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Abstract: Traditionally, in Reinforcement Learning, the specification of the task is contained in the reinforcement 
function (RF), and each new task requires the definition of a new RF. But in the nature, explicit reward signals are 
limited, and the characteristics of the environment affects not only “how” animals perform particular tasks, but also 
“what” skills an animal will develop during its life. In this work, we propose a novel use of Reinforcement Learning 
that consists in the learning of different abilities or skills, based on the characteristics of the environment, using a fixed 
and universal reinforcement function. We also show a method to build a RF for a skill using information from the 
optimal policy learned in a particular environment and we prove that this method is correct, i.e., the RF constructed in 
this way produces the same optimal policy. 
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1. INTRODUCTION 
In Reinforcement Learning (RL), an agent finds 

the optimal strategy for solving a particular task by 
interacting with the environment and receiving 
rewards and punishments based on the executed 
actions. This type of learning has been studied in 
humans and animals since the beginning of the 20th 
century [1], modeled mathematically using dynamic 
programming tools and adopted as an Artificial 
Intelligence method for machine learning [2]. 

Traditionally, the specification of the task is 
contained exclusively in the function that models 
rewards and punishments, called the reinforcement 
function (RF). Hence, each new learning task 
requires the specification of a new RF and most of 
the times this RF is built from scratch, based on the 
intuition and experience of the developer and tested 
by trial and error on realistic environments. 

But in the nature, we can observe that explicit 
reward signals are limited, and external stimuli 
influence the behaviors of animals and humans [3] 
to the extent that it can affects not only how animals 
perform particular tasks, but also what skills an 
animal will develop during its life. For example, in 
laboratory experiments, a rat can learn how to pull a 
knob if this action opens a box with food. But the 
same rat can learn how to escape from a maze if it is 
put inside the maze and the food is put on the 

outside. In both cases, the reward (the positive 
reinforcement), expressed as a satisfaction felling, is 
obtained when the rat eat the food and not when the 
rat succeed to pull the knob or succeed to find the 
way out of the maze. In this example, it is the 
environment and not the RF which induces the skills 
that are going to be learned.  

Another fact observation related to RL as seen in 
the nature is the use of information from past 
experience as a replacement for an explicit RF. This 
fact may be observed on humans and animals, who 
after the successful learning of a particular task, can 
construct new reinforcement functions and use it 
later in another task. The learning of these new tasks 
can then be produced without explicit external 
feedback. For example, humans associate 
reinforcements with approval or disapproval of other 
persons, with love and hate, or simple with a 
``Right!'' or ``Wrong!'' yell [4].  This new type of 
reinforcements, often called secondary 
reinforcements or conditioned reinforcements, has 
been first identified by Ivan Pavlov in his 
experiments with animals.  

Although these ideas have been studied by 
psychologists and biologists, as far as we know they 
have never been used for machine learning. Our aim 
is to incorporate them in an RL framework in a 
systematic and formal manner in order to develop a 
robust learning method less dependent to external 
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specifications. 
In this work, we propose a novel use of RL that 

consist in the learning of different abilities or skills, 
based on the characteristics of the environment, 
using the same fixed and universal RF for all the 
skills. We also show a method to construct a RF for 
a skill based on the optimal policy learned in a 
particular environment with our method. We 
illustrate our idea in a robot simulator, showing how 
the robot learns different skills when the learning 
process takes place in different environments.  
 

2. HYPOTHESES AND PROOF OF 
CONCEPT 

In this section, we propose two hypotheses and 
we describe a series of simple experiments as a 
proof of concept. The hypotheses express the ideas 
of learning skills influenced by the environment and 
building RFs internally: 

 
Hypothesis 1: Using a fixed reinforcement 

function that specifies a general task, RL can be 
used to learn different skills by modifying the 
characteristics of the environment. 

 
Hypothesis 2: Using a fixed reinforcement 

function that specifies a general task and a policy 
that solves the task on a particular environment, it is 
possible to construct a RF for a skill that is part of 
the optimal policy for the general task. 

