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Abstract: The prevalent evaluation criterion for indoor local positioning systems (ILPS) is the achievable accuracy in 
terms of Euclidean distance between estimated and true position. Systems relying on received signal strength (RSS) 
ranging often use a distributed collection of RSS sensor data at reference nodes and a centralized position estimation. 
For this direct remote positioning, the accuracy is dependent on the reference node density and thus, is indirect 
proportional to the achievable coverage. To split up the dependency between these two criteria, we propose a distributed 
weighted centroid localization (dWCL) strategy with a hierarchical sensor data field bus. Accuracy and coverage of 
centralized and distributed WCL algorithms are compared for a one-dimensional tracking simulation and 196 reference 
nodes, arranged in up to 28 gateway segments. Using distributed computations, the localization system’s coverage is 
increased by factor ten while the location estimation error increases only slightly. Copyright © Research Institute for 
Intelligent Computer Systems, 2013. All rights reserved. 
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1. INTRODUCTION 

The establishment of an active protection system 
for the monitoring of personnel in underground coal 
mines is crucial to save human lives and therefore, is 
an essential part of the development strategy of 
leading mining companies. The objective for an 
indoor local positioning system (ILPS) is to cover 
the whole area with the same quality of service, 
determined by the localization accuracy. 

In underground coal mines, three different 
mining methods are used which define the structure 
of the mining area [1]: 
• Cut-and-fill mining is used for irregular coal 

zones with steep dips. The sectional mining 
area consists of several types of tunnels. 

• Room and pillar mining is used for relatively 
flat-lying coal deposits, e.g. following a 
particular stratum. The mining area looks like a 
large room with randomly shaped pillars. 

• Longwall mining is used if the coal seam has a 
large and thin shape. This specialized type of 
mining process is characterized by minimal 
manual handling and highly productive 
automated control systems.  

For longwall mining, the complexity of the self-
advancing mining equipment, e.g. the electro-

hydraulic shields for ceiling, is a mortal danger for 
maintenance staff. A direct remote positioning [2] 
for the longwall application using the received signal 
strength (RSS) of radio signals is shown in Fig. 1.  

A set of fixed reference nodes receive the RF 
packets of mobile blind nodes and transmit the 
corresponding RSS values to a central data 
concentrator [3]. For the data backbone, the well-
known and failsafe CAN bus is used which offers 
line-topologies up to the kilometers range and data 
rates up to 1 Mbit/s [4]. At the data concentrator, the 
user positions are calculated and used to intervene in 
the control system of the mining process and stop 
regarding shields.  

The number of shields which have to be blocked 
depends on the accuracy and availability of the 
localization system. RF diversity for an improved 
availability of radio localization has been analyzed 
and successfully implemented in [5]. The 
localization accuracy is dependent on the reference 
node density and thus, is indirect proportional to the 
achievable coverage. Since a certain accuracy is 
required for a productive mining, the maximum 
distance between the reference nodes is limited, e.g. 
to a few meters for sub-meter accuracy [3]. For the 
used CAN bus, the maximum number of nodes on a 
bus segment is limited to 32 due to bus load 
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constraints of typical transceiver circuits [4]. 
Assuming a reference node distance of 3 m, this 
means an overall system coverage of only 96 m 

which is not sufficient for the 300 m longwall 
application, shown in Fig. 1. 

 

 
Fig. 1 – Indoor radio localization for personnel tracking in underground longwall coal mining using direct 

remote positioning (20 users along 300 m). 

 
To break up the dependency between the two 

criteria accuracy and coverage, we propose a 
distributed weighted centroid localization (dWCL) 
strategy with a hierarchical sensor data field bus 
in [6]. In the current paper, we enhance the 
underlying RSS simulation model and investigate 
the accuracy limits of RSS-based localization. 

The remainder of the paper is organized as 
follows. In section 2, the general classification of 
indoor localization and a taxonomy of RSS-based 
positioning are presented. The radio propagation 
model and consequential accuracy issues are 
analyzed in section 3, in particular for the 
propagation in tunnels. In section 4, the localization 
system’s coverage is deduced from the CAN 
specifications, especially addressing practical CAN 
cable lengths and data rates for centralized and 
distributed location estimation strategies. The 
distributed weighted centroid localization (dWCL) 
approach is presented in section 5. In section 6, we 
compare the centralized and distributed localization 
performance using a one-dimensional tracking 
simulation. In the last section 7, the results are 
discussed and investigated in terms of an outlook for 
further system developments. 

