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Abstract: This paper introduces novel concepts for accelerating learning in an 

off-policy reinforcement learning algorithm for Partially Observable Markov 

Decision Processes (POMDP) by leveraging multiple agents frame work. 

Reinforcement learning (RL) algorithm is considerably a slow but elegant 

approach to learning in an unknown environment. Although the action-value (Q-

learning) is faster than the state-value, the rate of convergence to an optimal 

policy or maximum cumulative reward remains a constraint. Consequently, in an 

attempt to optimize the learning phase of an RL problem within POMD 

environment, we present two multi-agent learning paradigms: the multi-agent 

off-policy reinforcement learning and an ingenious GA (genetic Algorithm) 

approach for multi-agent offline learning using feedforward neural networks. At 

the end of the trainings (episodes and epochs) for reinforcement learning and 

genetic algorithm respectively, we compare the convergence rate for both 

algorithms with respect to creating the underlying MDPs for POMDP problems. 

Finally, we demonstrate the impact of layered resampling of Monte Carlo’s 

particle filter for improving the belief state estimation accuracy with respect to 

ground truth within POMDP domains. Initial empirical results suggest 

practicable solutions. 

Copyright © Research Institute for Intelligent Computer Systems, 2020.  

All rights reserved. 
 

 

1. INTRODUCTION 

Recent advances in the field of artificial 

intelligence (AI) has unveiled a wide range of 

efficient algorithms [1] which if skillfully 

hybridized, could result in a plausible model for 

solving some of the problems in the field.  

Since the introduction of value iteration 

algorithm for planning [2-5] in the 1970s, it has 

undergone a couple of refinement by numerous 

authors with an attempt to adapt it to solving more 

complex real world Problems. The combinational 

explosion of linear components (also referred to as 

the curse of dimensionality in some literature 

sources) in the value function is one of the major 

reasons that POMDPs are impractical for most 

applications [6-8]. Another related problem with 

value iteration is the exponential growth of distinct 

action-observation histories (also referred to as the 

curse of history). Some ingenious pruning methods 

have been used to ameliorate the problem but these 

pruning methods are in themselves computationally 

expensive to implement and only work for small 

finite horizon problems [9, 10]. 

Some better strategies have been implemented 

such as PBVI (Point Based Value Iteration) [3] 

which iteratively update a sub set of representative 

belief points. Another promising method 

implemented for both discrete and continuous belief 

states is the MCMDP (Monte Carlos Markov 

Decision Process) [6, 11]. This method attempts to 

map POMDPs directly to their underlying MDPs 

using Bayes Particle filter for belief updates. 

On a parallel front, Reinforcement learning (RL) 

algorithm is considerably a slow but elegant 

approach to learning in an unknown environment. 

Although the action-value (Q-learning) is faster than 

the state-value, the rate of convergence to an optimal 

policy or maximum cumulative reward remains a 

constraint. However, RL has the advantage of 

learning an underlying MDP for both dynamic and 

stochastic environments [12-14].  
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In this paper, the authors via experiments, 

investigate the effect, impact or/and contributions of 

multi-agents to accelerating the rate (thereby 

shortening the duration) at which the utilities 

converge to an optimal policy for planning within 

POMDP environments. The agents leverage on the 

greedy strategy for online exploration-exploitation 

using off-policy model free algorithm [15]. We then 

compare this multi-agent RL model with an 

ingenious multi-agent framework equipped with a 

feedforward neural network which is optimized 

offline via an objective function (based on 

localization of the goal and absorbing nodes) using 

genetic algorithm. We then identify the promises 

and constraints of both paradigms and thus propose 

future recommendations. 

Furthermore, because every POMDP can be 

mapped directly to its underlying MDP, we examine 

how an agent armed with a single range sensor could  

minimize the margin  of error between an agent’s 

belief state and its actual state via an ingenious 

resampling algorithm for the Monte Carlos particle 

filter [16-19]. The rational is to unveil (in the failure 

one or more sensors) a cost saving and relatively 

efficient approach to robot localization in POMDP 

environments. Empirical results show that this 

simple procedure quickly filters out outliers 

responsible for large errors in the initial approximate 

belief of an agent’s state. 

