
M. Litvinova, O. Dudchenko, O. Shtanko, S. Karpova / International Journal of Computing, 19(2) 2020, 216-223

 216

USING THE TECHNICAL EXPERIMENT IN THE COMPUTER
SIMULATION TRAINING FOR PROSPECTING SOFTWARE ENGINEERS

Maryna Litvinova, Oleg Dudchenko, Oleksandr Shtanko, Svitlana Karpova

Department of Software Engineering, Physics and Mathematics, Kherson branch, Admiral Makarov National University

of Shipbuilding, Ushakov Avenue, 44, Kherson, 73022, Ukraine

lmb965@gmail.com, kbnuos@gmail.com, sadmar954@gmail.com, sokarpova@gmail.com, http://www.kb.nuos.edu.ua/

Paper history:

Received 11 October 2019
Received in revised form 18 December 2019

Accepted 17 February 2020
Available online 14 June 2020

Keywords:

computer simulation package;
training;

technical experiment;

models debugging;
software engineer.

Abstract: In present work, a new technology of the prospective software

engineers training in computer simulation is described. The technology provides

carrying out comparative analysis of opportunities, productivity, and the

accuracy of the reproduction of different computer simulation packages (CSP)

on the basis of direct performance of the technical experiment results. Training

process includes the principal stages: carrying out of the independent technical

experiment; its simulation using of various CSP; comparison of the result of the

tested CSP to the results of the experiment; models of debugging; detection of

advantages and shortcomings of each involved CSP. As an example, in Open

Modelica and Mathcad packages analysis of simulation opportunities of a

problem of the motion of the body thrown at an angle to the horizon is carried

out. As a result, assessment of the efficiency of each CSP used for the solution

of an objective is made. When training prospective software developers the

offered technology is the basis for further development of the modern standard in

the field of computer simulation.

Copyright © Research Institute for Intelligent Computer Systems, 2020.

All rights reserved.

1. INTRODUCTION

Currently there are more than ten popular

computer simulation packages (CSP), each of

them is developed in its own way, increasing the

functionality demanded in practice [1, 2]. During

their development the certain algorithms for

solving scientific and technical tasks are

implemented and can optimally satisfy the needs

of users [3]. However, computer simulation

training for both developers and qualified users

remains difficult (often heuristic) long process.

The lack of CSP standards [4] leads to the fact

that each development model environment is

formed according to its own library of standard

models. These are always unique collections

which are of great interest for training in

simulation, for research of packages’

opportunities, productivity and accuracy of

offered solution. At the same time comparison

and converting of models from one environment

to other often shows the intensive manual process

which is difficult to formalize [5]. Moreover,

having even the same accurate written

mathematical model in different CSP it is difficult

to guarantee (in case of model is not trivial) that

equivalent program implementation of this model

is loaded into a package. Impossibility to read the

source code CSP does not allow us to compare

algorithms, to make analysis of different

implementations efficiency. All this stuff is

possible for indirect analyzing – by the overall

performance of the software. As a result, the use

of standardized models which are not completely

corresponding to real installations can lead to

omission of essential results of an experiment or

to false results of its processing [6].
High cost of simulation packages including

closed program source code created by

developers of the simulation environment in

terms of training does not give a chance to

familiarize with the CSP inner pattern and those

problems that the simulation tool must cope

with. It is not always possible to see which

representation the package works during

computing@computingonline.net

www.computingonline.net

Print ISSN 1727-6209

On-line ISSN 2312-5381

International Journal of Computing

mailto:kbnuos@gmail.com
mailto:sokarpova@gmail.com
http://www.kb.nuos.edu.ua/

M. Litvinova, O. Dudchenko, O. Shtanko, S. Karpova / International Journal of Computing, 19(2) 2020, 216-223

 217

experiment with, which settings trigger

particular solution method. Therefore, the

choice of the optimal simulation environment

during considering the specific objective by

software (SW) engineer is defined in general

according to the description of package

opportunities from the developer.

Under production conditions this problem,

undoubtedly, is fixed by comparison of results

based on simulation to the data received from

experimental installation. But more often the

production experiment is conducted by one person

and its simulation – by another. SW engineer deals

only with an ideal object with a limited set of the

parameters provided by the experimenter. He

cannot evaluate a contribution of all essential

factors which have an impact on model’s work. At

the same time the specialist who is responsible for

the experiment is not always competent in

providing data for assuring optimal process of

simulation (is not familiar with simulation

environment opportunities). As a result, the model

of the user can lead to an incorrect mathematical

system which cannot obviously be solved [7].

