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Abstract: The article deals with the problems of analyzing multi-agent models 

of population dynamics. The problems studied are caused by a number of 

uncertainties associated with variables, boundary conditions, initial states, 

parameter values, etc. Given problems could be found in tasks associated with 

cyber security of critical infrastructures (e.g. DDoS attacks, computer worms, 

etc.). To solve this problem, a linguistic fuzzy model has been developed, which 

allows describing systems of population dynamics in a more realistic way. 

Population dynamics is described by a set of rules, each of which involves entry 

and exit in the form of fuzzy sets or fuzzy functions, which are applied 

iteratively. The complexity of describing the processes of population dynamics 

systems, the presence of fuzzification and defuzzification algorithms, and the use 

of fuzzy sets and linguistic variables make it necessary to develop new methods 

for analyzing such systems. The approaches proposed in the article to the study 

of systems of population dynamics make it possible to apply a unified 

description of processes of different nature in the form of a production set of 

rules. 
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1. INTRODUCTION 

The dynamics of any system is described by a 

mathematical model that reflects the dependencies 

between input, output, and state variables [1]. The 

main property of any dynamic system is that its 

behavior at any time depends not only on variables 

acting on it at a given time, but also on variables 

acting on it in the past [2]. 

Multi-agent modeling is one of the most relevant 

ways to create simulation models [3]. When solving 

the problem of modeling dynamic systems, 

researchers are faced with the problem of describing 

the complex structure of interacting elements that 

are not homogeneous and cannot be typified by their 

properties [4]. Analytical models and traditional 

discrete event models are not effective, and the 

possibility of their use in certain systems is absent. 

In such cases, resort to the use of multi-agent 

modeling, built from the bottom up, i.e., global 

system dynamics is formed due to the interaction of 

autonomous models [5]. The rapidly increasing 

computing power of personal computers, which 

allows for the simulation of a large number of 

independent objects, is a significant catalyst for the 

development of multi-agent modeling as applied to 

population dynamics systems [6]. 

Researchers of population dynamics systems 

encounter a number of obstacles when trying to test 

their models, in particular, due to a number of 

uncertainties associated with variables, boundary 

conditions, initial states, parameter values, etc. [7]. 

In practice, only data on registered processes are 

available for research, in addition, such data 

demonstrate vagueness in the definition of such 

concepts as risk factors, hazards, exposure forces, 

contact patterns, etc. [8]. Thus, a possible alternative 

approach could be a combination of fuzzy logic 

methods and nonlinear dynamic systems in order to 

provide comprehensive analysis and development of 

prediction tools in population dynamics systems [9]. 
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It is known that with the help of production 

models it is possible to naturally describe a person's 

declarative experience, his intuition and logic of 

behavior. It is also often advisable to use fuzzy 

linguistic variables, with which you can adequately 

reflect the approximate description of the interacting 

elements, in the case when the exact deterministic 

description is missing [10]. Also it can be useful in 

description of processes in cyber security of critical 

infrastructures, such as simulation of network worms 

[11] or DDoS attacks [12]. It should be noted that 

many fuzzy categories described linguistically are 

often no less informative than an exact 

description [13]. 

 

2. PROBLEM STATEMENT 

The existing approaches have shown some 

theoretical difficulties, in connection with which, 

given the peculiarities of the mathematics of fuzzy 

logic, it is difficult to show effective practical 

results. In order to investigate how fuzzy logic can 

describe population dynamics systems in a more 

realistic way, this study has developed a linguistic 

fuzzy model applied to the multi-agent model 

described in [14]. 

 

3. STUDY OF THE STABILITY OF THE 

MODEL OF POPULATION DYNAMICS 

An effective model provides accurate results with 

small deviations over a long period. Input x, output 

y, and state must be present in any system modeling 

dynamic processes [15]. Many models provide high 

results, but only for a short time. Others succeed 

only in the presence of a very limited set of initial 

assumptions, which may be a pure coincidence of 

circumstances [16]. A model that deserves serious 

attention must be sustainable in the sense that it 

provides equally good results under different 

conditions and for different periods [17]. 