 

2. LITERATURE REVIEW 

Hybrid Genetic algorithms Evolution 

computation is a field that includes genetic 

algorithm, genetic programming along with 

evolution techniques which capture the entire 

process of selection and mutation [20-22]. The 

biological model of natural selection and genetics 

form the basis on which these computational 

techniques are implemented.  A class of ‘random 

search algorithm’ with theory firmly embedded in 

biological models of selection and evolution is 

referred to as genetic algorithm (GA). Given a 

clearly defined problem to be solved, a basic GA can 

be represented as a set of string of bits 

(chromosome) which could be decoded to represent 

a solution to the problem. Each chromosome is 

tested to see how good it is at solving the problem 

by assigning a fitness function to them [23, 24]. The 

probability of a chromosome being selected is 

proportional to its fitness. The higher the fitness 

score, the better the probability of chromosome 

being selected. A popular method of selection is the 

Roulette wheel selection. This iterative process 

unveils an ingenious paradigm for optimal path 

creation in maximizing the coverage of the search 

space when solving the multisource/target problem. 

An evolutionary neural network is a 

hybridization of two powerful AI algorithms: the 

genetic algorithm and the artificial neural networks 

[25-27]. They are both biologically inspired and are 

often designed as feed forward ENNs when 

combined. This combination is achieved by evolving 

the weights in a fixed neural network while 

providing the network with a set of inputs [28-30]. 

 

2.1 REINFORCEMENT LEARNING  

Reinforcement learning is the science of 

sequential decision making. For grid world agents, it 

is characterized by an agent’s ability to maximize 

long term rewards leveraging on past experiences 

obtained via interaction with a stochastic 

environment. Because the environment is initially 

unknown to the agent, the agent has to surmount the 

challenge of handling the delicate balance between 

exploring and exploiting the environment while 

maximizing the expected long term reward. 

Consequently, RL agents usually combine online 

learning and planning simultaneously via policy 

optimization [31, 32].   

The utilities of each state in RL are often referred 

to as state-value function. Analogous to the state-

valued function is the action value function often 

referred to as Q-value function. The process of 

learning with Q-value functions is referred to as Q-

learning [33]. 

 

𝑄(𝑠𝑡 , 𝑎)𝑛𝑒𝑤 = 𝑄(𝑠𝑡 , 𝑎)+ ∝ (𝑟𝑡+1 +

𝛾 𝑚𝑎𝑥𝑎  𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡 , 𝑎))              (1) 

 

where, 

𝑄(𝑠𝑡 , 𝑎) is the current value of the state under a 

specific action policy 𝑎; 

𝑟𝑡+1 is the received reward; 

𝑚𝑎𝑥𝑎  𝑄(𝑠𝑡+1, 𝑎) is the maximum Q-value of the 

subsequent state under a specific action policy 𝑎; 

∝ is proportional to the learning rate weighted by 

𝛾 the discount factor. 

In this paper, we adopt a Q-learning RL for our 

implementation because it learns considerably faster 

than the state-value function. However, the 

reinforcement learning process is generally slow. 

Consequently, we attempt to accelerate the learning 

phase via the introduction of multi-agents.  

 

2.2 MDP AND POMDPs 

MDPs have a reputation for robotic navigations 

in a known environment. The environment is 

assumed to be Markovian (i.e., the effects of an 

action stochastically depends on the current state of 

the world and the executed action). Because the 

resulting state from the action is not deterministic, 
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the subsequent state of the agent may be unintended. 

Amidst the stochasticity, the robot must navigate 

from its current location to a goal location with the 

minimum possible steps. Thus, MDPs create a 

policy for every possible node in grid world that is 

fully observable and stochastic [3, 6, 11]. MDPs are 

usually defined as a tuple < S, A, T, R> where: 

S- a set of environment states (which must 

encapsulate all relevant information for taking 

correct decisions – e.g., Map, exact location within 

map, state of the world (open or closed door). 

A- all actions that the agent can execute. A 

simplified example would be UP, DOWN, LEFT, 

RIGHT; 

T- the stochastic transition function T( S, A, S’ ) 

= P(S’
t+1 = So |  St =s, At= a) – the probability of 

executing an action ‘a’ from state ‘S’ at time ‘t’ and 

arriving at state S’ at time ‘t+1’; 

R- the reward function which models the utility 

of the current state as well as the cost of taking a 

particular action R(S, a). A negative living reward 

(non-zero cost) is usually associated with grid world 

implementations. 