Therefore, the SW developer must be competent

in order to provide proper technological

experimental set up and to assess its results for

comparison opportunity analysis, performance

and accuracy of solution’s reproduction in

different simulation packages.

Comparative analysis of various CSPs is often

used in practice. Such an analysis was implemented

in [8] to answer the questions that are stumbled upon

when using any specific simulation package (more

than 50 different packages) in the market or in the

academic arena. In the work [9] the main results and

conclusions of an international benchmark study on

the performance of computer simulation codes are

presented (based on the prediction of parametric

rolling of ships in waves). The comparative studies

of various packages for modeling discrete events is

presented in the research [10] (a literature review

was conducted, in which 45 papers were considered

relevant for this research). All the investigations

described have two main purposes: identify CSP

user problems and get information to improve CSP.

However, the development of SW engineers’

competence to the implementation of a comparative

analysis of modeling packages based on a real

technical (production) experiment has not been

considered anywhere.

In this work we are offering approach to

develop the prospecting SW engineers’

competence based on providing of a technical

experiment during computer simulation classes.

Nowadays, digital support of educational process

in physics, mathematics, electrical engineering

and other engineering subjects is methodically

provided and widespread in Technical

Universities [11-13]. At the same time the

approach to competence development in computer

simulation using technical experiment is not

practically applied either in universities in

Ukraine or in other countries [14-16].

The relevance of the study is confirmed by the

data [17] on motivation in software development.

53 relevant documents were selected for data

abstraction and analysis. As a result, it was found

that understanding the relationship of the

modeling package with the real object is an

essential factor in the motivation of SW engineers.

2. EXPERIMENT’S DESCRIPTION

Usually during computer simulation training

the student receives different tasks which he has

to solve within some environment of simulation.

We offer the inverted approach – investigation of

one task in several simulation environments and

comparison of their results based on the

conducted technical experiment. At the beginning

of work it is presumed that the student is familiar

with the internal device of the package with

automatically solved problems according to CSP.

The process consists of the following stages:

1. Independent executing of the technical

experiment;

2. Simulation of this experiment with the use of

several CSPs;

3. A comparison of the results obtained using

CSP with the results of the technical experiment,

search of the reason of their possible

discrepancies, debugging models;

4. A comparison analysis of the simulation

results, detection of advantages and disadvantages

of each involved CSP.

As an example, modification of the task which

is the most widespread computing experiment

(available at most libraries of the CSP standard

models) – flight of the body thrown at an angle to

the horizon is considered.

2.1 SETTING UP THE TECHNICAL
EXPERIMENT

The corresponding installation for providing

experiment in laboratory can be viewed in Fig. 1.

It consists of: the gun (1) installed under an

adjustable corner θ to the horizon which has the

ball bullet located in; the disk shaped rotary

pendulum (2) with the mirror (3) located on its

axis; the permanently attached laser which has

λ=650 wavelength nanometer (4) and the beam

falling on the mirror; the rulers (5) with the MD-3

M. Litvinova, O. Dudchenko, O. Shtanko, S. Karpova / International Journal of Computing, 19(2) 2020, 216-223

 218

Figure 1 – The laboratory installation for providing the experiment: 1 – gun; 2 – rotary pendulum;

3 – mirror; 4 – laser; 5 – ruler; 6 – photodiodes; 7 – electric logger; 8 – computer

photodiodes (6) which are linearly fixed along the
rulers’ length; the electric logger (voltmeter) (7)
connected to computer (8). Position of the
pendulum disk center on installation is leveled
with the initial position of the bullet in the gun
trunk. Radius of the pendulum disk is 0.2 m.
Degree of accuracy of gun’s slope angle is ±0.7°.
Speed of the bullet is 12 m/s. Y-axis and Z-axis
are seen in Fig. 1.

After the shot the bullet that has gone off at an
angle θ to the horizon gets to the pendulum placed
at a distance of L=1.2 m from the point of its
departure. As a result, the pendulum turns on the
corner β regarding axis Z. Value β is directly
proportional to distance from the spin axis to the
point of the bullet hit (h), i.e. to the position of the
bullet along to Y-axis, towards to departure point.