2. INDOOR RSS LOCALIZATION 
Modern indoor local positioning systems for the 

tracking and navigation of people and objects show 
a variety of applied sensor technologies [7]. The 
main evaluation criteria are the accessible coverage 
and accuracy of the position estimations. An 
overview of available technologies with a taxonomy 
according to these two criteria is deduced from [8] 
and shown in Fig. 2. Of course, also other criteria 
like costs for installation and maintenance, the 
scalability, the user acceptance and specific system 
limitations should be taken into account. A further 
taxonomy of localization techniques and system 
implementations according to these criteria are 
proposed in [9] and [10]. 

In Fig. 2, the desired coverage and accuracy for 
the personnel tracking in the longwall mining is 
highlighted. Furthermore, the dashed graphs indicate 
systems with manual sampling like geodetic 
surveying systems. The dotted graphs indicate 
systems for typical outdoor use, while their use in 
indoor scenarios is limited due to intensive signal 
attenuations. The light solid graphs indicate systems 
which are limited to line-of-sight (LOS) scenarios. 
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All shaded graphs indicate systems which are more 
or less applicable for non-line-of-sight  
(NLOS) conditions. 

 

 
Fig. 2 – Overview of common localization sensor 

techniques with a classification according to coverage 
and accuracy, cf. [8]. 

 
For harsh indoor environments like a longwall 

coal mine, the received signal strength (RSS) of RF 
waves, e.g. using the worldwide harmonized 2.4 
GHz ISM band, is a low-cost but valuable range-
based localization sensor [11]. The performance of 
RSS-based localization is given by the spider chart 
in Fig. 3. As also stated in Fig. 2, accuracy and 
coverage are at medium level. The low-cost 
hardware and low algorithmic complexity together 
with low communication overhead enable an overall 
low cost solution. 

 

 
Fig. 3 – Taxonomy of RSS positioning. 

 
3. RSS MODEL AND ACCURACY LIMITS 

To find a relationship for the distance-dependent 
RSS and to compare the accuracy of centralized and 
distributed position estimation strategies in 
multipath fading environments, it is necessary to 
have a look at the indoor radio signal propagation. 

In this context, the limitations of RSS-based 
localization will be discussed using latest research 
results from literature and own path  
loss experiments. 
 
3.1. LARGE-SCALE PATH LOSS 

For both, indoor and outdoor radio channels, the 
distance-depending average path loss shows a 
logarithmic dropping of power with a linear 
increasing distance according to the LOS graph, 
shown in Fig. 4. The log-distance path loss 
model [12] is used to describe the average power at 
the receiver. With (1) the average path loss )(dPL  
(in dB) over a LOS distance d  between transmitter 
(TX) and receiver (RX) is given by the reference 
path loss )( 0dPL  over a reference distance 0d  and 
the environment-specific propagation coefficient n . 
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The value of )( 0dPL  is influenced by the 

effective radiated power (ERP) of the RF transmitter 
and the gain of the transmitting and receiving 
antenna [6]. The slope of the path loss is given by n  
and is influenced by the specific environmental 
propagation conditions and the used frequency as 
given by experiment results in Table 1.  

 
Table 1.Path loss coefficients for typical indoor 

environments. 
Frequency Reference PL coeff. n 

900…1900 MHz Office [12] 2.4…2.6 
2000 MHz Office [13] 2.5…4.0 
2400 MHz Office [14] 1.9…3.8 
5500 MHz Office [14] 1.7…5.0 
868 MHz Factory hall [5] 2.1…2.9 

1300 MHz Factory hall [15] 1.9…2.4 
2440 MHz Factory hall [5] 1.9…3.0
868 MHz Corridor 2.4…2.8 

2440 MHz Corridor 1.8…2.3 
 
In [15] and [12], values for n  between 1.9 and 

2.6 are given for frequencies between 900 MHz and 
1900 MHz in obstructed indoor environments where 
not only NLOS conditions but also multipath signal 
fading affects the RF signal propagation. For 2000 
MHz radio signals in an obstructed office 
environment, values between 2.5 and 4.0 are given 
in [13]. In the experimental investigations in [5], the 
path loss coefficient was determined with n=2.31 for 
868 MHz and n=2.62 for 2400 MHz. All these 
values for the propagation coefficient were found by 
experiment and are typical values for spacious 
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indoor fading environments. They all show the 
general behavior of an increasing path loss and 
larger uncertainties for larger frequencies. 

