
Igor Kotenko, Alexander Ulanov / Computing, 2005, Vol. 4, Issue 2, 113-123

 113

AGENT-BASED SIMULATION OF DDOS ATTACKS
AND DEFENSE MECHANISMS

Igor Kotenko 1), Alexander Ulanov 2)

St.-Petersburg Institute for Informatics and Automation of Russian Academy of Sciences

39, 14th Liniya, St. Petersburg, 199178, Russia
1) ivkote@iias.spb.su, http://space.iias.spb.su/ai/kotenko/
2) ulanov@iias.spb.su, http://space.iias.spb.su/ai/ulanov/

Abstract: The paper considers an approach to modeling and simulation of cyber-wars in Internet between the teams of
software agents. According to this approach, the cybernetic opposition of malefactors and security systems is
represented by the interaction of two different teams of software agents – malefactors’ team and defense team. The
approach is considered by an example of modeling and simulation of “Distributed Denial of Service” (DDoS) attacks
and protection against them. The paper also describes the software environment for multi-agent simulation of defense
mechanisms against DDoS attacks developed by the authors and different experiments. The main components of the
software environment are outlined. One of the numerous experiments on protection against DDoS attacks is described
in detail. The environment developed is based OMNeT++ INET Framework.

Keywords: Agents, Agent-based Modeling and Simulation, Computer network attacks, Distributed Denial of Service,
Defense mechanisms

1. INTRODUCTION
Vulnerabilities of present distributed computer

systems, permanently magnified quantity, variety
and complexity of cyber-attacks and gravity of their
consequences highlight urgent necessity for
information assurance and survivability of computer
systems. Especially it is fair in connection with
integration of computer systems on the basis of the
Internet, permanently modified and magnified, not
having state boundaries, centralized control and
uniform security policy.

Experienced malefactors realize sophisticated
strategies of cyber-attacks. These strategies can
include:

• Information gathering about the computer
system under attack, detecting its
vulnerabilities and defense mechanisms;

• Determining the ways of overcoming defense
mechanisms (for example, by simulating
these mechanisms);

• Suppression, detour or deceit of protection
components (for example, by using slow
(“stretched” in time) stealthy probes, separate
coordinated operations (attacks) from several
sources formed complex multiphase attack,

etc.);

• Getting access to resources, escalating
privilege, and implementation of thread
intended (violation of confidentiality,
integrity, availability, etc.) using the
vulnerabilities detected;

• Covering tracks of malefactors’ presence and
creating back doors in order to use them
later.

Protection mechanisms should support real-time
fulfillment of the following operations:

• Implementing the protection mechanisms
appropriated to the security policy (including
proactive intrusion prevention and attack
blocking, misinformation, concealment,
camouflage, etc.);

• Vulnerability assessment, gathering data and
analysis of the current status of the computer
system defended;

• Intrusion detection and prediction of the
malefactors’ intentions and actions;

• Direct incident response, including deception
of the malefactors, their decoy with the
purpose of disclosure and more precise

computing@tanet.edu.te.ua

www.tanet.edu.te.ua/computing

ISSN 1727-6209

International Scientific
Journal of Computing

Igor Kotenko, Alexander Ulanov / Computing, 2005, Vol. 4, Issue 2, 113-123

 114

determining the malefactors’ purposes, and
reinforcement of critical protection
mechanisms;

• Elimination of intrusion consequences and
detected vulnerabilities, adaptation of the
information assurance system to the next
intrusions.

One of the most harmful classes of attacks
aiming at destruction of network resources
availability is “Denial of Service” (DoS). The
purpose of DoS is isolation of a victim host. As a
result of this attack the legitimate users can not
access necessary network resources. Most of
operating systems (OS), routers and network
components are prone to DoS attacks that are hard to
prevent.

The new type of attack arrived in the beginning
this century. It is called “Destributed Denial Of
Service” (DDoS). To perform DDoS attacks
malefactor needs to hack a set of computers
(“zombies”) at first and to run on them DoS
programs to attack next targets. This makes hard to
detect DDoS attack and to defense from it. The
DDoS domain is becoming more and more complex.
We observe now the great variety of different DDoS
attacks and the continuous appearance of new types
that break the defense.

The presence of many attacking hosts
complicates DDoS attack detection and defense. A
lot of defense issues are under solution now:

• How DDoS attacks occur?

• What new attacks can be applied?

• Why it is so hard to resist DDoS attacks?

• How good are the present defense
mechanisms for DDoS detection, prevention
and reaction?

• What recommendations could be offered to
create effective defense?

