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Abstract: The amounts of data produced in science are growing exponentially. Traditional methods for storing and 
maintaining the enormous flood of data seem to be no longer sufficient anymore. The complexity of the data that will be 
distributed more and more worldwide, is going to constitute a considerable challenge for their analysis. According to 
Alex Szalay there soon will be produced so many data that they cannot even be stored and maintained anymore. The 
data have to be analyzed in real time in order to extract the relevant information. An outline of the project Large Scale 
Management and Analysis (LSDMA) is given. The status of our research group on distributed real-time computing is 
reviewed. Finally, a novel approach to time-dependent image processing based on local thermodynamical methods is 
presented. Copyright © Research Institute for Intelligent Computer Systems, 2013. All rights reserved. 
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1. INTRODUCTION 
Experiment and theory are pillars for scientific 

discoveries. With the emergence of computers new 
insights originated in simulations. In the meantime, 
data-intensive computing is considered as the fourth 
pillar for scientific discoveries [1].  

In many scientific areas the resolution power of 
experimental devices is increasing strongly leading 
to a steadily increasing flood of data. The Large 
Hadron Collider (LHC) at CERN is used to explore 
the realm of elementary particles. The produced data 
rate of the order of 1 PB/s is reduced considerably in 
the subsequent workflow. Finally, of the order 25 
PB are stored per year. The data are distributed 
worldwide and can be analyzed by thousands of 
scientists using the world largest grid computing 
system [2]. The radio telescope Square Kilometre 
Array (SKA) will allow to explore the Universe with 
thousands of antennas located in South Africa and 
Australia. First experimental results are expected in 
2019. When finished in 2023 SKA will have to store 
of the order of 1 Exabytes per day [3].  

“Soon we cannot even store the incoming data 
stream” (Alex Szalay [4]). Traditional approaches 
for analyzing and maintaining data seem to be no 
longer sufficient anymore. New ideas and tools  
are needed.  

Data-intensive research is sometimes under 
attack. Nobel laureate Sidney Brenner criticizes 
most biology as low-input, high-throughput, no-

output biology [5]. The LHC discovery of the Higgs 
particle showed what Big Data is capable of. 

 
2. LSDMA 

In the joint research and development (R&D) 
project “Large Scale Data Management and 
Analysis” (LSDMA) several Helmholtz centers and 
German universities are supporting scientists in 
analyzing, maintaining, and archiving their data [6]. 
Developing a one-size-fits-all solution is not feasible 
because of the heterogeneous requirements of the 
scientific communities. Therefore, the participating 
communities are divided into five “Data Life Cycle 
Labs” (DLCL).  

 

 
Fig. 1 – Organization of the LSDMA project. 

 
The general goals of the DLCLs are supporting 

scientists in  
- organizing their data and metadata,  
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- establishing easy access and use of local, national 
and international infrastructures for data storage, 
data processing and data archiving, and  
- standardizing data management techniques in the 
scientific communities and their data life cycles.  

The Data Services Integration Team (DSIT) 
develops generic services based on requests from the 
DLCLs: 

- Federated identity management 
- Federated data access 
- Meta data catalogue 
- Archive services 
- Monitoring, modeling, optimization 
- Data intensive computing 

Due to lack of space it is not possible to review 
all LSDMA activities. The following selection is 
fairly subjective. 

Based on the results of a DSIT workshop on AAI 
(Authentication, Authorization, Infrastructure) [7] it 
was decided to develop a distributed identity and 
authorization service based on Shibboleth.  

dCache is a system for storing and retrieving 
huge amounts of data [8]. It manages approx. 50 % 
of the LHC data. Several access protocols are 
supported, e.g. GridFTP, NFS 4.1 (pNFS) and 
WebDAV. Cloud computing may provide a more 
flexible access to scientific data. For that reason, 
dCache is extended by the Cloud Data Management 
Interface (CDMI) [9]. As a cloud application an 
online storage is created called dBoX, to be used by 
the scientific community at DESY. The data are 
stored at DESY Hamburg and, thus, are subject to 
German law. The authentication is based on X.509 
certificates and user/password. dBoX can be 
accessed via mobile devices [10]. 

A lot of research in the DLCLs is based on image 
processing. For example, the embryogenesis of 
vertebrates is studied with microscopes that are able 
to record 3D images with high spatial and temporal 
resolution. A tracking of the evolution of individual 
cells requires high data acquisition rates. By 
developing time-efficient algorithms and using high 
parallelization, data sets of the order of 10 TB from 
a single probe can be processed in less than a day 
[11], see Fig. 2. 

 
3. DISTRIBUTED REAL-TIME 

COMPUTING 
Data reduction in real-time will become 

increasingly important. For example, in photon 
science ultrashort X-ray flashes are used to explore 
nanostructures of probes in material sciences, 
chemistry and biology. Due to principal limitations 
in the experimental setup only a few percent of the 
data are of a sufficient quality for a later analysis 
[12]. In other words, only a fraction of the data 

should be stored and it is advantageous to identify 
useless data as early as possible. A natural strategy 
is to parallelize data analysis tools. In photon science 
diffraction images are taken, i.e. the relevant 
information may be smeared over the whole image. 
Consequently, parallelized image processing has to 
rely on the exchange of intermediate results. 
However, an efficient exchange of intermediate 
results is a challenging task, as large parallel systems 
are usually built of subsystems connected by 
heterogeneous networks and the memory may be 
distributed between the subsystems.  
 