The mayor implication of the average path loss 
for the RSS-based ranging is an imbalanced 
resolution of the RSS over the distance. With usual 
receiver hardware, the RSS is sampled over a certain 
part of the received packet and stored as an 8 bit 
RSS indicator (RSSI) value which directly scales 
with the signal strength with 1 dBm resolution [16]. 

For RF communication systems with the purpose 
of data transmission like WLAN, the slope should be 
very flat to guarantee the same quality of operation 
over a large area. For RSS-based ranging and 
localization the opposite behavior is preferable [17]. 

Depending on the distance to the transmitter, two 
neighboring RSSI will translate into completely 
different distances. Near the transmitter, where the 
slope of the path loss graph is very steep, the 1 dBm 
resolution corresponds to a small distance in the 
centimeters range. Thus, the limited resolution will 
not lead to a downgrading of localization accuracy. 
Looking at the 2440 MHz path loss in Fig. 4, the 
steep slope from 1 m to 5 m is well suitable for RSS 
ranging. Far away from the transmitter, the slope is 
very flat and 1 dBm deviation corresponds to several 
meters RX-TX separation. The 2440 MHz path loss 
in Fig. 4 shows this flat behavior without larger 
signal dropouts for distances between 16 m and 24 
m. Here, the resolution of the range measurements 
will lead to a coarse grained location estimation. 

 

 
Fig. 4 – Path loss for 868 MHz and 2440 MHz  

in a narrow corridor. 

 
3.2. SMALL-SCALE FADING 

The distance dependent path loss from (1) is an 
average value and therefore not suitable to entirely 
describe a real channel. In general, a Rayleigh 
distribution of the RSS is assumed for NLOS 
conditions. When there is also a dominating LOS 
component, the fading is modeled with a Rician 

distribution. The probability density function of the 
Rician distribution is given by 
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where θ  is the amplitude of the superimposed RSS 
from all multipath components and has a scaling 
functionality. The parameter v  is the peak amplitude 
of the LOS component. For 0=v , the Rician 
distribution reduces to a Rayleigh distribution. Thus, 
the Rician distribution is a generalization of the 
Rayleigh distribution. For ∞→v , the distribution 
reduces to a Gaussian distribution. The ratio of the 
LOS component compared to the superimposed 
signal can be expressed by the Rician K-factor 
according to 
 

dBvdBK 2

2

2
log10)(

θ
= , (3)

 
The environment-specific values of v  and θ  can 

be evaluated with an empirical analysis of multiple 
path loss observations using a two moment-based 
estimator as described in [18]. 

Several implications for RSS-based ranging and 
localization arise from the small-scale signal 
behavior. It is obvious, that the signal distribution in 
random environments also is random and the 
relation between distance and RSS could not be 
expressed by an equation [19]. Even with a training 
of the path loss coefficient n , RSS localization is 
known to be error-prone in multipath environments. 
The expected performance bound for a wide variety 
of algorithms shows a median location estimation 
error of three to four meters [20]. For changing 
environments, an automatically adjustment of the 
path loss coefficient should be used [21]. 

For RSS, the computational complexity of the 
location estimation is not proportional to the gained 
accuracy. Especially fine grained algorithms like 
least squares or maximum likelihood approaches 
show poorer accuracies than approximative ones 
[22]. Weighted centroid localization, for example, 
only needs a few computations and is especially 
suitable for erroneous range-sensors [3]. 
 
3.3. PROPAGATION IN TUNNELS 

For the application of personnel tracking in 
longwall mining the environment can be seen as a 
tunnel with a uniform circular cross-section. When 
the diameter of the tunnel is small, it can be regarded 
as an over-sized imperfect waveguide. The 
propagation will exhibit the guided wave 
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characteristics and the propagation loss can be even 
smaller than that in free space [23]. 

Some additional assumptions for the small-scale 
behavior have to be considered. As for other indoor 
environments with a dominating LOS component, 
the fast fluctuations are modeled with a Rician 
distribution [24]. In [1], experiments with 450 MHz 
and 900 MHz support the theoretical waveguide 
model. The fast fluctuations are only apparent in the 
field near the transmitting antenna. As the frequency 
increases, the fast fluctuating region is prolonged. 