Let us consider the population of a dynamic 

system. It is necessary to find out how the number of 

Nk+1 of (k + 1)-th year individuals is related to the 

number of Nk of k-th individuals. In the simplest 

case, we can assume that 

 

Nk+1=ANk,                  (1) 

 

where A is a number, depends on environmental 

conditions. 

If A>1, then the population will grow; if A<1, the 

number will decrease 

Let us consider limitations that are more realistic. 

Population growth is limited. We can include this 

limiting feature by adding another model variable, 

which will be negligibly small for small N values, 

but becomes more important with increasing N. One 

possible way to do this is to enter a term 

proportional to N2, which will lead to 

 

N1=AN0 – BN0
2.                         (2) 

 

If B is significantly less than A, then the second 

term in (2) will not matter until N is large enough. 

The minus sign means that the second member tends 

to decrease in population. In the next step, we use 

equation (2) to find out how N changes in 

subsequent years. 

 

N2=AN1 – BN1
2, 

N3=AN2 – BN2
2, 

…                                    (3) 

Nk+1=ANk – BNk
2. 

 

In this case, the maximum possible number of 

population is 

 

Nmax=A/B.                        (4) 

 

We introduce the concept of the proportion of the 

maximum possible population 

 

xk=Nk / N
max .                      (5) 

 

Substituting (5) into (1), we get 

 

xn+1 = Axn(1 – xn) = fA(xn),         (6) 

 

where xn is the population in the n-th year. 

The next step is to test the intelligent multi-agent 

model of epidemic processes for sustainability. To 

do this, we study the hepatitis B incidence model set 

up in paper [18]. Since the model is not linear and is 

not represented by mathematical dependencies, and 

the model output is the result of the interaction of 

intelligent agents with each other and with the 

external environment, it is natural to test the system 

for stability changes in output Δy from changes in 

input parameters Δx. As a result of the conducted 

experiments, insignificant differences were revealed 

as a result of the model, namely 

 

f(∆x)=∆y=0,0057.                   (7)  

 

4. CURRENT STATE OF RESEARCHES 

Researchers of dynamic systems encounter a 

number of obstacles when trying to test their models, 
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in particular, due to uncertainties associated with 

variables, boundary conditions, initial states and 

parameter values, etc. Ideally, experts should take 

them from actual data on a dynamic system and the 

analysis of this data, but in reality, only data on 

registered processes are available for research, 

moreover, such data demonstrate vagueness in 

defining such concepts as risk factors, danger, 

impact strength, contact patterns or infection status 

[19]. Thus, a possible alternative approach may be a 

combination of fuzzy logic methods and nonlinear 

dynamic systems in order to provide comprehensive 

analysis and development of prediction tools in 

dynamic systems with an epidemic character. 

Fuzzy dynamic systems are relatively new field 

of research, the main idea of which is to expand the 

standard dynamic system modeled using differential 

equations or another approach to the theoretical 

framework of a fuzzy set. These methods allow one 

to take into account the uncertainties associated with 

variables, parameters, boundary conditions and 

initial states and to model their evolution, adhering 

to the basic rules and regularities of the system 

dynamics. 

Fuzzy rule-based models are systems whose 

variables are described by fuzzy sets, not clear 

numbers. They are based on the concept of fuzzy 

information breaking and can be classified into two 

general groups depending on how the information is 

presented: 1) linguistic models, in which the most 

famous example is the Mamdani type model, and 2) 

the Takagi – Sugeno model. Both models are based 

on the use of fuzzy rules and linguistic variables. 

However, linguistic models are a qualitative 

description of the behavior of a system using natural 

language, and the Takagi-Sugeno model is a 

combination of fuzzy and standard structures. 

Successful use of a fuzzy linguistic model in 

modeling controllers shows that this is the most 

applied structure. The fuzzy linguistic model is 

based on approximate reasoning, which provides the 

basis for building hypotheses with inaccurate 

information with the help of adequate inference 

mechanisms [20]. This model can be defined as an 

expert system, because it has a knowledge base and 

an inference mechanism, both of which are based on 

human expert knowledge. Most fuzzy applications 

are based on fuzzy linguistic systems. They are 

widely used in the development of fuzzy controllers 

of medical devices, risk assessment and diagnostic 

systems [21-24]. There are also several fuzzy 

linguistic systems in studies of epidemic processes 

[25, 26]. 