The main task of defense systems against DDoS
is to accurately detect these attacks and quickly
respond to them [26]. It is equally important to
recognize the legitimate traffic that shares the attack
signature and deliver it reliably to the victim [17].
Traditional defense include detection and reaction
mechanisms [28]. Different network characteristics
are used for detection of malicious actions (for
example, source IP address [22], traffic volume [5],
and packet content [21]). To detect abnormal
network characteristics, many methods can be
applied (for instance, statistical [14], cumulative
sum, pattern matching, etc). As a rule, the reaction
mechanisms include filtering [20], congestion
control [15] and traceback [13].

But, as a result of several reasons (detection of
DDoS attack is most accurate close to the victim,
separation of legitimate is most successful close to
the sources, etc.), adequate victim protection to
constrain attack traffic can only be achieved by
cooperation of different distributed components
[17]. So, the DDoS problem requires a distributed
cooperative solution [16, 17]. There are a lot of
architectures for distributed cooperative defense
mechanisms [1, 2, 21, 9, 27, 26, 17, etc.]. For
example, the paper [1] proposes a model for an
Active Security System, comprising a number of
components that actively cooperate in order to
effectively react to a wide range of attacks.
COSSACK [21] forms a multicast group of defense
nodes which are deployed at source and victim
networks. The Secure Overlay Services (SOS)
system [9] uses a combination of secure overlay
tunneling, routing via consistent hashing, and
filtering. A collaborative DDoS defense system
proposed in [27] consists of routers which act as
gateways. The distributed defense system described
in [26] protects web applications from DDoS
attacks. The DefCOM system [17] uses a peer-to-
peer network of cooperative defense nodes.
DefCOM nodes are classified into three categories:
Alert generator nodes, Rate limiter nodes, and
Classifier nodes.

On our opinion, it is possible to answer soundly
on the questions about defense against DDoS attacks
by modeling and simulation of present and new
DDoS attacks and defense mechanisms.

This paper describes an approach and an
environment for multiagent simulation of such
mechanisms elaborated by authors.

The rest of the paper is structured as follows.
Section 2 outlines suggested common agent-based
approach for modeling and simulation. Section 3
describes the issues of modeling and simulation of
DDoS attacks and defense mechanisms. The
software environment developed for simulation is
presented in section 4. Section 5 presents one of
simulation scenarios fulfilled. Conclusion outlines
the main results of the paper and future work
directions.

2. APPROACH FOR MODELING
AND SIMULATION

Agent-based modeling and simulation of network
security in the Internet assumes that agents’
competition is represented as a large collection of
semi-autonomous interacting agents [11, 12]. The
aggregate system behavior emerges from evolving
local interactions of agents in a dynamically
changing environment specified by computer
network model.

Igor Kotenko, Alexander Ulanov / Computing, 2005, Vol. 4, Issue 2, 113-123

 115

We assume to select at least two antagonistic
agents’ teams effecting on computer network as
interconnected set of resources and each other: the
team of agents that realize the DDoS attack and the
defense team.

The problem of multi-agent modeling of
cybernetic opposition processes is represented as
modeling of antagonistic interaction of the agents-
malefactors’ team and the defense team.

The goal of agents-malefactors is to determine
the vulnerabilities of the computer network and the
defense system. Then they are to apply the given set
of information security threats due to execution of
distributed coordinated attacks.

The goal of defense team is to defend the
network and their own components.

The agents of different teams compete to reach
the opposite intentions. The agents of one team
cooperate to realize the overall intention
(implementing the threat or defense of computer
network).

Our approach is based on agent teamwork
framework [3, 4, 7, 10, 24, 25, 29]. It is said that the
agents’ team realizes teamwork, if the team
members (agents) fulfill joint operations for
reaching the common long-time goal in a dynamic
external environment at presence of noise and
counteraction of opponents. Now the research on
teamwork is an area of steadfast attention in multi-
agent systems.

It is offered that each team of agents is organized
by the group (team) plan of the agents’ actions. As
result, a team has a mechanism of decision-making
about who will execute particular operations. As in
the joint intention theory [3], the basic elements,
allowing the agents’ team to fulfill a common task,
are common (group) intentions, but its structuring is
carried out in the same way as the plans are
structured in the shared plans theory [6]. The
mechanisms of the agents’ interaction and
coordination are based on three groups of procedures
[24]:

(1) Coordination of the agents’ actions (for
implementation of the coordinated initialization and
termination of the common scenario actions);

(2) Monitoring and restoring the agents’
functionality;

(3) Communication selectivity support (for
choice of the most “useful” communications).