In this paper, our simulation is based on planning 

problems which has a finite and discrete state and 

action space. The purpose of planning is to find a 

policy (set of optimal actions) that describes the 

agent’s behavior in order to maximize the sum of 

expected rewards 

 

𝑈(𝑠) =  ∑ 𝐸[𝛾𝑡∞
𝑡=0  𝑅(𝑆𝑡)]             (2) 

 

where, 𝛾 is the discounted reward as ‘t’ tends 

towards infinity 0 ≤ 𝛾 < 1. This keeps the solution 

bounded. However, since our horizon is finite, (i.e., 

has an absorbing or goal state) we set  𝛾 = 1 

For every state S, we can compute a utility 

function with the following equation: 

 

𝑈(𝑠) = 𝑅(𝑠) +  𝛾 ∑ 𝑇(𝑆, 𝑎, 𝑆′
𝑠′ )𝑈(𝑆′)  (3) 

 

The optimal utility for each state is given by the 

Bellman equation  

 

𝑈(𝑠) = 𝑅(𝑠) +  𝛾 𝑀𝑎𝑥𝑎 ∑ 𝑇(𝑆, 𝑎, 𝑆′
𝑠′ )𝑈(𝑆′)   (4) 

 

The optimal policy is given by the equation. 

 

𝜋∗(𝑠) =  𝑎𝑟𝑔𝑀𝑎𝑥𝑎 ∑ 𝑇(𝑆, 𝑎, 𝑆′
𝑠′ )𝑈(𝑆′) (5) 

 

In real world domains, most of the assumptions 

behind the implementation of MDPs fall apart 

because the agent cannot directly observe the state 

of the environment. POMDPs give us more efficient 

alternative to modeling real world problems via 

probability distribution over states also referred to a 

belief states. This is because the actual state of the 

world cannot be fully observed due to inaccurate 

sensor readings. Alternatively in POMDP 

environments, beliefs provide a sufficient statistic 

for the history thereby availing sufficient 

information for the optimal policy per state with the 

assumption that the underling MDP is also 

Markovian [3]. 

POMDPs therefore can be defined as belief-space 

MDP with the tuple < B, A, T, RB > such that: 

-B is the set of possible states over beliefs over 

state S; 

-A is the set of possible actions; 

-T is the belief transition function T (B, a, B’
o); 

representing the transition probability of starting a 

belief B, taking an action a, and arriving at a new 

belief state B’
o.  

-RB is the reward at each belief state. 

Just like the MDP model, we define the Bellman 

update operator [9] for the Belief-Space MDP 

(POMDP) as: 

 

𝑈(𝑏) =  𝑀𝑎𝑥𝑎 (𝑅(𝑏) +  𝛾 ∑ 𝑇(𝑏, 𝑎, 𝑏′

𝑏∈𝐵′

)𝑈(𝑏′))  (6) 

 

Consequently, like MDPs the goal of POMDPs is 

to find the policy for action selection that maximizes 

the reward (𝑏) .  

 

2.3 PARTICLE FILTERS ALGORITHM 

Particle filter is an elegant algorithm with the 

potential of mapping trajectory history into belief 

states which consequently aid agents to learn a 

mapping from belief states to action in POMDPs 

[34-36]. Particle filters are the implementations of 

recursive Bayesian filtering used for modeling non-

Gaussian distributions [37, 38].   Using the motion 

and sensor observation model, the algorithm 

iteratively updates the belief-states via a sequence of 

prediction steps and correction steps usually referred 

to as belief updates [39, 40]. 

Predictor step is given by: 

 

𝐵𝑒𝑙̅̅ ̅̅̅(𝑥𝑡) = ∫ 𝑃(𝑥𝑡 |𝑈𝑡 , 𝑥𝑡−1)𝐵𝑒𝑙(𝑥𝑡−1)𝑑𝑥𝑡−1.  (7) 

 

While the correction step is given by: 

 

𝐵𝑒𝑙(𝑥𝑡) =  ɳ 𝑃(𝑍𝑡   |𝑥𝑡) 𝐵𝑒𝑙̅̅ ̅̅̅(𝑥𝑡−1)           (8) 

 

Combining both equations, we get the Bayes 

particle filter equation as follows: 

 

𝐵𝑒𝑙(𝑥𝑡)

=  ɳ 𝑃(𝑍𝑡   |𝑥𝑡) ∫ 𝑃(𝑥𝑡 |𝑈𝑡−1, 𝑥𝑡−1)𝐵𝑒𝑙(𝑥𝑡−1)𝑑𝑥𝑡−1 

           (9) 
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where,  

ɳ is the normalization factor 

𝐵𝑒𝑙(𝑥𝑡) is the belief of being in state 𝑥 at time t.  