As the result of the pendulum turn under the
angle β reflected from the mirror, laser beam
deviates along the ruler on distance d. The signal
from the tape photodiodes located on beam
deflection border having discretization of 1 mm is
registered by the voltmeter. The background flare
of photodiodes on the registered wavelength has
significantly lower value than intensity of the
reflected laser radiation and does not influence on
experiment’s measure of inaccuracy.

Electric potential value received from
photodiodes shows which quantity from them was
lit as a result of beam deflection and allows us to

set the value of d. The value of h is determined

based on the graphical proportion between β, d
and h.

2.2 THE CHOICE OF THE COMPUTER
SIMULATION PACKAGES

For training simulation basics on practice, it is
possible to use different CSPs. The most popular

products are Model Vision Studium, Mathcad,
Matlab, Anylogic, OpenModelica, etc.
Capabilities of the most demanded visual
simulation packages aggregated according to a
number of works [6, 18, 19] are given in Table 1.

Table 1. Availability of the opportunities in the

visual simulation packages

 M
o

d
el

 S
o

rt
in

g

E
v

en
t

D
es

cr
ip

ti
o

n

D
if

fe
r
en

ti
a

l
A

lg
eb

ra
ic

E

q
u

a
ti

o
n

s
S

o
lv

er

In
d

ex
 R

ed
u

ct
io

n

P
h

y
si

ca
l

 S
im

u
la

ti
o

n

(t
ex

t
a

n
d

g

ra
p

h
ic

s)

O
n

li
n

e
v

is
u

a
li

za
ti

o
n

S
tr

u
ct

u
ra

l-
d

y
n

a
m

ic

a
n

a
ly

si
s

F
re

q
u

en
ci

y
 a

n
a

ly
si

s

Matlab - - + - - + + +

Simulink + + + - - + - +

Matlab/

Simulink

+ + + - - + + +

Simulink/

Stateflow

+ + + - - + - +

Simulink/

Simscape

+ + + + + + - +

Simulink/

Simscape/

Stateflow

+ + + + + + - +

Matlab/SL/SS/

Stateflow

+ + + + + + + +

ACSL + + + - - + - +

Dymola + + + + + + - -

MathModelica + + + + + + - -

Misilab + + + - + - + -

OpenModelica + + + + + - - -

SimulationX + + + + + + - +

AnyLogic + + + - - + + -

Model Vision

Studium

+

+

+

+

+

+

+

+

Scilab/Scicos + + + + + + + +

M. Litvinova, O. Dudchenko, O. Shtanko, S. Karpova / International Journal of Computing, 19(2) 2020, 216-223

 219

Majority of environments provide the convenient

graphic interface which allows us to quickly create

models. In case of training the simulation developer,

it looks like an efficient method (it is enough to

show which buttons of the interface should be

pressed, train to work with wizards setup). If the

learning material is presented more profoundly at a

higher level in order to enable the student to

understand in details features that the simulation

language can have, then it is useful to enable him to

describe models in a text starting from the lowest

level. In such format OpenModelica package is able

to provide training. At the same time, one should not

ignore capabilities of classical mathematical

simulation packages such as Mathcad. These both

packages (OpenModelica and Mathcad) that have

different principles of the simulation process

organization are selected for contrastive analysis of

the CSP’ opportunities based on the technical

experiment.

3. THE ANALYSIS OF SIMULATION
OPPORTUNITIES OF THE TASK IN THE

SELECTED CSP

3.1. THE POSSIBILITIES OF THE
MATHCAD PACKAGE

Bullet movement with the mass of m in the task

illustrated in Fig. 1 is pulled apart two components –

horizontal (the X-axis perpendicular to the disk

plane) and vertical (Y-axis). As the result, we get

and solve the system of differential equations (not

including air resistance).

;0
2

2

=m
dt

dx
 ;

2

2

mgm
dt

dy
−=

;cos00 oxx v
dt

dx
v == =

.sin00 oyy v
dt

dy
v == =

(1)

In Fig. 2 the numerical solution of this task in the

Mathcad package environment [20] through the

using of the Solve block is shown:

1 – “Restrictions” area; 2 – "Solver" area.