The specification of the plan hierarchy is carried
out for each role. The following elements of the plan
should be described: initial conditions, when the
plan is offered for fulfillment; conditions for
finishing the plan execution (these conditions can be
as follows: plan is fulfilled, plan is impracticable or
plan is irrelevant); actions fulfilled at the team level
as a part of the common plan. For the group plans it

is necessary to express joint activity.
Assignment of roles and allocation of plans

between the agents is fulfilled in two stages: at first
the plan is arranged in terms of roles, and then the
roles are put in correspondence to the agents.
Agents’ functionalities are generated automatically
according to the roles specified.

The adversary (malefactors’) team co-evolves by
generation of new attack patterns to overcome
defenses. On the other hand, defense team co-
evolves by generating new protective actions against
attacks, suppression of malefactors’ team and
recovery of destructed and compromised
components of the computer network.

Interaction among agents can be represented as a
two-player game (“game of network cats and
mice”), where the agents' objective is to look for a
strategy that maximizes their expected sum of
rewards in the game.

To cope with the information heterogeneity and
distribution of intrusion sources and agents used we
apply ontology-based approach and special protocols
for specification of shared consistent terminology.

The developed common ontology of DDoS
attacks comprises a hierarchy of notions specifying
activities of team of malefactors directed to
implementation of attacks in different layers of
detail. In this ontology, the hierarchy of nodes
representing notions splits into two subsets
according to the macro- and micro-layers of the
domain specifications. All nodes of the ontology of
DDoS attacks on the macro- and micro-levels of
specification are divided into the intermediate and
terminal.

The notions of the ontology of an upper layer can
be interconnected with the corresponding notions of
the lower layer through one of three kinds of
relationships: “Part of” that is decomposition
relationship (“Whole”–”Part”); “Kind of” that is
specialization relationship (“Notion”–”Particular
kind of notion”); and “Seq of“ that is relationship
specifying sequence of operation (“Whole
operation” – ”Sub-operation”).

High-layer notions corresponding to the
intentions form the upper layers of the ontology.
They are interconnected by the “Part of”
relationship. Attack actions realizing malefactor's
intentions (they presented at the lower layers as
compared with the intentions) are interconnected
with the intentions by “Kind of” or “Seq of“
relationship.

The “terminal” notions of the macro-level are
further elaborated on the micro-level of attack
specification, and on this level they belong to the set
of top-level notions detailed through the use of the
three relationships introduced above.

Igor Kotenko, Alexander Ulanov / Computing, 2005, Vol. 4, Issue 2, 113-123

 116

In micro specifications of the computer network
attacks ontology, besides the three relations
described (“Part of”, “Kind of”, “Seq of”), the
relationship “Example of” is also used. It serves to
establish the “type of object– specific sample of
object” relationship.

The developed ontology includes the detailed
description of the DDoS domain in which the
notions of the bottom layer (“terminals”) are
specified in terms of network packets, OS calls, and
audit data.

Nodes specifying a set of software exploits for
generation of DDoS attacks (Trinity V3,
MSTREAM, SHAFT, TFN2K, Stacheldraht,
Trin00) make up a top level of the ontology
fragment. At lower levels different classes of DoS-
attacks are detailed, for example: “Ack flood”
(sending a huge number of network packets with
Ack parameter), “Land” attacks (sending an IP-
packet with equal fields of port and address of the
sender and the receiver, i.e. Source Address =
Destination Address, Source Port Number =
Destination Port Number), “Smurf” (sending
broadcasting ICMP ЕСНО inquiries on behalf of a
victim host, therefore hosts accepted such
broadcasting packages answer to the victim host,
that results in essential capacity reduction of a
communication channel or in full isolation of an
attacked network), etc.

Common formal plan of attacks implemented by
team of malefactors-agents has three-level structure:

(1) Upper level is a level of intention-based
scenarios of malefactors’ team specified in terms of
sequences of intentions and negotiation acts;

(2) Middle level is a level of intention-based
scenarios of each malefactor specified in terms of
ordered sequences of sub-goals;

(3) Lower level is a level of malefactor’s
intention realization specified in terms of sequences
of low-level actions (commands).

The suggested technology for creation of the
malefactors-agents’ team (that is fair for other
subject domains) consists in realization of the
following chain of stages:

(1) Formation of the subject domain ontology;
(2) Determination of the agents’ team structure;
(3) Determination of agents’ interaction-and-

coordination mechanisms (including roles and
scenarios for roles exchanges);

(4) Specification of agents’ plans as a hierarchy
of stochastic formal grammars;

(5) Assignment of roles and allocation of plans
between agents;

(6) Implementation of teamwork.

