
Jawad Dalou’, Basheer Al-Duwairi, Mohammad Al-Jarrah / International Journal of Computing, 19(3) 2020, 399-410

 399

ADAPTIVE ENTROPY-BASED DETECTION AND MITIGATION OF DDOS
ATTACKS IN SOFTWARE DEFINED NETWORKS

Jawad Dalou’ 1), Basheer Al-Duwairi 2), Mohammad Al-Jarrah 1)

1) Computer Engineering Department, Yarmouk University, Irbid 21163, Jordan,

e-mail: jadalou@just.edu.jo, jarrah@yu.edu.jo
2) Network Engineering & Security Department, Jordan University of Science & Technology, Irbid 22110, Jordan

e-mail: basheer@just.edu.jo

Paper history:

Received 22 November 2019

Received in revised form 06 June 2020

Accepted 08 July 2020
Available online 27 September 2020

Keywords:

SDN;

DDoS;

Entropy.

Abstract: Software Defined Networking (SDN) has emerged as a new

networking paradigm that is based on the decoupling between data plane and

control plane providing several benefits that include flexible, manageable, and

centrally controlled networks. From a security point of view, SDNs suffer from

several vulnerabilities that are associated with the nature of communication

between control plane and data plane. In this context, software defined networks

are vulnerable to distributed denial of service attacks. In particular, the

centralization of the SDN controller makes it an attractive target for these attacks

because overloading the controller with huge packet volume would result in

bringing the whole network down or degrade its performance. Moreover, DDoS

attacks may have the objective of flooding a network segment with huge traffic

volume targeting single or multiple end systems. In this paper, we propose an

entropy-based mechanism for Distributed Denial of Service (DDoS) attack

detection and mitigation in SDN networks. The proposed mechanism is based on

the entropy values of source and destination IP addresses of flows observed by

the SDN controller which are compared to a preset entropy threshold values that

change in adaptive manner based on network dynamics. The proposed

mechanism has been evaluated through extensive simulation experiments.

Copyright © Research Institute for Intelligent Computer Systems, 2020.

All rights reserved

1. INTRODUCTION

The growth of networking and Internet has

reached high rates in last years. This growth requires

several changes in the networking industry.

However, a major problem with traditional

networking paradigm is that networking companies

have almost full control over the hardware, firmware

and software of their devices [1]. This implies that

there is no practical way for developing new

network protocols because of hardware dependence.

To overcome this issue, a joint effort between

Stanford University, the University of California at

Berkeley, and several other universities had resulted

in creating the Global Environment for Network

Innovation (GENI) program in 2000 [2]. An

important outcome of the GENI program is the

Software Defined Networks (SDN) in 2006 [3].

Software defined networking (SDN) has emerged

as a new networking paradigm that is based on the

decoupling between data plane and control plane [4].

Therefore, it makes it possible to address many of

the challenges and limitations of traditional

computer networks and provide fixable and efficient

management of networking resources. The control

plane is abstracted by the SDN controller which is a

logically centralized entity that oversees the whole

networking components and orchestrates their

operation. The controller has communication

interfaces with the network devices in the data plane

and has special APIs to communicate with different

applications in the application layer. On the other

hand, the data plane is abstracted by the forwarded

devices called SDN switches. These switches

maintain forwarding tables that are populated with

flow table entries received by the controller.

computing@computingonline.net

www.computingonline.net

Print ISSN 1727-6209

On-line ISSN 2312-5381

International Journal of Computing

Jawad Dalou’, Basheer Al-Duwairi, Mohammad Al-Jarrah / International Journal of Computing, 19(3) 2020, 399-410

 400

The communication between different SDN

planes is governed by the Openflow which is a

standard communication interface. According to this

standard, whenever a new packet is received by an

Openflow enabled switches (OF-Switches) with no

matching entry in its forwarding table, a PACKET-

IN packet is sent to the controller. In turn, the

controller updates the flow table of that switch

sending a PACKET-OUT packet including a flow

table entry added to its flow table. The architecture

of SDN network is shown in Fig. 1. The control

plane consists of the controller and different network

applications.