𝑃(𝑍𝑡   |𝑥𝑡) is the probability of sensing  𝑍𝑡given a 

state location 𝑥𝑡 at time t. 

𝑈𝑡 is the action or motion step at time t. 

 

3. EXPERIMENTAL SETUP 

The experiments can be divided into two sub 

sections: Section A and Section B. 

 

 

Figure – (1.0) Multi-agent RL environment with walls 

(white cells), absorbing states (red cells), dynamic door 

(blue cell) and goal node (green cell) 

 

Section A 

In this section (Section A), we show how the 

multi-agent Q-learning RL algorithm [41-45] 

converges quickly when compared with a single off-

policy agent. It is important to note that learning 

algorithm creates an underlying MDP model for the 

grid world (Fig. 1) at convergence.  

The first simulation had a single RL agent in a 30 

X 20 grid world (Fig. 2) with obstacles (white cells), 

absorbing nodes (red cells), a single door (blue cell) 

which toggles (open/close) between episodes and a 

single goal node (in green).  Below are the settings 

of the environment used for all simulations (single 

agent and multi-agent): 

Living reward (R) = -0.1 

Learning rate (α) = 0.1  

Discount factor (𝛾) = 1.0 

Maximum Reward: (RMax goal node) = +5000 

Punishment (Absorbing nodes) = -5000 

In the second simulation (Fig. 3), three more 

agents were added to the single agent. In a deliberate 

attempt to investigate the significance of the addition 

of a single agent, we ran a third simulation with 5 

agents (Fig 4.0).  

 

Figure 2 – Single agent reinforcement learning graph 

with respect to CPU-time 
 

The results show a significant difference in the 

convergence rate. It is interesting to note that multi-

agents displayed some emergent behaviors (outside 

the scope of this research) during the on-line training 

process while migrating the algorithm towards 

convergence.  
 

 

Figure 3 – Multi-agent (size of 4) reinforcement 

learning graph with respect to CPU-time 
 

 

Figure 4 – Multi-agent (size of 5) reinforcement 

learning graph with respect to CPU-time 
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3.1 GENETIC ALGORITHM PARADIGM 

In comparison, we simulate an alternate approach 

to creating an underlying MDP model for a grid 

world using multi-agents (4 agents) each equipped 

with feedforward neural networks, whose weights 

are optimized using genetic algorithm.   The 

objective of function of these agents is to learn the 

model of the world via exploration. Training is done 

off-line via epochs over multiple generations. The 

fitness function for each generation of the multi-

agents is given by: 

 

∑ ∑ 𝑅(𝑠)𝑖.𝑗 + 𝛽𝑖,𝑗

𝑛

𝑗=1

𝑚

𝑖=1

                       (10) 

 

where,  

R(s) are the living positive reward for each new 

explored state (i,j) in the grid world, 

𝛽𝑖,𝑗 are extra rewards assigned to absorbing and 

goal nodes. 

The iteration terminates after a predefined 

number of epochs or after a predefined minimum 

sum of rewards has been obtained. When the 

simulation terminates, it creates underlying MDP 

(Optimal policy) using dynamic programming with 

respect to the goal node. It is important to note that 

the entire learning procedure is considered to be off-

line. Each epoch ran for a fixed duration (3750) 

CPU-time over 12 epochs (Fig. 5) before 

termination.  

 

 

Figure 5 – Multi-agent (size of 4) feedforward neural 

network (with GA) learning graph with respect to 

CPU-time, and Epochs 

 

Section B 

In Section B, we simulate the planning phase for 

a single agent in a POMDP environment that 

leverages on the underlying MDP created in Section 

A. Our methodology incorporates the particle filter 

algorithm leveraging the roulette wheel selection for 

the resampling phase [46].  
 

