t 
�

 

M
in

im
u

m
 

co
n

fi
d

en
ce

 �
 

FP-
Growth 

Algorithm 

Our framework 
with Novelty 

threshold 
Φ=0.50 

Discover-
ed  rules 

Novel  rules 

T1+T2 
+T3 

T1 
T1+T

2 
T1+T2

+T3 

0.004 

0.60 5789 1200 1478 1567 
0.65 5384 1168 1392 1452 
0.70 5061 1034 1203 1237 

0.006 

0.60 2303 478 566 582 
0.65 2180 453 531 548 

0.70 2034 423 487 502 

0.008 

0.60 981 213 253 264 
0.65 923 200 238 246 
0.70 843 185 218 225 

0.010 

0.60 577 133 152 158 
0.65 537 125 142 146 
0.70 492 115 130 133 

0.012 

0.60 372 87 98 99 
0.65 344 81 91 91 
0.70 309 74 82 82 
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The performance is measured in term of the 
number of discovered rules with various thresholds 
of minimum support and confidence and fixed 
novelty threshold Φ = 0.50. The dataset used is 
(Kosarak) and it is considered evolving with time 
and partitioned into three parts representing times 
T1; T2; T3 respectively as shown in Table 6. As we 

can notice in Table 7, the number of discovered 
rules is reduced in the proposed framework 
compared to FP-Growth in all various minimum 
support and confidence. 

Fig. 5, Fig. 6, and Fig. 7 show the reduction of 
the discovered rules using (Kosarak) dataset at T1,T2, 
and T3 times. 

 

 

Figure 5 – The Comparison between FP-Growth and the Proposed Framework in term of number of discovered 
rules using (Kosarak) dataset 

 

 

Figure 6 – Discovered rules and Novel Rules for dataset at T2 
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Figure 7 – Discovered rules and Novel Rules for dataset at T3 

6.2 SECOND EXPERIMENT 

The objective of the second experiment is to 
show the effectiveness of our framework in reducing 
the number of discovered rules against PIFP 
algorithm. It is expected that the number of 
discovered rules keeps on decreasing over the time. 
We work with four datasets and considered these 
datasets as evolving with time, and partitioned them 
into 3 increments: D1, D2 and D3 mined at times T1, 
T2 and T3 respectively. For each dataset used, the 
minimum support � and minimum confidence � are 
fixed and Novelty threshold Φ varies. It is observed 

that the number of interesting rules decreases in our 
framework in contrast to the number of rules 
discovered by PIFP algorithm at T1,T2, and T3. 
Intuitively, the interesting rules discovered by our 
framework at time T1 is no more interesting at time 
T2 and the interesting rules discovered at time T2 is 
no more interesting at time T3. Consequently, as the 
value of Novelty threshold Φ increases, the number 
of discovered interesting rules decreases at each time 
as per our expectations. The results are demonstrated 
in Table 8. 

 
Table 8. The Comparison between PIFP and the Proposed Framework in term of number of discovered rules 

using many datasets with various novelty threshold Φ 
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Our framework 

T1 T2 T3 T1 T2 T3 

Kosarak 0.004 0.5 7049 6808 6906 

0.5 1396 656 256 
0.6 1055 496 193 
0.7 983 462 180 
0.8 932 438 171 
0.9 831 391 152 

Accidents 0.3 0.8 4422352 4413405 4491707 

0.5 884504 318422 89158 
0.6 751834 270660 75785 
0.7 530712 191056 53496 
0.8 309612 111460 31209 
0.9 221132 79607 22290 

T40I10D100K 0.025 0.2 625 625 630 

0.5 207 74 21 
0.6 194 70 20 
0.7 157 56 16 
0.8 125 45 13 
0.9 107 38 11 

T10I4D100K 0.0005 0.3 1480 1295 1481 

0.5 508 183 51 
0.6 370 133 37 
0.7 276 99 28 
0.8 235 85 24 
0.9 156 56 16 
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7. CONCLUSION AND FUTURE WORK 

In this research, we proposed a framework for 
incremental parallel interesting association rule 
mining for Big Data. The proposed approach 
incorporates interestingness measure during the 
process of mining. It makes a self-upgrading model 
that utilizes novelty criterion to reflect the user 
subjectivity and extract patterns, incrementally, from 
datasets arrive at different points in time. Our future 
work includes enhancing the framework to create an 
association system in which the model can adapt to a 
data stream environment. 
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