Figure 1 – Software defined network architecture

Similar to traditional networks, software defined

networks are vulnerable to distributed denial of

service attacks as shown in many research studies

(e.g., [5]-[7]). In particular, the centralization of the

SDN controller makes it an attractive target for these

attacks because overloading the controller with huge

packet volume would result in bringing the whole

network down or degrade its performance.

Moreover, DDoS attacks may have the objective of

flooding a network segment with huge traffic

volume targeting single or multiple end systems.

Recent DDoS attack incidents confirm the

devastating effects of these attacks and calls for

efficient methods to detect and mitigate them. DDoS

attacks are hard to be detected, because the traffic

generated during attacks is similar to legitimate

traffic (e.g., SYN flooding and ICMP flooding). In

these cases, the victim cannot decide whether the

received packets are malicious or not. Also in DDoS

attacks, it is hard to detect the attacker because

attack packets usually carry spoofed source IP

addresses [8].

Several research efforts adopted entropy as a

main method for DDoS attack detection in both

traditional networks and SDN networks. This is

because entropy provides a measure of statistical

randomness of a certain variable and any sudden

change of its value could be a strong indication of an

attack given that the entropy value is associated with

suitable network traffic parameters. The work

presented in this paper is based on the concept of

entropy for DDoS attack detection. However, in

contrast with the previous work, we monitor entropy

value associated with a number of distinct IP

destination addresses and the entropy value

associated with the number of distinct IP source

addresses as observed by the SDN controller.

Moreover, we dynamically adjust the entropy

threshold value based on network dynamics. The

rest of this paper is organized as follows: Section II

discusses related work. Section III-B discusses

proposed mechanism. Evaluation is presented in

Section IV. Finally, conclusion is presented in

Section V.

2. RELATED WORK

In this section, we discuss the main research

efforts in countering DDoS attacks in software

defined networks. For example, in [9] NetSight was

proposed as a platform that captures packet histories

and enables applications to retrieve interesting

packet histories. For NetSight flexibility, there are

four main applications developed on top of it:

network debugger, live invariant monitor, path

packet logger, and a categorized network profiler.

The main goal for network debugger is to provide

interactive debugging features for networks. The live

invariant monitor is used to specify network

behavior and launch an alarm when a violation

happens. Path packet logger filters the packets with

their paths and header values at each hop. The

network profiler goal is link utilization by

understanding the network characteristics and

routing decisions.

A Distributed and Collaborative per-flow

Monitoring (DCM) was proposed in [10]. DCM uses

Bloom filters that represent monitoring rules in a

small size memory. It installs a monitoring tool into

the switch data plane. DCM uses this tool as two-

stage Bloom filters which are the admission of the

Bloom filter and a group of actions to perform

different measurement. Moreover, for dynamicity,

SDN allows DCM to perform updates of the two-

stage switch data plane. Sahay et al. [11] proposed a

solution based on SDN for DDoS detection and

mitigation. Their approach is done using ISP level

monitoring of traffic. The traffic is tagged by

OpenFlow switches. This traffic is monitored to

calculate statistics from it. The statistics are

forwarded to the detection engine. The engine then

generates policy rules depending on the statistics.

These rules are enforced by SDN controllers of the

customers to local routers. The previous tagged

Jawad Dalou’, Basheer Al-Duwairi, Mohammad Al-Jarrah / International Journal of Computing, 19(3) 2020, 399-410

 401

information is sent from customer controller to the

ISP controller. The malicious traffic will be directed

to an appropriate middle box for mitigation.

FloodGuard was proposed in [12] is an approach

for DDoS detection in SDN networks. FloodGuard

contains two modules: proactive flow rule analyzer

module, and packet migration module. The analyzer

module ensures the functionally of the network

when an attack happens. The migration module is

responsible for sending un-malicious packets to the

controller without overwhelming its resources. Chin

et al. [13] introduced a collaborative approach for

DDoS attack detection. This approach provides one

or many monitors to observe network traffic. Also, it

contains correlators that respond to alerts from

monitors. Thus, when the number of packets exceeds

the control threshold, the monitor generates an alert

and sends it to the correlator to take action based on

the alert type.