 
These hypotheses are related to problems of 

interest for the RL field, such as: environment 
generalization and optimal environment construction 
(if two environments allow the learning of a given 
task, which one is better? Could we obtain the 
optimal environment?) and mappings between 
behaviors and environments (which characteristics 
should be present in the environment to allow an 
agent to learn the desired skill?). 
 

3. LEARNING FROM THE 
ENVIRONMENT 

As a proof of concept for our first hypothesis, we 
designed a series of experiments and we carried out 
several simulation tests. On these experiments, a 
light represent a food source, and the general task 
consist in reaching the light from any initial position. 
The task is considered episodic, and an episode ends 
either when the light source or a boundary of the 
environment is reached. The robot has a light sensor 
that consists in a pair of values that indicate the 
distance and angle from the front of the robot to the 
light source and nine proximity sensors distributed 
around the robot body. This task is expressed with a 

simple RF that assigns a positive reinforcement if 
the robot reaches the light and a negative 
reinforcement if it is too far.  

 

 
 

 
 

 
 

Fig. 1 – Environments used for the learning 
process. The big circle represents the light source, 

small circles are rounded obstacles, and straight lines 
are walls. The triangles around the robot represent the 

proximity sensors. 
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a) 
 

 
 

 
b) 

 

 
c) 
 

Fig. 2 – Trajectories of the policies obtained on each 
environment: a) the robot avoids rounded obstacles, b) 
the robot finds a hole in a wall, and c) the robot walks 

through a corridor. 
 

This RF can be expressed with the following 
formula: 

 
 100  if light_dist ≤ Kmin 
rf(s) = -1 if light_dist ≥ Kmax  (1) 
 0 otherwise. 

    
where Kmin and Kmax are thresholds for distance to 
the light. 
 

Using the same RL algorithm and the same 
parameters, we execute the learning process in three 
different environments: an environment with 
rounded obstacles, an environment with a wall and a 
hole on it and an environment with a corridor (see 
Figure 1). For all the experiments, we used the Q-
Learning algorithm [5]. Figure 2 shows trajectories 
of the obtained behavior for each environment. 

If we would have seen the results before reading 
the explanation of the experiment, we would have 
concluded that the robot on Figure 2.a knows how to 
avoid obstacles, the robot on Figure 2.b can find a 
hole in a wall and pass through it and the robot in 
Figure 2.c can traverse corridors. But there is 
nothing in the RF that determines these skills. A first 
question arises: Where does the information needed 
to learn the skill come from? Since the three 
experiments were set up exactly in the same way 
except for the definition of the environment, we can 
conclude that the characteristics of the environment 
and the relationship between the RF and the 
environment implicitly contain the information 
needed to learn the skills. If we give credit to the 
previous sentence, then it should be possible to 
extract this information, and make it explicit in the 
form of a specific RF for the learned skill.  

 
4. EXTRACTING A RF FROM PAST 

EXPERIENCE 
In this section we will show a method to extract a 

RF for a skill from a policy already learned in a 
particular environment.  

Let M = <S,A,T,R> be a Markov Decision 
Process that represent the global task (reach the light 
source in this case) for a particular environment, 
where S is the state set, A the action set, T a 
transition function and R the reinforcement function. 
Consider Sskill, the subset of S where the skill is 
expressed (notice that the skill does not cover the 
entire state space; for example, some parts of the 
environment are common to all the experiments and, 
conceptually, are not part of the skill) such that 
R(s,a,s') = 0 for all s ∈  Sskill. We define a new MDP 
for the skill M' = <S',A',T',R'> where S'=Sskill ∪ τ, 
A'=A and T'(s,a,s') = T(f(s),a,f(s')), where f is 
defined as follows: 
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       f: S → S’ 
 
  s if s ∈ Sskill 

 τ if s ∉Sskill  (2) 
 
 
A RF for a skill can be extracted from a learned 

policy if we can build R' such that π*M'(s), the 
optimal policy for M' is equal to π*M(s), the optimal 
policy for M, for all states s ∈ Sskill. If R' is defined 
as follows, we will show that then the previous 
property holds: 

 
Q*

M(s,a)    if s ∈ Sskill and s’∉Sskill 
0    otherwise 

 
    (3) 

 
where s is the previous state, a the executed action, 
s' the current state and Q*

M(s,a) the Q-value function 
for the optimal policy of M. 