In this block the user fills “Restriction” field with

initial conditions (the bullet position and its speed at

initial timepoint with values h2 and y2 for

coordinates and m2 for its weight) and the

differential equations system. “Solver” area should

be filled with odesolve function that is built in

Mathcad returning the user functions (coordinates of

bodies in time) and describes the body movement

under gravity. Through simple conversions this

problem can also be solved analytically (via

symbols).

Figure 2 – The numerical solution to the task in the

Mathcad package environment

The system described in Fig. 2 can be easily

expanded by removing from the task a number of

limitations. It is possible to consider the movement

of a body taking into account air resistance, taking it,

for example, proportional to the cross-sectional area

of the bullet increased on environment specific

density (air) and on squared speed. We can take into

account the change in height of the gravity

acceleration values, air density, etc. It is also

possible to refuse a Cartesian coordinate system and

switch to polar coordinates, i.e. to take into account

the curvature of the Earth's surface but not the

parallelity of gravity vectors. In Mathcad package

there is also an opportunity to construct a trajectory

of the bullet movement that is displayed in Fig. 3 in

the diagram and to create animation (via the

website).

Figure 3 – Animation of the task in the Mathcad

package environment (θ=12°; units of measure on X-

axis – meters, on Y-axis – centimeters (10-2 m))

3.2 CAPABILITIES OF THE
OPENMODELICA PACKAGE

CSP OpenModelica uses the Modelica

language [21] that currently is one of the most

"advanced" languages for object-oriented

M. Litvinova, O. Dudchenko, O. Shtanko, S. Karpova / International Journal of Computing, 19(2) 2020, 216-223

 220

simulation. According to its capabilities it is coming

closer to such computing environments as Matlab

Simulink, Scilab-Xcos, having at the same time

much more convenient concept of the studied

block’s system. The UML (Unified Modeling

Language) is used for visual simulation. There is an

opportunity of automatic generation of the program

source code for the UML charts and inverse

transformation (refactoring).
In the considered task it is possible to define

dependence for value h at the bullet departure corner

(in this system – bodies). The array of class copies is

needed for conducting an experiment MotionXY:

Bodies: array [1..5] of MotionXY:= {for i in 1..5 | new

MotionXY(Teta0:=rad(5*i)}

In the structural scheme of the diagram this array

will be represented as the multiobject described in

Fig. 4.

Figure 4 – The structural scheme of the diagram based

on the task

A set of throwing angles can be defined in the

DTetas parameter. Model of the bullet can be taken

as condition S1 as local activity with present value

of the "Teta_0=rad (Dtetas [i])" throwing angle.

Unconditional transition from S1 condition to the

point of branching is performed after completion of

the shell model behavior, i.e. after hit of a bullet.

Flying range in i-m testing is remembered in X[i].

After enumerating of all values of a vector DTetas,

required dependence (chart X (DTetas)) plus the test

trajectories are received (presented in Fig. 5).

In the package different optional behavior cards

are put that give an objective solution. The

enumerating logic of search of throwing angles’ set

can also be implemented by means of looping

statement in output discrete actions. Besides, two

operation modes of the plot command are defined:

a) it is possible to build temporary diagrams

(required unknown values are specified in comma

separated form as plot command parameter, further

they need to be reflected in the diagram);

b) it is possible to build phase charts (required

unknown values are specified in comma separated

form as plot command parameter that will be

displayed along the vertical axis and as a separate

operator – required variable; further phase charts

will be built according to this variable).

Modular (automatic) and functional (user) testing

are used for check classes operability in package.

Then requirements to a system are specified and new

iteration is provided. There is an opportunity to

perform a parametric optimization for calculation of

Figure 5 – The result of the simulation in the CSP

OpenModelica:

Static diagram – the dependence of the bullet flying

range from departure angle (units of measure: on X-

axis – degrees, on Y-axis – millimeters (10-3 m));

Phase diagram – the bullet movement trajectory for

different corners of a departure (unit of measure on

X and Y axis – millimeters (10-3 m))

a target function’s value in the set space point and it

also should include optimization of additional

parameters (such as air resistance, etc.).

4. THE EXPERIMENTAL RESULTS AND
ANALYSIS

In Fig. 6 the points indicate the values h found by

results of a physical experiment for different angles

of a bullet departure θ ranging from 3 up to 11

degrees with a discrete step 2°. The shot is made for

each value of a corner five times. Value h is as mean

value on five shots. The error is defined in each

point as root mean square deviation. Its maximum

value is designated for θ=11° and is ±2.3·10-3 m.