Since the waveguide effect is larger for smaller 
wavelengths, the general large scale behavior of an 
increasing path loss for larger frequencies does not 
hold in tunnel environments. The waveguide acts as 
a high pass filter, so signals with higher frequency 
attenuate slower. This effect is examined in [1] and 
also by our experiment results in a narrow corridor. 
In Fig. 4, we compare the resulting path loss for 
2440 MHz and 868 MHz. For comparison, both 
graphs are matched to the same reference path loss 

dBmmPL  67) 1( −= . For 2440 MHz, the path loss 
shows a slighter dropping than for 868 MHz. For 
distances above 20 m, the path loss is even lower 
than the LOS path loss for free-space propagation. 

To sum up the influence of indoor radio 
propagation on the accuracy of RSS-based ranging 
and localization, in particular for one-dimensional 
environments like mining tunnels, we propose the 
following guidelines: 
• For tunnels with waveguide characteristics, the 

larger frequency has a better communication 
range which is non-intuitive when looking  
at outdoor and open space indoor  
radio propagation. 

• The channel bandwidth should be chosen as 
large as possible to suppress small-scale fading. 

• For a proper RSS resolution, the distance 
between the mobile BN and the reference nodes 
shall be limited. This also limits the distance 
between the RNs and the overall coverage  
of the system. 

 
4. SENSOR BACKBONE COVERAGE 
To define the region which can be covered by the 

reference infrastructure, it is necessary to make 
some assumptions which are given by the ISO CAN 
specification [4] and the surrounding conditions of 
the application: 
• The achievable location estimation accuracy is 

correlated to the distance between the reference 
nodes. Real life experiments have shown that 
useful system accuracies can be realized with 
node distances up to 3 m [3, 5]. 

• The CAN cable length is three times the node 
distance. When the distance between the 

reference nodes is 3 m, for a suitable mounting 
each CAN cable between the nodes has to be 
9 m in length. 

• A deterministic communication without large 
latencies is feasible with 50 % bus load. Thus, 
the practical CAN data rate is two times the 
CAN gross data rate. 

• For a more generalized applicability of the 
investigations, the maximum number connected 
nodes on a single CAN bus is limited to 32. 
This criterion fits the demands of the electrical 
loads using typical low-speed and high-speed 
CAN transceivers.  

With these predefined assumptions and the 
relationship between CAN cable length and CAN 
data rate (cf. Fig. 5) it is possible to define the 
maximum coverage of the one-dimensional 
localization system. 
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Fig. 5 – Maximum specified data rate and cable length 

for CAN bus lines [4]. 

 
The number of reference nodes (influencing the 

accuracy) and the number of simultaneously covered 
blind nodes affect the required data rate. The net 
data rate to collect the sensor information from n  
blind nodes using m  reference nodes is given with 

 

BitfnxmDR posnet  64
8 ⎥⎦
⎤

⎢⎣
⎡= , (4)

 
where x  is the number of bytes for each sensor and 

posf  is the position update rate. For the CAN gross 
data rate, no generally valid value exists. The CAN 
header and inter frame gap have deterministic 
values. Since the number of stuff bits is dependent 
on the actual bit stream, the overall number of bits 
per CAN message is variable. A worst case scenario 
derived from the bit timing considerations in [25] 
leads to 
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The practical data rate for a nearly deterministic 
communication rate depends on the specific 
application with allocation of more or less high 
prioritized message identifiers. The maximum 
tolerated bus load for the given application is 50 % 
Thus, using (6) the practical data rate is two times 
the gross data rate. 

 

5.0det
grossDR

DR ≥  (6)

 
4.1. CENTRALIZED LOCATION 
ESTIMATION 

The infrastructure components for the centralized 
location estimation are shown in Fig. 6. Up to 32 
reference nodes (RNs) receive radio packets from up 
to 20 blind nodes (BNs) twice a second. The 
according RSS values are stored with one Byte and 
are transmitted to the data concentrator PC using a 
single CAN bus. In Fig. 6, an example distribution 
of the RSS values from all RNs is shown for a single 
BN located at RN 14. 

 

 
Fig. 6 – Infrastructure components for centralized 

location estimation of 20 blind nodes (BNs) using RSS 
values from 32 reference nodes (RNs). 