 
We will prove now that, for any policy π, Qπ (s,a) 

in M (using R as the reinforcement function) is equal 
to Qπ(s,a) in M' (using R') for all states s ∈ Sskill, for 
all actions a. From this, it follows immediately that 
the optimal policy for M is also the optimal policy 
for M' for states in Sskill. 

Let Фπ
M#(s,a) be the set of trajectories 

{s0,a0,s1,a1,...} induced by a policy π on an MDP M# 
where s0=s and a0=a. We can map each trajectory in 
the MDP M to a trajectory in the MDP M' with the 
function g: Фπ

M(s,a) → Фπ
M’(s,a), g({s0,a0,s1,a1,...}) 

= {f(s0),a0,f(s1),a1,...}. Notice that g is a surjection 
and, hence, induces a partition in the domain. We 
will call [φ']g the set of all φ ∈ Фπ

M(s,a) such that 
g(φ)= φ'. 

Given a trajectory φ' = {s0,a0,s1,a1,...} ∈ 
Фπ

M’(s,a), consider now the expected return for the 
trajectories φ∈ [φ’]g, or Eφ∈[φ’]g{Ret(φ)}. We will 
prove that this quantity is equal to Ret(φ’). 

If si ∈ Sskill ∀i, there is only one trajectory φ∈ 
[φ’]g, both Ret(φ’) and Ret(φ) are equal to zero and 
the property holds. Otherwise, there exist a state sk+1 
such that sk+1+j = τ for all j ≥ 0. By definition of R', 
Ret(φ’) = γk Q(sk,ak). On the other hand, since the 
first k returns of any trajectory φ ∈ [φ’]g are zero, we 
can rewrite Eφ∈[φ’]g{Ret(φ)} as γk Eφ#∈Фπ,M(sk,ak) 
{Ret(φ#)}, which is equal to γk Q(sk,ak) by definition 
of Q. Then, the property holds for any φ’. 

Finally, observe that Qπ
M'(s0,a0) is equal to 

Eφ’∈ФπM’(s0,a0){Ret(φ’)}, which is indeed equal to 
Eφ’∈Ф π,M'(s0,a0){Eφ ∈ [φ’]g{Ret(φ)}} and, since g induces 
a partition on trajectories in M, and the transition 
probabilities of both M and M' are equal for Sskill, the 

probability of a trajectory φ' ∈ Фπ
M'(s0,a0) is equal to 

the sum of the probabilities of all the trajectories of 
[φ']g. Hence, Eφ'∈Фπ,M’(s0,a0){Eφ∈[φ']g{Ret(φ)}} = 
Eφ∈Фπ,M(s0,a0){Ret(φ)} = Qπ

M(s0,a0). We can conclude 
then that Qπ

M'(s0,a0) = Qπ
M(s0,a0) for all s0 ∈ Sskill. 

The figure 3 shows, as an example, the definition 
of the RF for our experiments, considering Sskill as 
the set of states with nearby obstacles. The dots 
represent final states, and the color of the dots their 
reinforcement value (lighter colors represent higher 
values). 

 

 
     

 
 

Fig. 3 – RF for the skills constructed from the learned 
policy. All dots are final states and the color represent 

the reinforcement value (lighter colors for higher 
values). 

  

5. SCALING UP 
Although the skills learned and extracted in the 

previous section were not trivial, they were 
somewhat limited. Based on the formal background 
presented in this section, we will show an approach 
to scale up our learning method. Our aim is to 

f(s) 

R’(s,a,s’) 
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synthesize more complex tasks incrementally, using 
the learned skills as “building blocks” for more 
complex policies, without altering the main 
characteristic of our proposed learning method: a 
unique RF. 