The dependence of h(θ) received as a result of

simulation of the bullet movement taking into

account air resistance and does not differ for CSP

Mathcad and OpenModelica. This dependence is

represented in Fig. 6 by a solid line.

The analysis provided by students consists of the

following stages.

1. Analysis of graphic dependences. It is possible

to see that distance of the solid line deviation started

M. Litvinova, O. Dudchenko, O. Shtanko, S. Karpova / International Journal of Computing, 19(2) 2020, 216-223

 221

from the experimental point is bigger than interval

of given measure of inaccuracy. Therefore, there is

statistically significant discrepancy of results of the

technical experiment and computer simulation.

2. Forming of a hypothesis regarding the

discrepancy reasons. All experimental points are

placed above the line of computer simulation.

Trajectories of the bullet movement represented in

Fig. 3 and Fig. 5 show that all points for θ ≤ 11 of

its hit in the pendulum correspond to the area of

Figure 6 – The dependence of value h for different

corners of a bullet departure. The points are result

of a technical experiment, a solid line – the result of

simulation in CSP Mathcad and OpenModelica

increase in a parabolic function. Therefore, a

hypothesis is made according to which during

laboratory experiment the bullet flies in the

horizontal direction distance of S, which is bigger

than L=1.2 m. It is possible if the sight is deflected

and the bullet moves, as shown in Fig. 7, under

some corner α to X-axis (X-axis is perpendicular

to Z-axis, as it is shown in Fig. 1). It should be

noted that the sight deviation on a corner α,

without the knowing of the student, is exposed by

the teacher before the experiment.

Figure 7 – The bullet movement at an angle

to X-axis

3. Refinement of the solution using of the CSP.

Refinement of solution in the CSP Mathcad is

provided by using the equations system (1).

Stepwise correction of flying range S [22] is

carried out by the formula:

,cos/ LS = (2)

and the value of a corner α is defined which has
minimal difference between the laboratory result
and the simulation result.

Refinement of the solution in the CSP
OpenModelica is possible based on built-in
debugging tools of a visual model with the
subsequent run of model by means of do operator.
At the same time for the plan of model run it is
used own behavior of the "Model" class [23]. In
particular, it is necessary to write directly in a
system of equations of the class "Model" the
equation (2) as "additional impact". As a result of
a Stepwise Refinement, the model passes into end
state.

The specified dependences of h(θ) received in
the CSP Mathcad and OpenModelica are
combined with results of a technical experiment
and compared among themselves. If the
hypothesis is not confirmed, then new one is
moved forward new with the subsequent check
(return to stage 2). If discrepancy of results of the
technical experiment and computer simulation are
not statistically significant, then the student passes
to the fourth stage.

4. A contrastive analysis of efficiency of the
CSP’ using for the task solution. At contrastive
analysis of efficiency of using the CSP for a
solution of the task such indicators are used:
usability of the CSP; efficiency of automatic
creation of the model; efficiency of creation of
diagrams/charts; capability of establishing reasons
for rejection of the received results based on real
and virtual test boards; simplicity and efficiency
of model’s debugging. In addition, the indicator
"general impression from the CSP’ using" is
represented. This indicator is based on the
analysis provided in Sections 2 and 3 and also
includes the aspects which are not included into
other indicators. The student evaluates all listed
indicators in 1 to 5 marks range and fills in
Table 2. The last “Total points” line of the table
shows which CSP is more preferable to apply for
computer simulation of the considered type of the
tasks.

The indicators values in Table 2 show the
opinion of an individual student and are
subjective. Besides, the analysis of one technical
experiment results is not enough to conclude about
the utility of the CSP. The training process for
software engineers should consist of a series of
laboratory experiments that are carried out according
to the described technology. It should be noted that
during training there can be used not only tasks of
different branches of physics, theoretical
mechanics, electrical engineering, but also
experimental problems of other subjects which
aware execution of laboratory works and also
experiments made within course and graduate

M. Litvinova, O. Dudchenko, O. Shtanko, S. Karpova / International Journal of Computing, 19(2) 2020, 216-223

 222

Table 2. Assessment of CSP use efficiency

The name of the option

M
a

th
ca

d

O
p

en
M

o
-

d
el

ic
a

Usability

Efficiency of automatic model

creation

Efficiency of diagrams creation

Capability to establish reasons for

rejection of the results received

based on real and virtual test

boards

Simplicity and efficiency of

model debugging

General impression of the CSP’

using

Total points

works (corresponding example from the graduate

work is given in the herein [24]). The cumulative

experience of comparative analysis of CSP based

on real technical experiments forms an important

competency, which is the basis for the

development and improvement of computer

simulation packages.