3. ISSUES OF MODELING
AND SIMULATION OF DDOS ATTACKS

AND DEFENSE MECHANISMS
The idea of DDoS attack consists in reaching the

global goal – the denial of service of some resource
– due to joint efforts of many components that are
acting on attack side. In that way the initial goal is
divided into more simple sub-goals. They are given
to particular components (agents). At the same time
the goal on the top level stays shared between
agents. On the low level, the local goals are formed.
Their achievement is targeted on solving the shared
task. The agents interact with each other to
coordinate local solutions. This is necessary to reach
the needful quality of solution of shared goal “denial
of service”. In the case when the attack is controlled
by a malefactor, a component for coordination of
agent-attackers from the side of a malefactor is
needed.

Generally, the components of DDoS attack
system are the programs which have the following
features: autonomy; the presence of initial
knowledge about itself, interacting entities and
environment; the presence of knowledge (or hard-
coded algorithm) that allows to get and process the
external data from environment; the presence of a
goal and a list of actions to reach this goal; the
communication and interaction mechanisms
(protocols) to reach the shared goal. These
properties let to represent every component of the
system as an intelligent agent and the set of agents
as the agent team.

Let us represent the DDoS attack system as an
agent team. The agents aim the shared goal – the
realization of attack “denial of service” for some
host or network. Analyzing the present methods of
DDoS realization it is possible to determine at least
two types of the attack system components:

• “Daemon” – it executes the attack directly;

• “Master” – it coordinates the actions of other
system components.

The analysis of present DDoS defense systems
shows the following their features:

• The defense systems are built of basic
components which have some local meaning
but serve together for common shared goal;

• The number and functionality of defense
system components depend on the place of
their deployment;

• As a rule, the defense systems have a
hierarchical structure, where different levels
serve for particular sub-tasks of the complex
defense goal.

Igor Kotenko, Alexander Ulanov / Computing, 2005, Vol. 4, Issue 2, 113-123

 117

The general approach to the DDoS defense is the
following. The information about normal traffic is
collected from different network sensors. Then the
analyzer-component compares in real-time the
current traffic with the normal traffic. The system
tries to trace back the source of anomalies (due to
“traceback” mechanisms) and generates the
recommendations how to cut off them or how to
lower the quantity of these anomalies. Depending on
security administrator’s choice, the system applies
some countermeasure.

Let us represent the DDoS defense system as a
team of intelligent agents. The agents aim the
common shared goal. The goal is to defense the
given host or network from DDoS attacks. In
compliance with the general approach we set the
following defense agent classes:

• “Sensor” - agent of initial information
processing;

• “Detector” - attack detection agent;

• “Filter” - agent of attack traffic filtering;

• “Investigator” - agent of attack
investigation.

The defense team consists of the given number of
sensors. Sensors are deployed in the given network
places to monitor the network processes and to
collect the statistic data. The data received are
transmitted to detectors for recognizing anomalies
and DDoS attacks.

Detectors decide if there is a danger of DDoS
attack and from which hosts does it come. They
transmit this information to filters and (or)
investigators.

Filters are deployed on the way of packets
flowing to the defended host or network. Filters can
use different mechanisms of filtering of malicious
packets.

Investigators try to trace back the sources of
DDoS attack and to neutralize them by defeating the
corresponding attack agents.

4. SOFTWARE ENVIRONMENT
FOR SIMULATION

To choose the simulation tool the comprehensive
analysis of the following systems was made: NS2
[18], OMNeT++ INET Framework [19], SSF Net
[23], J-Sim [8] and some others.

We used the following main requirements to the
simulation environment:

• The detailed implementation of the protocols
that are engaged in DDoS attacks. It is
necessary at least to simulate the present
DDoS attacks.

• The ability of writing and plugging in the
personal modules. It is necessary to
implement the agent approach.

• The ability of changing parameters during the
simulation.

• Implementation for OS Windows and Linux
(or platform-independency).

• Advanced graphical interface.

• Free for use in research and educational
purposes.

We discovered that the OMNET++ INET
Framework satisfies to these requirements best of
all. OMNET++ is the discrete event simulator [19].
The change of state happens in the discrete moments
of time. The simulation is being held by the future
event list sorted by time. The event may be: the
beginning of packet transmission, time-out, etc. The
events occur inside the simple modules. Such
modules have the functions of initialization, message
processing, action (alternatively), end of work. The
exchange of messages between modules happens
due to channels (modules are connected with them
by the gates) or directly by gates. A gate can be
incoming or outgoing to receive or to send messages
accordingly.