 
Fig. 2 – A Zebra fish embryo after 24 hours [11].  

 
GriScha is a chess program running on 

distributed environments, e.g. a grid or cloud 
computing system [13]. It is an ideal test bed for 
exploring various aspects of distributed real-time 
computing. A Gatekeeper installs a pilot job on each 
participating worker node (WN), see Fig. 3. When 
running on a worker node the pilot job starts a chess 
engine client and, thereby, establishes a network 
connection to the external MasterNode. Worker 
nodes are protected by firewalls and cannot be 
accessed from the outside. Pilot jobs are used to 
overcome firewalls in that these do not block 
outbound connections, in general. The MasterNode 
distributes the game tree to the worker nodes which 
analyze their subtree for some period of time 
(default 15 s) and, then, send their best move back to 
the MasterNode. The MasterNode selects the best of 
all moves offered by the worker nodes. The chess 
engine on the worker nodes is very simple and 
evaluates a chess position like a beginner. No 
external intelligence is used, i.e. no data base of 
chess openings, no endgame tablespaces, no 
database of chess games. The essential question is: 
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can you make many beginners stronger than a 
master? The challenge is to establish a collective 
communication in huge distributed environments.  

 

 
Fig. 3 – GriScha: chess in the grid. 

 
The communication between the MasterNode and 

the worker nodes is based on SIMON, an extension 
of the RMI network protocol that allows a server to 
invoke methods on a client using the same socket 
connection [14]. 

In order to explore the capabilities of SIMON for 
exchanging large amounts of data, random message 
strings were send from a client over a LAN to a 
server. It turns out that there are jumps in the 
response time at some specific message lengths, see 
Fig. 4. A discontinuous response behavior is hardly 
acceptable in real-time computing. 

 

 
Fig. 4 – Message length s versus response time t. 

 
The origin of the discontinuities is unclear. They 

depend neither on details of the network, operating 
system, versions of the Java virtual machine  
and SIMON [15], nor on the garbage collection  
in Java [16]. 

Communication tools on huge networks are 
based on a decentralized organization and use Peer-
to-Peer (P2P) protocols. As an alternative to SIMON 
the open source P2P protocol JXTA was 

implemented in GriScha [17]. However, the future 
of JXTA is unclear as Oracle announced its 
withdrawal from this project. 

After some moves a previously obtained game 
position may reappear again. To improve the playing 
strength of GriScha moves already analyzed should 
not be reanalyzed a second time. Instead, they 
should be stored in a shared memory accessible by 
worker nodes. When a worker node realizes that a 
certain move is noted it can cut out a subtree and 
analyze in more depth the remaining part of the 
game tree. JuxMem is a data-sharing grid service 
based on JXTA [18]. However, the future of 
JuxMem is also unclear. In Ref. [19] a design of a 
grid-compatible shared memory is suggested that is 
currently being realized. 

The communication protocol XMPP is used to 
exchange messages in near real-time. The time 
needed for simultaneously sending messages from 
clients to a server is increasing linearly with the 
number of clients even for very short messages of 
only one Byte and is significantly longer compared 
to SIMON [20, 21]. Therefore, XMPP is of limited 
attractiveness for large distributed real-time systems. 
 

 
Fig. 5 – Speedup for message exchange: total message 
size N = 2 GB (left), N = 16 MB (right). The curve is a 

least-square fit to the data using Amdahl’s law (1). 

 
Speedup is an essential quantity in parallel 

computing. It is defined by the ratio S(p)=T(1)/T(p) 
where T(p) is the execution time of a tool running in 
parallel on p devices. According to Amdahl’s law 
the speedup is limited by the sequential part of a tool 
since T(p) = Tseq + Tpar/p. This formula has to be 
modified if latencies due to message exchange 
cannot be neglected, 
 

T(p) = Tseq + Tpar/p + (p-1) Tmsg. (1) 
 
Let us assume that the exchange of intermediate 

results needs a transport of N/n Bytes of data from n 
worker nodes to an external server. In Fig. 5 speedup 
measurement results for the grid system DECH with 
up to 128 worker nodes are shown. The worker 
nodes of DECH are located at research institutes and 
universities in Germany and Switzerland. The results 
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indicate that in the case of data exchange one should 
be aware of an upper bound for parallelization. 
Beyond this bound the system becomes inefficient as 
the speedup is going down. 
 

4. TIME-DEPENDENT IMAGE 
PROCESSING 

4D imaging is applied in various sectors. In 
medicine, for example, it is used to improve the 
success of a radiation therapy by aligning a radiation 
source along the motion of a tumor [22]. The 
upcoming European XFEL will produce up to 
27,000 light pulses per second and new high-
resolution detectors will open new research areas in 
photon science. It will be possible to take movies not 
only from chemical reactions but also from the 
motion of quantum objects like electrons [23]. 