5. SUMMARY AND CONCLUSION

The offered technology of applying the

technical experiment during classes in computer

simulation training has the following advantages.

First, the competence of the choice and

assessment of CSP capabilities is formed in order

to solve set task. Secondly, new skills of

analytical comparison of conditions for providing

production experiments and input parameters for

computer simulation and ability to select the

factors essential to the studied process appear.

Thirdly, experience of the CSP analysis based on

real tasks is a basis for further development of the

modern standard in the simulation sphere.

The specialist who is able to understand both

internal specifics of simulation packages work and

specifics of their applying in real engineering

tasks will be much more qualified, than the

specialist who is able to work only with

formalized data. Thus, using the offered

technology, in general, increases the level of SW

engineer’s professional skills.

6. REFERENCES

[1] R.V. Mayer, “Computer modeling: modeling as

a method of scientific knowledge. Computer

models and their types,” Scientific electronic

archives, 2016 [Online]. Available: http://econf

.rae.ru/article/6722. (in Russian).

[2] S. Winkler, M. Bicher, F. Breitenecker, “A

comparison of different modelling and

simulation approaches for hybrid dynamical

systems,” Proceedings of the UKSim-AMSS

19th International Conference on Computer

Modelling & Simulation, UKSim, 2017, pp. 97-

102 [Online]. Available t: https://ieeexplore.

ieee.org/xpl/conhome/8358641/proceeding.

[3] P. Mohagheghi, “Evaluating software

development methodologies based on their

practices and promises,” Proc. of the Somet’08:

New Trends in Software Methodologies, Tools

and Techniques, IOS Press, 2008, pp. 14-35.

[4] E. Hull, K. Jackson, J. Dick, Requirements

Engineering, Springer; 2th ed., Printed and

bound in the USA, 2005, 198 p.

[5] R. France, B. Rumpe, “Model-driven

development of complex software: A research

roadmap,” Proc. of the FOSE'07: Future of

Software Engineering, Washington, DC, USA,

IEEE Computer Society, 2007, pp. 37-54.

[6] Yu. B. Kolesov, Yu. B. Senichenkov,

Mathematical Modeling of Hybrid Dynamical

Systems: study guide, St. Petersburg:

Publishing house of Polytechnic university,

2014, 236 p. (in Russian).

[7] C. A. Chung, Simulation Modeling Handbook:

A Practical Approach, Taylor & Francis, 2003,

608 p.

[8] E. Abu-taieh, A. Rahman, A. El Sheikh,

“Commercial simulation packages: A

comparative study,” International Journal of

Simulation: Systems, Science and Technology,

vol. 8, issue 2, pp. 66-76, 2007.

[9] A. Papanikolaou, D. Spanos, “Comparative

study of simulation methods on the prediction

of parametric roll of ships in waves,” in book:

CENTEK Book on Marine Technology and

Engineering, Taylor & Francis, 2011 [Online].

Available at: https://www.researchgate.net/

publication/259283716.

[10] A. Vieira, L. Dias, M. Santos, G. Pereira, J.

Oliveira, “Setting an Industry 4.0 research and

development agenda for simulation – a

literature review,” International Journal of

Simulation Modelling, vol. 17. pp. 377-390,

2018.

[11] H. Shen, J. Zhang, B. Yang, “Development of

an educational virtual reality training system

for marine engineers,” Computer Applications

in Engineering Education, vol. 27, issue 3, pp.

527-579, 2019 [Online]. Available at:

https://doi.org/10.1002/cae.22099.

[12] A. J. Magana, T. de Jon, “Modeling and

simulation practices in engineering education

Computer Applications in Engineering

Education,” vol. 26, issue 4, pp. 731-738, 2018.