The agents were implemented as the compound
modules. They contain the simple modules and the
agent kernel. The simple modules are responsible for
functioning of various network protocols. The agent
kernel controls these modules in each agent. The
agent (as the OMNET compound module) has a
number of gates for connecting to standard network
host from INET Framework. These gates are related
to the corresponding network protocols. The
connection or the deploying of the agent can take
place during the simulation.

OMNET gives two alternatives to implement the
module: by the message handling or by the activity.
In the first case, the actions of the module are
bounded to the messages arrival. The next event can
happen only after the finalization of work of
function that handles the messages. In the second
case, the actions of the module are executed as co-
routine. It allows the arbitrary embranchment into
other contexts of control and the arbitrary
recommencement of thread from the point of
embranchment. In addition, there is the ability of
describing the module actions by state machines.

The agent kernels were made as co-routines, as it
is convenient for implementing the interaction
protocols (on which the agent teamwork is based).
The other modules were made as the handlers of
events from the kernel and environment. The state
machines were rejected since they make code harder
to read. They also make the logics of the program

Igor Kotenko, Alexander Ulanov / Computing, 2005, Vol. 4, Issue 2, 113-123

 118

implicit sometimes. This drawback could be avoided
if there were the graphical editor of state machines.

Now we are on the process of development and
improvement of the environment for multi-agent
simulation of DDoS attack and defense mechanisms
on the basis of OMNeT++ INET Framework. We
have modified the existing OMNeT++ INET
Framework. For example, the following new
modules have been created:

• The filtering table. It allows simulating the
defense side actions on filtering network
packets on the network layer.

• The “sniffer” module. It allows scanning all
traffic for the given host to collect statistics.
It is also used to simulate the defense side
actions.

To simulate the attack and defense mechanisms,
the modules responsible for sockets operating have
been also changed.

The environment windows used during

simulation are depicted in Fig.1.
At the basic window of visualization (fig.1, at

upper right), a simulated computer network is
displayed. The network represents a set of the hosts

and channels. Hosts can fulfill different functionality
depending on their parameters or a set of internal
modules. Internal modules are responsible for
functioning of protocols and applications at various
levels of OSI model. Hosts are connected by
channels which parameters can be changed.
Applications (including agents) are established on
hosts. Applications are connected to corresponding
modules of protocols.

The window for simulation management (at the
bottom of fig.1, in the middle) allows looking
through and changing simulation parameters.
Corresponding status windows (on top of fig.1, in
the middle) show the current status of agents’ teams.
It is possible to open different windows which
characterize functioning (the statistical data) of
particular hosts, protocols and agents, for example,
at the bottom left of fig.1, the window of one of the
hosts is displayed.

Since all simulated processes take place in the
Internet, the network model should be in the heart of

simulation environment. One of the examples of
computer networks for simulation is represented in
Fig.2. We used different configurations of computer
networks which include from 14 till 1000 and more

Fig.1 − Examples of representation of windows used during simulation process

Igor Kotenko, Alexander Ulanov / Computing, 2005, Vol. 4, Issue 2, 113-123

 119

nodes. Each network is represented as a set of hosts
connected by the channels. Each host can possess
different functionalities depending on hosts
parameters or the set of internal modules.

The hosts are connected with the channels. Their
parameters can be changed. They are as follows:

• Delay – delay of packets propagation;

• Datarate – the speed of packets transmission.
Each network host (Fig.3) can consist of the

following modules:

• ppp is responsible for the data link layer (the
router can have several ppp according to the
number of interfaces);

• networkLayer is responsible for the network
layer;

• pingApp is responsible for applications using
ICMP;

• tcp is serving for TCP;

• udp is serving for UDP;

• tcpApp[0] is the TCP application (there can
be a number of them);

• notificationBoard is used for logging the
events on host;

• interfaceTable contains the table of network
interfaces;

• routingTable contains the routing table;

• filterTable contains the filtering table.
The applications (including the agents) are being

installed on the hosts by connecting to appropriate
protocol modules.

Each network for simulation consists of three
sub-networks:

• The subnet of defense where the defense
team is deployed;

• The intermediate subnet where the standard
hosts are deployed. They produce the generic
(normal) traffic in the network including the
traffic to defended host;

• The subnet of attack where the attack team is
deployed.

Subnet of defense (on the top of Fig.2) consists
of five hosts. The following agents are deployed on
the first four hosts: detector, sensor, filter and
investigator. The web-server which is under defense
is deployed on the fifth host. The agents and the
web-server are the applications installed on the
corresponding hosts. The IP-addresses are being set
automatically. It is necessary to set the other
application parameters.