 
A net data rate of skBitDRnet / 3.12=  has to be 

realized by the CAN backbone using (4). The gross 
data rate with additional CAN header, bit stuffing 
and inter frame gap is skBitDRgross / 2.26= . As 
stated above, for an error-free communication 
without the suppression of less prioritized CAN 
packets, the data rate should be twice as large as the 
theoretical gross bus data rate. With 32=m  RNs 
and 20=n  mobile BNs, a practical CAN data rate 
of skBitDR / 4.52det =  leads to a specified CAN 
data rate of skBitDRCAN / 125= .  

Thus, the theoretical maximum CAN cable length 
is 530 m with a corresponding maximum system 
coverage of approximately 177 m. Furthermore, the 
maximum number of 32 connected nodes on a single 
CAN bus together with the given node distance of 
3 m limit the overall system coverage to 96 m. 
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Fig. 7 – Hierarchical infrastructure for decentralized 
location estimation of 20 blind nodes (BNs) using 196 

reference nodes (RNs) which are connected over  
14 gateways (GWs). 

 
4.2. DISTRIBUTED LOCATION 
ESTIMATION 

To increase to coverage of the localization 
system, the distributed RSS localization uses 
additional infrastructure components to realize a 
hierarchical backbone bus. Up to 14 gateways with 
two CAN interfaces are used to connect up to 196 
reference nodes to the data concentrator (cf. Fig. 7). 

The embedded gateway architecture is shown in 
Fig. 8. To meet the requirements of ignition 
protection for the use in explosion-risk areas, the 
two CAN interfaces are electrically isolated. The 
CAN 1 transceiver has a separate 5 V power supply 
and is connected to the Cortex M4 system MCU via 
opto-couplers. Beside a large set of peripheral 
components, the MCU contains two dedicated  
CAN controllers. 

 

 
Fig. 8 – Embedded gateway architecture, top side of 

PCB showing CAN transceivers and Cortex M4 MCU. 

 
For the centralized localization computation 

without data compression in the gateways, the PC-
backbone CAN has to offer a minimum of 

skBitDRnet / 3.75= . The theoretical gross bus data 
rate with additional CAN header and inter frame 
gaps has to be larger than skBitDRgross / 4.159= . 
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With 196 RNs, organized into 14 gateway subnets 
and 20 mobile BNs, this results in a practical CAN 
data rate of skBitDR / 8.318det = . For the given 
scenario we have to set skBitDRCAN / 500= , which 
is defined in the CAN specification. Looking to Fig. 
5, this data rate limits the maximum cable length to 
130 m. With this hierarchical bus concept, the 
maximum number of reference nodes can easily be 
scaled according to the application needs. Even 
though, the maximum cable length of 130 m for the 
top hierarchical bus-segment limits the system's 
coverage to less than 43 m. For the given application 
example of localization in the underground mining, 
at least 300 m coverage along a line of reference 
nodes is required.  

To obtain a larger coverage, the backbone cable 
length has to be increased and thus, the backbone 
data rate has to be decreased by the same order of 
magnitude. The required data compression with a 
distributed location computation on the gateways is 
described in the following. For each BN, the 
gateways process the 14 byte RSS data (from all 
connected RNs) to compute a 1 byte subnet position 
information. Only the subnet position information 
are transmitted to the data concentrator PC. With 
this data compression by factor 14, the required data 
rate of the top hierarchical bus-segment is reduced 
significantly. 

For the given example, the data rate of all 15 
CAN segments (14x RN-side, 1x PC-backbone) can 
be set to skBitDRCAN / 50= . Thus, the specified 
maximum cable length for each segment is 1,300 m, 
resulting in an overall system coverage of 433 m. 
Compared to the centralized localization 
computation the coverage of the localization system 
is increased by factor ten. The detailed location 
computation steps on the gateways and the PC will 
be described in detail in the following section. 

 
5. DISTRIBUTED WCL ALGORITHM 
In the previous chapter, we introduced a 

segmentation of the sensor data backbone with data 
compression in the gateways. The data compression 
requires a distributed computation of a subnet BN 
positions and an additional weighting factor, 
denoting the influence of each subnet on the final 
centralized computation. 