M. Litvinova, O. Dudchenko, O. Shtanko, S. Karpova / International Journal of Computing, 19(2) 2020, 216-223

 223

[Online]. Available at: https://doi.org/10.1002/

cae.21980.

[13] P. Litwin, D. Stadnicka, “Computer modeling

and simulation in engineering education:

Intended learning outcomes development,”

Proceedings of the International Conference

“MANUFACTURING’2019: Advances in

Manufacturing II”, Springer Link, 2019,

pp. 169-184.

[14] T. de Jong, M. C. Linn, Z. C. Zacharia,

“Physical and virtual laboratories in science

and engineering education,” Science, vol. 340

(6130), pp. 305–308, 2013.

[15] C. Pöll, M. Bicher, I. Hafner, S. Winkler,

A. Körner, “Making modelling teachable

MMT,” Proceedings of the ERK –

International Electronical and Computer

Science Conference, Sept. 16-18, Portoroz,

Slovenia, 2013, pp. 164-168.

[16] C. Martin-Villalba, A. Urquia, Y. Senichenkov,

Y. Kolesov, “Two approaches to facilitate

virtual lab implementation,” Computing in

Science and Engineering, vol. 16, issue 1, pp.

78-86, 2014.

[17] C. França, T. Gouveia, P. Santos, C. Santana,

F. Silva, “Motivation in software engineering:

A systematic review update,” Proceedings of

the 15th Annual Conference on Evaluation &

Assessment in Software Engineering (EASE

2011), 11-12 April, USA, 2011, pp. 154-163.

[18] F. Breitenecker, N. Popper, “Extended and

structural features of simulators – A

comparative study,” Journal on Developments

and Trends in Modelling and Simulation, vol.

18, no 3-4, 2008, pp. 27-38.

[19] F. Breitenecker, N. Popper, “Classification and

evalution of features in advanced simulators,”

Proceedings of the MATHMOD’09, Vienna,

vol. 2, 2009, pр. 1445-1467.

[20] V. K. Tolstykh, Programming in the

Programming Environment MathCAD:

Tutorial for Bachelors of Engineering and

Physical Specialties, Donetsk: DonNU, 2010,

128 p. (in Russian).

[21] Official site of the project OpenModelica

[Online]. Available: /https://openmodelica.org.

[22] H. Benker, Practical Use of Mathcad: Solving

Mathematical Problems with a Computer

Algebra System, Springer London Ltd.

England, United Kingdom, 2001, 519 р.

[23] R. Franke “Formulation of dynamic

optimization problems using Modelica and

their efficient solution,” Proceedings of the 2nd

International Modelica Сonference, March

18−19, 2002, рр. 315-323. [Online]. Available:

https://www.modelica.org/events/Conference20

02/index_html/papers/p39_Franke.pdf.

[24] B. M. Politycin, O. D. Shtanko,

M. B. Litvinova, S. O. Karpova, “Energy

recovery device for the internal combustion

engine,” Scientific Bulletin of the National

Mining University, no. 3, pp. 82-89, 2017.

Maryna Litvinova, Doctor of
Pedagogics, Candidate of
Physics and Mathematics
Sciences, Master of
Technology degree in System
software, Associate Professor
in Department of Software
Engineering, Physics and
Mathematics, Kherson branch
of Admiral Makarov National

University of Shipbuilding. Areas of scientific
interests: physics, іnformation technology in
education.

Oleg Dudchenko, Candidate
of Sciences (Engineering),
Associate Professor, Head of
Department of Information
Technology and Physics and
Mathematics, Kherson branch
of Admiral Makarov National
University of Shipbuilding.
Areas of scientific interests:
іnformation technology,

computer simulation in shipbuilding.

Olexandr Shtanko, Candidate
of Sciences (Physics and
Mathematics), Master of
Technology degree in System
software, Associate Professor
in the Department of Software
Engineering, Physics and
Mathematics, Kherson branch
of Admiral Makarov National
University of Shipbuilding.

Areas of scientific interests: electrical and
mechanical engineering, іnformation technology in
education.

Svitlana Karpova, Master of
Technology degree in System
software, Researcher of the
Department of Software
Engineering, Physics and
Mathematics, Kherson branch of
Admiral Makarov National
University of Shipbuilding. Areas
of scientific interests: computer
simulation in shipbuilding.