 

Figure 6 – Agent motion model for POMDPs 

 

In our simulation, four sensor nodes are 

strategically placed at the edges of the grid world 

with which the agent is able to localize itself with 

respect to its belief update [47]. Gaussian noise was 

added to the sensor inputs. For simplicity, we 

discretized the agent’s motion within the stochastic 

environment. The key idea is to efficiently map the 

belief state of the agent (particle filter averaged 

output) with the actual state of the agent. From 

(Fig. 6), the agent’s policy is mapped directly to its 

belief which is based on the underlying MDP.  

Consequently, an accurate mapping would 

ultimately guide the agent to the goal node.  
 

 

Figure 7 – Process flow diagram for traditional 

resampling and localization of belief state using 

particle filters.  Capital ‘A’ (Initial Random sample), 

Lowercase ‘a’ (resampled) 

 

  

Figure 8 – Agent belief state (particle filter) and actual 

state transition from start position (upper left) to goal 

position (lower right) for traditional resampling 
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The resampling model depicted in (Fig. 7) is the 

traditional resampling model where particles are 

initialized randomly within the entire grid world [48] 

as depicted with the capital A. Thereafter, a new 

weighted sample based on important weights is 

produced (lower case a) via the roulette wheel 

selection algorithm. The x. y coordinates of the 

belief state are thereafter obtained by averaging the 

sum of the particles x. y coordinates. Fig. 8 shows 

the average result of this model. It is important to 

note that the agent motion model (Fig. 6) is iterated 

about five times with zero motion at the 

initialization phase before state transitions 

commence. The key idea is to minimize the error 

between the belief state and actual state before any 

transition begins. It is important to note that the 

initial state (position) of the agent in the world is 

unknown.  

An improved model (Fig. 9) attempts to eliminate 

outliers resulting from the weighted samples by 

passing those samples through roulette wheel a 

second time to produce better weighted sample 

(Fig. 10) (lower case b) before averaging.  

 

  

Figure 9 – Extended Process flow diagram for 

traditional resampling and localization of belief state 

using particle filters.  Capital ‘A’ (Initial Random 

sample), Lowercase ‘a, b’ (resampled) with double 

phased resampling. 

 

 

Figure 10 – Agent belief state (particle filter) and 

actual state transition from start position (upper left) 

to goal position (lower right) for double phased 

resampling 

Introducing a third layer (Fig. 11) resampling 

produced even better results on the averages as 

shown in Fig. 12. 

 

Fig. 11 – Extended Process flow diagram for 

traditional resampling and localization of belief state 

using particle filters.  Capital ‘A’ (Initial Random 

sample), Lowercase ‘a, b, c’ (resampled) with triple 

phased resampling. 

 

 

Figure 12 – Agent belief state (particle filter) and 

actual state transition from start position (upper left) 

to goal position (lower right) for triple phased 

resampling. 

 

In our final model, we include a preprocessing 

phase with N (such that N =1000) number of 

particles randomly replicated 4 times in batches over 

the entire world as depicted in the A, B, C and D 

segments (Fig. 13). 

 

 

Figure 13 – Modified Process flow diagram for 

traditional resampling and localization of belief state 

using particle filters.  Capital ‘(A, B, C D)’ (Initial 

Random sample), Capital A (selected sample), 

Lowercase ‘a, b, c’ (resampled) with triple phased 

resampling. 
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The agent intuitively attracts the batch of 
particles with the highest probabilistic weights into 
the iterative phase, leaving behind other batches of 
N- particles. This procedure keeps the computational 
complexity simple while improving accuracy as 
shown in Fig. 14. 
 

 

Figure 14 – Agent belief state (particle filter) and 

actual state transition from start position (upper left) 

to goal position (lower right) for preprocessed 

initialization with triple phased resampling. 

 

This implementation drastically reduced the 
frequency of occurrence of false negatives (Fig. 15a 
the agent believes it is in a wall when it is actually 
not), and false positives (Fig. 15b the agent believes 
it is not in a wall, when it actually is) when observed 
over multiple runs. The final model maintained true 
positives (the agent’s belief and actual state are 
approximately the same) over multiple runs as 
shown in Fig. 15c. 
 