For this purpose, we will use the Options 
Framework. The Options Framework, developed by 
Sutton, Precup and Singh [13], extends the usual 
notion of action to include options: closed-loop 
policies for taking actions over a period of time.  
Formally, an option consists of three components: a 
policy π, a termination condition β: S → [0, 1], and 
an initiation set I ⊆ S. An option <I,π,β> is available 
in state st if and only if st ∈ I. If the option is taken, 
then actions are selected according to π until the 
option terminates stochastically according to β.  

 

 
 

 
 

Fig. 4 – Trajectories of the policy learned using the 
skills. Lighter traces are displayed when the agent 

executes a skill and black traces when the agent 
executes basic actions 

 
We will use the option framework by defining an 

option for each learned skill. To illustrate this 

approach, we propose an experiment that consists in 
reaching a light source in a maze-like environment, 
with two walls, an obstacle and the light source in a 
corner. The following skills were included as 
options: “find a hole on the left”, “find a hole on the 
right” and “avoid rounded obstacles”. Without these 
skills, the task would be extremely hard to learn 
using the universal RF, and very hard anyway if 
learned with a tailored RF. The results of the 
learning are shown in figure 4. Dark traces are 
displayed when the robot executes basic actions and 
light traces when the robot executes options. Label 1 
indicates the execution of the skill hole on the right, 
label 2 the skill obstacle and label 3 the skill hole on 
the left. We can see that the agent can reach the light 
source from any initial position, choosing the 
appropriate skill on each state. The skill extraction 
method can be applied to the new learned policies as 
well to obtain new higher level skills to be used in 
even more complex contexts, obtaining a scaling up 
methodology. Notice that in the Options Framework 
the control is not hierarchical in the sense that 
options do not replace simple actions, but both can 
be used interchangeably.  

 
5. MOTIVATIONS AND DISCUSSION 
When RL is used in robot learning, some human 

intervention is needed in order to specify what tasks 
are to be learned and, for each task, what will it be 
considered a success and what will it be considered a 
failure. In other words, a human RF designer has to 
figure out which situations and actions should be 
reinforced and the magnitude of each reinforcement 
for each different task. But animals and humans can 
learn some skills completely alone. Understand how 
RL can be used on scenarios with no human 
presence can be promising and very useful for some 
robotic applications. Apart from this theoretical 
aspect, this method has technical advantages, since 
the definition of a proper RF for a nontrivial task can 
be very difficult. RFs are specified by hand and 
often fine tuned by trial and error. There is no 
general, direct method to deduce a RF from a high 
level definition of a task, although research is being 
made in this direction (for example, see [6]). But 
even if such a method exists, the description of the 
task in a high-level language may be ambiguous and 
lead to unexpected behaviors.  

One of the most common behaviors used for 
testing learning algorithms in robotics is obstacle 
avoidance. At first sight, it is not difficult to define a 
reinforcement function for this task: a negative 
reinforcement should be given when a collision is 
produced. But guided with this function only, the 
best (optimal) behavior can be don't move, don't 
matter what happens, rotate in place or move a 
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small step forward and a small step backwards (why 
would the robot take the risk of exploring new and 
challenging regions?). Definitely, this behavior is 
not what anybody expects from obstacle avoidance.  
We think that the problem here is caused by an 
incomplete definition of the task: the correct 
definition should be avoid obstacles while exploring 
the terrain, or avoid obstacles while moving from 
one point to another.  But even if we make some 
effort to specify the task with more detail, there are a 
lot of optimal strategies for obstacle avoidance. For 
example, when the robot approaches an obstacle, it 
can circumvent the obstacle, or it can turn around 
and go away from the obstacle. Both are optimal 
policies, according to the RF we have defined above. 
Which is the behavior the designer is trying to 
achieve? As this example shows, even the 
description of a reinforcement function in natural 
language can be ambiguous and may lead to 
unexpected behavior.  