Web-server is deployed on the host d_srv. The
interaction port and the answer delay must be set.
(Web-server module is from INET Framework.)

Detector is deployed on the host d_det (see
Fig.2). The following parameters are used for
detector: the defended host IP-address, the port for
team interaction, the interval for sensor inquiry, and
the maximum allowed data-rate to server (BPS, bit
per second).

Fig.2 − Example of representation of a computer

network configuration

Sensor is deployed on the host d_firewall (on the
entrance to the server subnet). Filter is deployed on
the host d_r (router). Investigator is deployed on the
host d_inv. For each of the last three agents, the
private port, detectors IP-address and the port for
team interaction must be set.

The intermediate subnet (in the middle of Fig.2)
consists of N hosts i_cli[…] with generic clients.
They are connected by the router i_r. The number of
hosts N is the modeling parameter which can be set.
The following parameters of clients must be used:
IP-address and port of server, the time of start of
work, the quantity and size of requests while
connecting to server, the size of reply and the time
of reply preparation, the idle interval. (The generic
client is used from INET Framework.)

The subnet of attack (in the bottom of Fig.2)
consists of M hosts i_cli[…] with daemons deployed
and one host with master deployed. The number of

Igor Kotenko, Alexander Ulanov / Computing, 2005, Vol. 4, Issue 2, 113-123

 120

hosts M must be set. Master has the following
parameters: port for team interaction, IP-address and
port of attack target, the time of start of attack and
its rate (measured in packets per second). Daemon
has the following parameters: the port, masters’ IP-
address and port for team interaction.

Fig.3 − Representation of generic network host

5. EXAMPLE OF SIMULATION

SCENARIO
Let examine one of simulation scenarios. The

network for this simulation scenario is represented in
Fig.4.

The routers in this network are connected with
each other with the fiberglass channels with
bandwidth 512 Mbit. The other hosts are connected
by 10 Mbit Ethernet channels.

In the defense subnet, server, detector, sensor,
filter and investigator are deployed (in the bottom of
Fig.4, see the blue signs above the corresponding
hosts). The server deployed on d_srv provides some
service on the port #80 with the delay of reply = 0.
The parameters for detector are: defended host –
d_srv, port #2000, interval of sensor poll – 60 sec,
BPS=1100 bit/s. Sensor, filter and investigator have
the following parameters: port for interaction #2000,
detectors address and port – d_det, #2000.

Some time after the start of simulation, clients
begin to send the requests to server and it replies.
The packet to the server is shown in Fig.4 by the red

circle. That is the way generic (normal) network
traffic is generated and depicted.

Fig.4 − Initial moment of simulation

Formation of the defense team begins some time
after the start of simulation. The defense agents
(investigator, sensor and filter) connect to detector.
They send to detector the messages saying that they
are alive and ready to work. Detector stores these
messages to its memory. Formation of the attack
teams happens the same way.

The fragment of master’s knowledge base after
the team was established is represented in Fig.5.
This knowledge base contains (see Fig.5) IP-
addresses and ports for message exchange between
agents, as well as the state of the agents.

The defense team actions begin after this team
formation. Sensor starts to collect the traffic
statistics for every IP-address (the amount of
transmitted bytes).

Fig.5 − Master’s knowledge

after the attack team formation

Detector requests data from sensor every S
seconds (for example, 60 sec). It gets statistics and
detects if there is an attack. Then it connects to filter
and investigator and sends them the IP-addresses of
suspicious hosts. While there is no attack they stay

Igor Kotenko, Alexander Ulanov / Computing, 2005, Vol. 4, Issue 2, 113-123

 121

idle.
Some time (for instance, 300 seconds) after the

start of simulation, the attack team begins the attack
actions. At first, master requests every daemon if it
is alive and ready to work. When all daemons were
examined, it occurs that they all are workable.
Master calculates the rate of attack for every
daemon.

The given rate (2 packets per second) is divided
by the amount of workable daemons (3). The result
is the individual rate of attack for each daemon.
Then master sends the following attack command
for every daemon: the address of attack target
(d_srv), the port (#2000), the rate (0.67). Daemons
start the attack by sending, for example, UDP
packets to the target with the given rate. The
message “attacking” is represented above the
attacking daemons (Fig.8).

The regular request from detector to sensor
happens approximately 100 sec later. In this moment
sensor generates for each IP address the amount of
transmitted bits for 60 last seconds (Fig.6).

Detector calculates BPS parameter for every host
excluding the server (111.222.0.12). Obviously this
parameter exceeds the maximum allowed value
(1100) for the host with the following IP-addresses:
111.222.0.4, 111.222.0.3, 111.222.0.2.