Fuzzy rule-based models have a simple structure 

and consist of four main components: 1) the 

fuzzification module, which translates clear inputs 

(classical measurements) into fuzzy values using 

linguistic variables 2) an indistinct base of rules If-

Then, which consists of a set conditional fuzzy 

judgments; 3) an inference method that uses fuzzy 

mechanisms to obtain results or, in other words, a 

calculation method with fuzzy rules; 4) the 

defuzzification module, which translates fuzzy 

outputs back to clear values, if necessary. A typical 

model of a fuzzy rule-based model and the 

relationship of its modules are shown in Fig. 1. 

In [27], a structure was proposed for solving 

systems of linear differential equations for one class 

of fuzzy sets, based on the α-level. However, the 

proposed methods are difficult to apply in dynamic 

systems with an epidemic nature, since such models 

have obvious non-linearities and should be 

considered differently. These non-linearities are due 

to the fact that the course of the epidemic process of 

a dynamic system depends, among other things, on 

the proportion of those in various states that are by 

their nature uncertain and, therefore, are ideal 

objects for analysis using fuzzy logic. 

 

Fuzzification module
Methods, based on 

rules

Defuzzification Fuzzy output

Input

variables

Output

variables

 

Figure1 – Diagram of a typical fuzzy rule-based model 

 

Papers [28, 29] have proposed a new approach to 

the description of the dynamics of the ecological 

model in differential equations, which reproduces 

the dynamic system using fuzzy parameters. In this 

case, the solution to the system of equations is the 

so-called fuzzy expected value. The application of 

this approach in epidemiological systems is not 

obvious because some details and parameters can be 

interpreted ambiguously. Despite this, the method is 

a possible way to model the epidemic system more 

realistically. 

Both approaches had some theoretical 

difficulties, in connection with which, given the 

peculiarities of the mathematics of fuzzy logic, it is 

difficult to show effective practical results. In order 

to investigate how fuzzy logic can describe the 

dynamics of epidemiological systems in a more 



Dmytro Chumachenko, Oleksandr Sokolov, Sergiy Yakovlev / International Journal of Computing, 19(2) 2020, 290-297 

 

 293 

realistic way, this research examines a linguistic 

fuzzy model applied to the multiagent model 

described in paper [18]. 

 

5. APPLICATION OF FUZZY RULES TO 

THE DESCRIPTION OF POPULATION 

DYNAMICS 

The main idea of this approach is that the system 

dynamics is described by a set of rules that are 

applied iteratively. Each rule provides input and 

output in the form of fuzzy sets or fuzzy functions. 

From the empirical experience of the group of 

experts it is possible to create a fuzzy membership 

function for each variable and / or parameter, as well 

as linguistic rules governing the dynamics of the 

system. Thus, a fuzzy model consists of a set of 

rules and the corresponding inference of a finite 

state machine. The linguistic model takes the 

following form: 

 

IF 1BU =  AND 111 AW =  AND … AND nn AW 1=  

THEN �̄�1 = �̂�11 AND … AND �̄�𝑛 = �̂�1𝑛 AND 1DV =  

IF 2BU =  AND 211 AW =  AND … AND nn AW 2=  

THEN �̄�1 = �̂�21 AND … AND �̄�𝑛 = �̂�2𝑛 AND 2DV =  

…                                                            (8) 

IF mBU =  AND 11 mAW =  AND … AND mnn AW =  

THEN �̄�1 = �̂�𝑚1 AND … AND �̄�𝑛 = �̂�𝑚𝑛 AND mDV = , 

 

where U is the input variable, Wi is the system state 

variable, V is the output variable, iW  is the system 

state variable after each iteration, Bi and Aij are the 

input fuzzy sets, Di and �̂�𝑖𝑗 are the output fuzzy sets. 

In this regard, choosing the appropriate inference 

method and, if necessary, the defuzzification 

method, at each step after launching the model, the 

value of the state variable is calculated, which will 

be the input parameter of the system in the next step, 

and so on, iteratively. 