A second problem arises when we try to 
formalize the function. On real robots, the 
information gathered from the sensors is noisy, 
uncertain, incomplete and sometimes too low-level, 
and it is not easy to map this information to the high-
level concepts used to express the RF in natural 
language. Some approaches to solve this problem 
includes the parameterization of the RF, the 
automatic tuning of the parameters during learning 
([7] and  [8]) and the formalization of the RF in 
terms of the configuration space ([6]).  

Another potential problem produced by the 
translation of the RF from a high-level definition to 
a definition based on the agent's sensors is that the 
mapping may be one-to-many. Since a complete 
observability of the environment is often not 
possible, different situations can be indistinguishable 
by the agent. This phenomenon is called perceptual 
aliasing [9] and can cause that the same action 
executed on the same (sensed) situation can produce 
different results.  

Finally, on some occasions the information 
available for a robot is local. Since tasks are more 
easily expressed in terms of global information, 
sometimes it is not easy to define an RF in terms of 
local data. See for example the Figure 2.b. In this 
environment, a robot with infrared sensors has to 
cross the wall by walking through a whole. How can 
the task been expressed with a RF in terms of local 
sensors?  

As a conclusion, we can say that the definition of 
a proper RF for a task can be difficult. If the robot 
could learn different skills with a general RF and a 
careful design of the environment, and it could 
generate new RFs from past experience, we would 
have a powerful tool for the development of 
autonomous robots with more complex capabilities.  

On the other hand, the influence of the 
environment in the learning process and the obtained 
behaviors has been studied by other authors. Jette 
Randlov has demonstrated the convergence of RL 
algorithms to the optimal policy if the transition 
function (i.e., a formal representation of the 
agent/environment interaction) is modified in a 
continuous manner and converges to the final 
function [10]. Andreas Matt proposes a modification 
to RL algorithms that allows the simultaneous 
learning of a task in different environments, 
obtaining the policy that work better considering all 
the environments [11]. Sebastian Thrun shows a 
method for continual learning, in which the 
dynamics of the environment is learned while the 
agent is learning to solve a particular task [12]. 
When the agent needs to learn another task, this 
information is used to speed up the learning. Despite 
the mentioned works and according to our 
knowledge, there are no antecedents in the study of 
our hypotheses and their consequences.   

 
6. CONCLUSIONS 

In this work, we described the influence of the 
environment in the acquisition of new skills and 
abilities in humans and animals. This influence 
affects what skills are learned, apart from how they 
are carried out. On the other hand, both humans and 
animals can associate rewards with new stimulus, 
based on previous experience and on the chaining of 
previous causes and effects.  

We propose a novel use of Reinforcement 
Learning where different tasks or skills are not 
defined by a Reinforcement Function, but are 
induced by the characteristics of the environment. 
We carried out a series of simple experiments with a 
robot simulator as a proof of concept. On these 
experiments, a robot learned different skills (avoid 
round obstacles, find a whole in the wall and pass 
over it and traverse a corridor) using the same 
learning algorithm and the same reinforcement 
function, but changing the characteristics of the 
environment.  After this experiment, we propose a 
method for the construction of a reinforcement 
function for these skills based on information 
gathered from the value function of the learned 
policy, and we prove that the optimal policy 
according to this new RF, restricted to a subset of 
states, is the same as the original learned policy. 

These preliminary results show the relevance and 
the practical utility of our learning method for the 
synthesis of behaviors in Autonomous Robots, 
especially in environments with no human presence. 
Currently our ongoing  research is focused on some 
problems that are tightly related to the hypothesis 
that we propose in this work, such as: mappings 
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between behaviors and environments, generalization 
and definition of partial orders over environments 
and construction of optimal environments for 
learning a particular task. We are also trying to scale 
up this method, including some type of hierarchical 
learning framework in order to solve more difficult 
tasks and interact with more complex environments. 
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