At all gateways, the subnet BN position is 
calculated according to the SAWCL algorithm given 
in [26]. First, the distances between all receiving 
RNs and the BN are calculated using 
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where the reference signal strength A  and the path 
loss coefficient n  are taken from the corridor path 
loss experiment (cf. Fig. 4). The distances are used 
to compute a weight according to  
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A weighting factor of 0.3=g  was found to be a 

good value for obstructed indoor environments [27]. 
The final calculation of the local position )(xdi  

of BN i  is given by the weighted centroid of all RN 
positions )(xBj  using  
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This one-dimensional position is rounded to an 

integer value, representing the ID of the nearest RN. 
Thus, using 14m =  RNs, the rough position fits in a 
4 bit representation when it is transmitted to the data 
concentrator PC. Additionally, the gateways process 
the 1 byte RSS values from all m  connected RNs to 
compute a specific weighting factor iv  with 4 bit 
representation. The weighting factor iv  is calculated 
using the average RSS of all m  RNs according to 
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where A  is the reference RSS in a distance of 1 m 
and minS  is the receiver's sensitivity level. The value 
of iv  is normalized to a range of 0..15 to fit into the 
4 bit representation. 

The gateways forward the compressed data 
( )ip x  and iv  to the data concentrator PC over the 

backbone CAN. On the PC the information from all 
gateways are processed to calculate the final position 

( )iP x  of the mobile BN with ID i  using 
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The impact of each segment position ( )ip x  can 

be tuned by modifying the weight iv  according to 
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' k
i iv v= , (12)

 
where k  is an additonal weighting factor. Thus, it is 
possible to adapt the position estimation algorithm to 
different scenarios with varying infrastructure node 
setups. Beside the node distance, the ratio between 
the overall number of nodes and the nodes per 
subnet influence the optimum value of k . 
 

6. TRACKING SIMULATION 
For detailed investigations of different bus 

topologies, a simulation of the distance depending 
RSS is better suited than experiments, since the 
setup for hundreds of reference nodes would take a 
lot of time and space. Furthermore, real world 
experiments also limit the modification of process 
parameters (e.g. number of gateways), since the raw 
values are already processed on the gateways and 
only position information are available at the data 
concentrator PC. Thus, one set of measurement 
values cannot be analyzed with different gateway 
utilizations. For a parameterized computation using 
simulations of RSS distributions this is not an issue. 

For the distance depending RSS we take the path 
loss model shown in Fig. 4. The average path loss is 
given with the log-distance model according to (1). 
For the varying part of the model we assume Rician 
fading using (2) and a Rician K-factor of 17.7 dB . 
As shown in the application's environment in Fig. 1, 
there exist a dominating LOS component of the 
superimposed RSS and only a few NLOS conditions 
might occur (e.g. shadowing due to human body). 
Thus, Rician fading is more suitable than Raleigh 
fading to model the multipath fading channel [18]. 

The infrastructure for the tracking simulation 
contains a line of 196 reference nodes 1 m beside the 
track and with 1 m node-to-node distance. A mobile 
blind node moves with a speed of 0.5 /m s  along 
the track and periodically sends out 2.4 GHz RF 
packets every 2 Hz. The reference RSS A  in a 
distance of 1 m is set to 67 dBm−  and the receiver's 
sensitivity minS  is 110 dBm− . 

In Fig. 9, the RSS values of all 196 reference 
nodes are plotted for a time duration of 392 s (784 
iterations) and a blind node's linear motion from RN 
1 to RN 196 (195 m overall track length). The color 
of the scatter plot indicates the RSS, where red 
corresponds to a high value near the reference path 
loss and dark blue to a relatively low RSS. Note that 
the z-axis starts at min 110S dBm= −  and all values 
below this threshold are clipped off and neglected 
for the simulation model. 

To figure out the influence of the distributed 
location estimation, two different utilizations are 

compared in the following. A centralized WCL 
computation (cWCL), corresponding to m=1 
gateway and a distributed computation (dWCL) with 
m=14 gateways. 

 

 
Fig. 9 – Received signal strength distribution for one-

dimensional tracking simulation of a mobile blind 
node (BN) along 196 reference nodes (RNs). 

 
The location estimation error (LEE) is given by 

the Euclidean distance between the estimated 
position and the true position, which is the absolute 
difference of x-positions in the one-dimensional case 
as given with 

 

2
( )LEE x x x x x= − = −  (13)

 
In Fig. 10, the accuracy of both configurations is 

compared for the partial track between RN 37 and 
RN 87, covering three complete subnets of 14 
reference nodes in the distributed localization 
scenario.  

 

 
Fig. 10 – Location estimation error (LEE) for one-
dimensional tracking simulation of a mobile blind 

node (BN). Comparison of centralized computation 
(cWCL) and distributed computation (dWCL) with 
m=14 gateways (extract showing 200 iteration steps 

for BN movement from RN 37 to RN 87, passing four 
gateway segment borders). 
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For most of the position estimations in the middle 
of a subnet there are only small differences between 
the two configurations. At the segment borders, the 
distributed computation has higher errors than the 
centralized computation. 