Detector sends these addresses to filter and to
investigator. Filter must set the rules to reject the
packets from these IP-addresses. Investigator must
trace the source of attack to defeat attack agents.
After filter sets its rules (Fig.7) and begin to protect
against the attack, the amount of traffic to server will
lower.

Investigator tries to defeat the attack agents. It
can be seen in Fig.8 that it succeeded to defeat one
of daemons. Above it appears the message
“defeated”. Then investigator tries to defeat another
daemon. Above investigator there is the message
“Proto defeat”. The path of packets from
investigator to daemon is shown by yellow arrows.

Fig.6 − Data formed by sensor during the attack

Fig.7 − Filtration rules applied by filter

Fig.8 − Actions of agent-investigator during the attack

As the result, investigator succeeded to defeat
two daemons. After this the state of traffic returns to
the normal value - just like before the attack (Fig.9).

The last functioning daemon continues the attack.
Master had redistributed the attack rate to him after
other daemons were defeated. However attack
packets do not reach the target. They are rejected on
the entrance to the defended network by filter.

The main facts about this scenario are as follows:
the attack was blocked 1 min 40 sec after start; three
rules of filtration were applied; two attack agents
(daemons) were defeated.

The graph of relationship between bits
transmitted to server d_r subnet and the time is
represented in Fig.10.

The main traffic in the interval 0–300 seconds
was created by clients requests and servers replies.
This process is represented by the vertical straights
with low rate (Fig.10).

When the attack happens (the mark 300 seconds),

Igor Kotenko, Alexander Ulanov / Computing, 2005, Vol. 4, Issue 2, 113-123

 122

the intense traffic appears. The attack process is
represented by the plateau from 300 to 400 seconds.

However, approximately on the 400th second the
filtration rules were applied, and the malicious
packets begun to be rejected on the entrance to the
server subnet. After that the normal state of network
returned.

Fig.9 − Data formed by sensor
after applying filtration rules

Fig.10 − Relationship of bits transmitted

to server d_r from time

6. CONCLUSION

The main results of the work we described in the
paper consist in developing basic ideas on multi-
agent modeling and simulation of defense
mechanisms against DDoS attacks and
implementing corresponding software environment.

The environment developed is written in C++
and OMNeT++. It allows imitating a wide spectrum
of real life DDoS attacks and defense mechanisms.

Different experiments with this environment have
been fulfilled. These experiments include the
investigation of attack scenarios and protection
mechanisms for the networks with different
structures and security policies. One of the scenarios
of these experiments was demonstrated in the paper.

Future work is connected with developing formal
basis for agent-based modeling and simulation of
cyber agents’ team competition in the Internet,
building more realistic environment (including
improvement of capabilities of the attack and
defense agents teams by expansion of the attack and

defense classes, and implementing more
sophisticated attack and defense scenarios), and
conducting experiments to both evaluate computer
network security and analyze the efficiency and
effectiveness of security policy against different
attacks.

7. ACKNOWLEDGMENT
This research is being supported by grants 04-01-

00167 of Russian Foundation of Basic Research and
partly funded by the EC as part of the POSITIF
project (contract IST-2002-002314).

8. REFERENCES
[1] R. Canonico, D. Cotroneo, L. Peluso, S.P.

Romano, G. Ventre. Programming routers to
improve network security. Proceedings of the
OPENSIG 2001 Workshop Next Generation
Network Programming, 2001.

[2] S. Chen, Q. Song. Perimeter-Based Defense
against High Bandwidth DDoS Attacks.
IEEE Transactions on Parallel and
Distributed Systems, Vol.16, No.7, 2005.

[3] P.R. Cohen, H.J. Levesque. Teamwork,
Nous, Vol.25, No.4, 1991.

[4] X. Fan, J. Yen. Modeling and Simulating
Human Teamwork Behaviors Using
Intelligent Agents, Journal of Physics of Life
Reviews, Vol. 1, No.3, 2004.

[5] [5] T.M. Gil, M. Poletto. MULTOPS: a
data-structure for bandwidth attack detection.
Proceedings of 10th Usenix Security
Symposium, 2001.

[6] B. Grosz, S. Kraus. Collaborative plans for
complex group actions, Artificial
Intelligence, Vol.86, 1996.

[7] N. Jennings. Controlling cooperative problem
solving in industrial multi-agent systems
using joint intentions, Artificial Intelligence,
No.75, 1995.

[8] J-Sim homepage. www.j-sim.org
[9] A.D. Keromytis, V. Misra, D. Rubenstein.