This implies the following: 

 

)()1( lVlU =+ ,                       (9) 

)()1( lWlW ii =+ ,                   (10) 

 

where (l + 1) is the next step after l. 

There are other fuzzy dynamic systems, and the 

choice of a particular model depends on the type of 

information available about the system. Sometimes a 

part of the system’s rules of behavior is known in 

advance, and then the rules will take the following 

form 

 

IF mBlU =)(  AND 11 )( mAlW =  AND … AND 

mnn AlW =)(                                                    (11) 

THEN ));(),...,(),(()1( 11 lWlWlUfly =+  

 

where y (l + 1) is some a priori function known from 

system dynamics. 

Developing fuzzy models with experts in various 

fields requires interdisciplinary relationships [30]. 

For the correct application of expert knowledge, it is 

important that they build fuzzy sets. In general, the 

fuzzy sets of epidemiological systems built by 

experts do not show behavior. They tend to 

asymmetric and irregular dynamics, different from 

the behavior of fuzzy sets in engineering areas. In 

addition, experts have problems with understanding 

the nature of system dynamics, rules of behavior 

and, as a result, the model as a whole [31]. In 

addition, the creation of consequences from the rules 

of behavior is a more time-consuming task for an 

expert than analyzing past statistics of a dynamic 

system, because the expert must study the issue of 

system dynamics, taking into account all factors and 

formulation of a specific relationship, corresponds to 

the membership function. In addition, in order to 

analyze past statistics, which can influence the 

further behavior of a dynamic system, it is sufficient 

for an expert to classify the variables of the 

membership function. Therefore, in general, the 

expert has more opportunities to develop the 

prerequisites for the development of the epidemic 

process than the consequences. 

Given these characteristics, the method of 

developing a posteriori linguistic rules can mean 

important progress in modeling dynamic systems 

that have a high level of uncertainty, inaccuracy or 

ambiguity in the definition of variables and 

parameters. In addition, it is necessary to take into 

account that epidemic systems are dynamic, non-

autonomous, and open and, therefore, have the 

capacity for input-output of sufficiently large 

amounts of data for constructing hybrid models 

extremely rarely. 

Thus, it is possible to formalize a fuzzy recurrent 

mapping [32], which is determined by the set of 

rules ( )1 2, ,..., Nr r r , linking the states 

( )1 2, ,...,t t t
Nx x x  and  ( )1 2, ,..., Nx x x  

of the 
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dynamic system at present  and future t points of 

time respectively: 

 

( )

11

2 2
1 2, ,...,

... ...

T

t t t
N

N
N

xr

r x
x x x

r x







  
  
  =   
  
   

.   (12) 

 

Sets of rules (12) are 
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(13) 

 
where Ki is the number of rules in the set ri; 

elements in square brackets are optional, that is, not 

all state variables can be involved in the rule; Ai, B – 

the value of linguistic variables from the 

corresponding term-sets. 

It is easy to show that the number of set rules is 

in the range 

 

))card(S(x0
N

1i

i
=

 iK ,               (14) 

 

where card (S(xi)) is the power of a term-set of the 

linguistic variable xi. Empty rule sets are also 

allowed. 

The analysis of dynamic linguistic systems, 

presented in the general form (12), (13), is rather 

difficult, despite the high dimensions of the state 

space and the non-linear implicative nature of the 

relationship between events that transform the 

system from one state to another. In this regard, it is 

important to find such a form of describing the 

dynamics of the process, which would allow solving 

the problems of analysis and synthesis by formal 

methods. Usually in practice linguistic description in 

the form of rules are used. 

 

IF Xk=(x1=nb, x2=pm,..., xn=ze)  

AND Uk=(u1=pm, u2=nb,..., um=nm), (15) 

THEN Xk+1=(x1=pb, x2=ps,..., xn=pb), 

 

reflecting the ratio of changes in the state of the 

system depending on the input actions 

 

Xk+1=Xk  Uk ,                         (16) 

 

where Xk=(x1,x2,...,xn)k is the generalized state vector 

of the system, and Uk=(u1,u2,...,um)k is the 

generalized vector of control actions whose values 

are linguistic variables with the given term sets 

S={nb,nm,...,ze,...,pm,pb}, where nb – negative big, 

nm – negative middle, ze – zero, pm – positive 

middle, pb – positive big are fuzzy sets with given 

membership functions [33]. 