In the following we present a novel method for 
identifying “regions of interest” in dynamically 
deformed objects that is based on statistical  
physics. For simplicity we concentrate on one-
dimensional systems.  

The left picture of Fig. 6 shows the motion of an 
object of initial length L. The object is compressed 
and after some time t it is decompressed. From the 
evolution of the “texture” of the object trajectories 
can be determined. In this case, the trajectories have 
the form 

 
xt = x0 cosh(gt) + po/(gm) sinh(gt). 

 
The momentum trajectories are given by 

pt=mdxt/dt=pocosh(gt)+mgx0sinh(gt). The initial 
momentum is proportional to the initial position, 
po=axo. 

The transformation defined by 
 

X(x,p,t) = [x+t p/m]cosh(gt) –[p/(gm)+gtx] sinh(gt) 
P(x,p,t) = p cosh(gt) – mgx sinh(gt). 

 
is canonical.  

Proof (sketch). The assertion follows from the 
fact that there is a generating function F(X,P,t) such 
that the Poincaré-Cartan 1-form 
 

p dx – H dt = P dX – P2/(2m) dt + dF(X,P,t) 
 
is fulfilled where H= p2/(2m) – (m/2) g2 x2 is the 
Hamilton function. 

From the Poincaré-Cartan 1-form follows that the 
trajectories with respect to the new coordinates are 
straight lines Xt = x0 + (p0 /m) t. 

The entropy of a 1-dim. ideal gas consisting of N 
particles enclosed in a volume V reads (W. Pauli) 
 

S = kB N [ ½ ln(E/N) – ln(N/V) + s0 ] 

where E = ½ N kB T is the internal energy and T the 
temperature. For a local description we introduce the 
densities s=S/V, n=N/V, and e=E/V. Then  
the temperature  
 

T(e,n) = (2/ kB)  e/n 
 
and the entropy density  
 

s(e,n) = kB n [½ ln(e/n) – ln(n) + s0 ] (2) 
 

can be represented in terms of the particle density n 
and energy density e. 

The texture of an object is given by the initial 
gray values of an image of the object. We interpret 
the texture as a state function ρ(x0, p0) describing the 
statistical distribution of the initial values x0, p0. The 
state function is positive, ρ(x0,p0) ≥ 0, and 
normalized, ∫ ρ(x0, p0) dx0 dp0 =1. The state function 
of the left picture of Fig. 6 has the form 
 

ρ(x0, p0) = f(x0) θ(x0)θ (L-x0) δ(po-a xo) 
 
where θ(x) is the Heaviside step function and δ(x) 
the Dirac function. The shape of the texture  
is given by 
 

f(x0)=[(3/2)4+x0(L-x0) (x0-L/2)2]/[L(3/2)4 +L5/120]. 
 

In statistical physics the time evolution of the 
mean value of an observable A(x,p,t) can be 
determined in the Heisenberg picture 
 

<At> = ∫ A(xt,pt,t) ρ(x0, p0) dx0 dp0. 
 
Consider the point-like observables 
 
nx*(x) = δ(x-x*), ex*(x,p,t) = 1/(2m)P2(x,p,t)δ (x-x*). 

 
Their expectation values ex*,t and nx*,t are inserted 

into Eq. (2) in order to obtain the local entropy sx*,t 
=s(ex*,t , nx*,t ). 

The two local maxima of the particle density 
follow the trajectories and are most prominent when 
the object is maximally compressed, see Fig. 6 (left 
panel). The maximum at the bottom is larger than 
the local maximum at the top. The local entropy 
shows also two maxima, see the yellow regions in 
Fig. 6 (right panel, the blue colors represent smaller 
values). However, the entropy is maximal in the top 
region where the curvature of the trajectories is 
stronger. In other words, the local entropy may be 
useful for rating textures. 

Fig. 7 (left panel) shows that the total entropy is 
not constant. As long as the object is compressed the 
entropy is decreasing.  
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The energy density ex*,t and the particle density 
nx*,t are conserved. The resulting continuity 
equations can be used to derive a balance equation 
for the local entropy that, in turn, allows to extract 
the entropy production σ [24]. As can be seen in 
Fig. 7 (right panel) the entropy production changes 
its sign in certain subregions of the system and in the 
course of time. 
 

 
Fig. 6 – Particle density (left) and local entropy. 

 

 
Fig. 7 – Total entropy (left) and entropy production. 

 
5. CONCLUSION 

LSDMA is a project on Big Data in science. It 
follows a dual approach by developing community-
specific and generic services. To handle the rapidly 
growing deluge of data real-time analysis of Big 
Data will become increasingly important. In 
distributed real-time computing data exchange may 
limit the degree of parallelization.  

A novel method for specifying “regions of 
interest” in time-dependent image processing is 
presented which uses methods of statistical physics. 
It is applied to a simple 1-dimensional example. A 
generalization to higher dimensions and more 
involved dynamics with time-dependent Hamilton 
functions is feasible.  
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