A detailed comparison of both configurations is 
given with the error cumulative distribution 
functions in Fig. 11 and detailed error statistics in 
Table 2. 

 

Table 2. Comparison of 3-sigma location estimation 
error (in m) for centralized and distributed weighted 

centroid localization. 
error cWCL 

m=1 
dWCL 
m=1 

dWCL 
m=4 

dWCL 
m=14 

median 0.48 0.50 0.50 0.54 
sigma 0.22 0.26 0.39 0.33 

3-sigma 2.78 3.00 3.70 3.14 
maximum 3.56 4.00 5.54 4.10 

 

 
Fig. 11 –Cumulative location estimation error  

for 196 m linear track (empirical value), comparing 
centralized computation (cWCL) and distributed 

computation (dWCL) with m=14 gateways. 

 
The influence of the number of gateways is 

analyzed in Fig. 12, where the 3-sigma error and the 
achievable coverage are shown for up to 28 
gateways. The optimum accuracy for dWCL is 
reached with m=14 gateways. With the 
considerations in section 4, a CAN data rate of 
50 kBit/s is sufficient to transmit all necessary sensor 
information. Looking at Fig. 5, a localization 
coverage along a line of 433 m can be realized with 
this setup. With a centralized WCL computation a 
specified CAN data rate of 500 kBit/s would be 
required which limits the system coverage to 43 m. 
This corresponds to a coverage enhancement by 
factor 10, when a distributed computation is used 
instead of a centralized one. At the same time, the 
maximum (3-sigma) error for the distributed 

computation with m=14 gateways compared to the 
conventional centralized one increases by 15.17 % 
(12.95 %). 

 

 
Fig. 12 –Comparison of the centralized (cWCL) and 

distributed (dWCL) weighted centroid location 
estimation, using 3-sigma location estimation error 

and one-dimensional localization coverage. 

 
The influence of the weighting factor k on the 

location estimation error is analyzed in Fig. 13, 
where the cumulative error is shown for 1 50k≤ ≤ . 
Additionally, the 3-sigma location estimation error is 
compared in Table 3 for selected values. 
 

Table 3. 3-sigma location estimation error (in m) for 
different weighting factor k using distributed weighted 

centroid localization with m=14 gateways. 
Error k=2 k=4 k=6 k=8 k=10 k=12 

3-sigma 7.25 3.16 3.14 3.31 3.69 3.95 

 

 
Fig. 13 – Combined influence of the number  

of gateways m and the weighting factor k  
on the 3-sigma location estimation error. 

In the case a BN is located near the middle of a 
gateway segment, the position information from 
neighboring segments negatively influence the 
location estimation. This effect can be reduced by 
selecting an appropriate weighting factor k. For 

2k ≤  there exist large position errors, showing the 
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negative influence from neighboring gateway 
segments. The lowest error is reached with 6k = , 
where the influence from neighboring segments is 
shifted more to the segment borders. Larger values 
of k  slightly decrease the estimation accuracy, since 
small systematic errors are introduced at the gateway 
segment borders. 
 

7. CONCLUSION AND FUTURE WORK 
The distributed WCL localization based on RSS 

readings is proposed to increase the system's 
coverage, limited by bus load constraints for 
collecting all sensor information. The results from a 
one-dimensional tracking simulation show, that it is 
possible to split up the location estimation into 
distributed parts of computation. Compared to the 
cWCL estimation, the increase in location estimation 
error for dWCL is relatively low and acceptable for 
most applications. 

The main contribution of the decentralized 
location computation is a considerably increase of 
the tracking system's coverage up to the kilometers 
range. The system also can easily be scaled to the 
application's needs. An example scenario for 
personnel tracking in the underground longwall 
mining with 196 reference nodes shows a good 
localization performance for a utilization with 14 
gateway segments. The corresponding system 
coverage of more than 400 m is sufficient for real 
world underground longwall mining setups. 

Further system developments are focusing on 
enhancements of the dWCL algorithm, especially to 
encounter some systematic computation errors at the 
edge of the regarding track. The second issue for 
future work is a real life tracking measurement in the 
underground to compare the propagation effects 
with the corridor experiment and the corresponding 
assumptions for the simulated RSS distribution. 
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