   
(a)                     (b)                   (c) 

Figure 15 – (a) False negatives (the agent believes it’s 

in a wall (belief in RED) when it’s actually not), (b) 

False positives (the agent believes it’s not in a wall, 

when it actually is).  (c) True positives (agents position 

and belief are approximately same. 

 

3.2. THE AMCL (ADAPTIVE MONTE 
CARLOS LOCALIZATION) APPROACH 

The AMCL model is a relatively recent state of 
the art algorithm with which we compare our 
proposed localization algorithm. This algorithm 
randomly adjusts the number of free particles during 

the resampling phase based on their weights.  By 
leveraging on the Kullback-Leibler divergence 
(KLD) algorithm [50, 51], the AMCL adapts a linear 
relationship to the number of particles in non-empty 
cells of the state space, and an upper bound on the 
number of resampled particles throughout the sense 
and move cycle [52]. Agent belief state and actual 
state transition from start position are shown in 
Fig. 16. 
 

 

Figure 16 – Agent belief state (particle filter) and 

actual state transition from start position (upper left) 

to goal position (lower right) for the AMCL (KLD) 

 

4. DISCUSSION OF RESULTS 

We have obtained preliminary results for ongoing 
research in two phases: phase one for a typical 
learning problem and phase two for a 
complementary planning problem within a POMDP 
environment. In the first phase, we simulate learning 
of a POMDP environment using online, off-policy 
reinforcement Q-learning using both single and 
multi-agents. The rational is for the agents to learn 
optimal policy within a stochastic environment. The 
simulation results showed significant difference in 
CPU-time over episodes between the single and 
multi-agent frame work. The multi-agent (with a 
size of 4) converged much faster. With the addition 
of an extra agent, we witnessed even further 
improvement in CPU-time.  

In contrast, we simulate an alternative off-line 
learning approach using feedforward neural 
networks for multiple agents (with a size of 4) 
whose weights were optimized using genetic 
algorithm over multiple epochs. This approach 
enables  the agents learn the model of the world by 
localizing all absorbing states including the goal 
node and thereafter terminating with an optimal 
policy with respect to the goal node using dynamic 
programming [49]. This model converged faster than 
the Q-learning model however not without some 
drawbacks.  The model is not naturally suited for 
dynamic environments (such as open/closed doors) 

0

50

100

150

200

250

300

350

400

0 100 200 300 400

X
-P

o
si

ti
o

n

Y-Position

Agent Position and Belief

Particle filter (Belief) Agent

0

100

200

300

400

0 100 200 300 400

X
-P

o
si

ti
o

n
Y-position

AMCL Agent Position and Belief 

Particle filter (Belief) Agent



Samuel O. Obadan, Zenghui Wang / International Journal of Computing, 19(3) 2020, 377-386 

 

 384 

without a major modification to the algorithm which 
could impact computational complexity.  

In the second phase (planning phase), results 
show how segmented initialization of N-particles 
combined with multi-layer resampling improved 
belief state accuracy with respect to ground truth for 
scenarios in which sensor fusion may be 
impracticable. Our proposed approach to the 
resampling phase revealed better accuracy when 
compared with the AMCL (KLD) algorithm. 
Consequently, the mapping of the POMDP to the 
underlying MDP was with relatively high fidelity.  
 

5. CONCLUSION 

In this paper, the authors compare two learning 
paradigms for POMDP problems and also 
contributed to the planning phase via a clever 
modification to the resampling stage of the particle 
filter algorithm.  The proposed algorithms could be 
implemented in partially observable environments 
where a search and rescue operation may be 
required. 

The multi-agent Q-learning showed more 
robustness for both static and dynamic 
environments, however it asymptotes relatively 
slower when compared with the multi-agent 
feedforward neural network counterpart. But then, 
the feedforward neural network offline learning 
paradigm is unable to adequately model dynamic 
environments.  

The results from the grid world for state 
representation using multi-agent Q-learning showed 
that the increase in the number of agents, increases 
the rate of convergence. Though this may be true for 
the grid world with a computable finite state space, 
future research may reveal the veracity of this theory 
in more complex scenarios where states are 
represented using feature vectors.  

Furthermore, we leverage on a classical 
resampling method (the roulette wheel) to 
demonstrate how an ingenious adaptation of the 
particle filter algorithm improved the belief state 
accuracy with respect to robot localization within 
POMDP environments. 
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