The relation (16) can be represented as a network 

of transitions (Fig. 2) of generalized linguistic states 

(graph vertices) under the action of generalized 

linguistic control actions (graph edges). If N is the 

dimension of the state vector X, P is the dimension 

of the control vector U, M is the power of a term-set 

of linguistic variables S, then the maximum possible 

number of vertices of the network (system states) is 

M∙N, and the number of arcs connecting these 

vertices (control actions ), – М∙N∙((MN-1)/2)∙MP. 

The analysis of such systems based on simulation 

modeling and the synthesis of optimal rules (the 

value of network edges) constitute a combinatorial 

problem. 

In practice, instead of the general form of 

mapping (16), its individual forms are used when the 

vectors X, Y, U are scalar linguistic variables. In the 

case when the consequent rules are linguistic, the 

model under consideration is the Mamdani model 

[34], and if functional, it is the Sugeno model [35]. 

 

 

Figure 2 – Transition graph of a recurrent fuzzy 

system 

x1=nb,x2=pm,.

..,xn=ze 
x1=pb,x2=ps,..

.,xn=pb 

x1=pb,x2=pb,..

.,xn=pb x1=nb,x2=ze,..

,xn=nb 

x1=ze,x2=ps,...

,xn=ze 

u1=pm,u2=nb,

...,um=nm 
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As a rule, the dynamic behavior of such systems 

is described in the form of tables of linguistic rules 

relating the control actions U and the outputs (or 

states) of the object X. An example of such a display 

is presented in Table 1. 

The main problem of analyzing the model (16) is 

the absence of formal methods in the space of 

linguistic states similar to numerical models and 

methods of analysis and synthesis in the Euclidean 

state space, which makes it difficult to solve 

problems of analyzing the stability of a dynamic 

model, synthesizing optimal control systems and 

other problems. Known methods for analyzing fuzzy 

dynamic systems are based either on the study of 

membership functions of fuzzy sets, or on the 

analysis of transitions in the space of states, 

extended, or on heuristic methods of linguistic 

dynamics [36]. In addition, the dimensionality of the 

set of linguistic rules is significant, in which the 

number of possible rules increases exponentially 

with the number of input variables. 

 

Table 1. Linguistic rules Xk+1 = Xk Uk 

Uk\Xk nb nm ze pm Pb 

nb nb nb nb nm Ze 

nm nb nb nm ze Pm 

ze nb nb ze pb Pb 

pm nm ze pm pb Pb 

pb ze pm pb pb Pb 

 

The complexity of describing the epidemic 

processes of dynamic systems, the presence of 

heuristic algorithms for fuzzification and 

defuzzification, as well as the use of fuzzy sets and 

linguistic variables lead to the need to develop new 

methods for analyzing such systems. 

 

6. CONCLUSIONS 

In given research dependences in the dynamics of 

the behavior of systems of population dynamics, the 

maximum possible number of individuals of a 

population depending on the input data and the 

relationship of future and current states of the 

system are formalized. The developed intellectual 

multiagent system of epidemic processes in 

population dynamics systems was tested for stability 

by the example of setting up a model for predicting 

the incidence of viral hepatitis B. 

A number of obstacles are considered in checking 

simulation models for accuracy and adequacy, as 

well as in attracting experts from the field of the 

simulated system. It is shown that applying models 

based on the use of fuzzy linguistic rules can be a 

case of solving those problems. 

A model of the epidemic process based on the 

application of fuzzy linguistic rules has been built. 

These methods allow one to take into account the 

uncertainties associated with variables, parameters, 

boundary conditions and initial states and to model 

their evolution, adhering to the basic rules and 

regularities of the system dynamics. Given model 

could be used not only for Public Health issues, but 

also for simulation epidemic processes in critical 

infrastructures, such as network work propagation or 

DDoS attacks simulation. 

The next step in research will be estimation of the 

duration of the forecast model in terms of chaotic 

dynamics. 
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