SOS: An architecture for mitigating DDoS
attacks, Journal on Selected Areas in
Communications, Vol. 21, 2003.

[10] I. Kotenko, L. Stankevich. The Control of
Teams of Autonomous Objects in the Time-
Constrained Environments. Proceedings of
the IEEE International Conference
“Artificial Intelligence Systems”, IEEE
Computer Society, 2002.

[11] I. Kotenko. Agent-Based Modeling and
Simulation of Cyber-Warfare between
Malefactors and Security Agents in Internet.
19th European Simulation Multiconference
“Simulation in wider Europe”, 2005.

Igor Kotenko, Alexander Ulanov / Computing, 2005, Vol. 4, Issue 2, 113-123

 123

[12] I. Kotenko, A. Ulanov. Multiagent
modeling and simulation of agents’
competition for network resources
availability. Second International Workshop
on Safety and Security in Multiagent Systems,
Utrecht, The Netherlands, 2005.

[13] V. Kuznetsov, A. Simkin, H. Sandström.
An evaluation of different ip traceback
approaches. Proceeding of the 4th
International Conference on Information and
Communications Security, 2002.

[14] M. Li, C.H. Chi, W. Zhao, W.J. Jia, D.Y.
Long. Decision Analysis of Statistically
Detecting Distributed Denial-of-Service
Flooding Attacks, Int. J. Information
Technology and Decision Making, Vol.2,
No.3, 2003.

[15] R. Mahajan, S.M. Bellovin, S. Floyd.
Controlling High Bandwidth Aggregates in
the Network, Computer Communications
Review, Vol.32, No.3, 2002.

[16] J. Mirkovic, S. Dietrich, D. Dittrich, P.
Reiher. Internet Denial of Service: Attack
and Defense Mechanisms. Prentice Hall PTR,
2004.

[17] J. Mirkovic, M. Robinson, P. Reiher, G.
Oikonomou. Distributed Defense Against
DDOS Attacks. University of Delaware CIS
Department Technical Report CIS-TR-2005-
02, 2005.

[18] NS2 homepage. http://www.isi.edu/
nsnam/ns/

[19] OMNeT++ homepage.
http://www.omnetpp. org/

[20] K. Park, H. Lee. On the Effectiveness of
Route-based Packet Filtering For Distributed
DoS Attack Prevention in Power-law
Internet. Proceedings ACM SIGCOMM,
2001.

[21] C. Papadopoulos, R. Lindell, I.
Mehringer, A. Hussain, R. Govindan.
Cossack: Coordinated suppression of
simultaneous attacks. Proceedings of
DISCEX III, 2003.

[22] T. Peng, L. Christopher, R. Kotagiri.
Protection from Distributed Denial of Service
Attack Using History-based IP Filtering.
IEEE International Conference on
Communications, 2003.

[23] SSF Net homepage. www.ssfnet.org
[24] M. Tambe. Towards flexible teamwork,

Journal of AI Research, Vol.7, 1997.
[25] M. Tambe, D.V. Pynadath. Towards

Heterogeneous Agent Teams, Lecture Notes
in Artificial Intelligence, Vol.2086, 2001.

[26] Y. Xiang, W. Zhou. An Active Distributed
Defense System to Protect Web Applications

from DDoS Attacks. The Sixth International
Conference on Information Integration and
Web Based Application & Services, 2004.

[27] D. Xuan, R. Bettati, W. Zhao. A gateway-
based defense system for distributed dos
attacks in high-speed networks, IEEE
Transactions on Systems, Man, and
Cybernetics, 2002.

[28] Y. Xiang, W. Zhou, M. Chowdhury. A
Survey of Active and Passive Defence
Mechanisms against DDoS Attacks.
Technical Report, TR C04/02, School of
Information Technology, Deakin University,
Australia, March 2004.

[29] J. Yen, J. Yin, T.R. Ioerger, M. Miller, D.
Xu, R. Volz. CAST: Collaborative agents
for simulating teamworks. Proceedings of
IJCAI'2001, 2001.

Igor Kotenko graduated with honors
from St.Petersburg Academy of
Space Engineering and
St.Petersburg Signal Academy. He
obtained the Ph.D. degree in 1990
and the National degree of Doctor of
Engineering Science in 1999. He is

Professor of computer science and Leading
researcher of St. Petersburg Institute for Informatics
and Automation.

Alexander Ulanov graduated from
St. Petersburg State Politechnical
University (2004), received his
master's degree (2004) in the area
"System analysis and control". He is
now PhD student in the field of
agent-based modeling and
simulation for computer network

attacks.