Zhou et al. [14] combined SDN with NFV

(Network Function Virtualization) for DDoS

detection. This combination ensures the control and

date plane separation from SDN and enables flexible

resource allocation and development from NFV. The

SDN module is responsible for data collection and

analysis. It runs appropriate mitigation method when

an attack happens. The NFV module is responsible

for virtualizing and managing virtual machines on

DDoS mitigation requirement. Nguyen et al. [15]

proposed an IDS with sampling method for DDoS

detection in SDN. It detects the attacks even with

small volume by choosing the appropriate sample

rate. Also, it detects the attacks at the edge router,

which will prevent them from going through core

network. This method consists of different sample

collectors, which will forward the samples to IDS

for analysis. Then, the controller generates a rule

based on the IDS results to block the traffic or

forward it.

In [16], Mehdi et al. used three detection

algorithms: Threshold Random Walk with Credit

Based (TRW-CB), Rate Limiting, and Network

Traffic Anomaly Detector (NETAD). TRW-CB uses

sequential hypothesis testing like ratio testing to

determine if the internal host has an infection or not.

Also, it is based on the rule that the probability of a

successful connection of non-malicious host is larger

than that of a malicious one. Rate Limiting is used to

limit the connection rate due to the fact that the

infected machine has different connection

characteristics than uninfected one. NETAD is a

rulebased traffic filtering mechanism which removes

unwanted traffic based on the first few packets of a

connection. NETAD computes a score for each

packet depending on the time and frequency of each

byte of the packet. Then a threshold is applied on

each score to distinguish the unwanted packets.

AVANT-GUARD [17] deals with two challenges

in SDN networks: secure the interface between

control plane and data plane and improve

responsiveness. Securing the interface between the

two planes is done by using migration techniques on

the data plane to protect control plane from attacks.

Responsiveness is improved by creating triggers that

can be inserted by control plane and adding flow

rules that will be activated when a trigger is

detected. Lim et al. [18] proposed a method called

DBA (DDoS Blocking Application). DBA is a

defense mechanism for DDoS botnet-based attacks.

DBA can distinguish normal traffic from abnormal

traffic. When the transmission rate suddenly

increases, the client is considered as a bot. DBA will

notify the controller that an attack has happened, and

the packets should be dropped.

Dharma et al. [19] proposed a method that can

detect and mitigate the effects of DDoS attacks in

SDN networks. It focuses on the destination address

of the packets and the time needed for generating

high traffic rate. If the destination address is not

valid or unknown, the controller will forward this

packet to the flow collector. When invalid packets

increase significantly within a time window, the

flow collector sends a notification to the controller.

The controller then uses this notification to forward

any future invalid packets directly to the flow

collector.

Xu et al. [20] proposed a method for DDoS

detection under SDN context. This method consists

of two procedures: victim detection and post-

detection. Victim detection considers the flow

volume feature and the flow rate asymmetry feature.

Thus, if these features showed a DDoS attack, the

victims IP address will be determined. Post-

detection has two ways to react for DDoS detection:

passive processing by asking the victim to change

his service to a new IP, and active processing by

finding the attackers IP addresses and install rules

into switches to drop the packets coming from these

attackers.

Dong et al. [21] introduced an approach that uses

Sequential Probability Ratio Test (SPRT), which is a

powerful statistic tool. This method can quickly

detect the attack after a small number of successive

flows. Also, this method can detect the attack

regardless the type of the flooding packets (e.g.

TCP, ICMP or any other flooding of requests). The

detection is done using percentage count and entropy

data flows. Mousavi et al. [22] have an early

detection within hundreds of packets of the attack.

This approach uses entropy to calculate randomness

based on destination IP addresses. Its main idea is

comparing the entropy to a threshold value. If the

entropy is lower than the threshold, an attack is

Jawad Dalou’, Basheer Al-Duwairi, Mohammad Al-Jarrah / International Journal of Computing, 19(3) 2020, 399-410

 402

detected, otherwise there is no attack. The threshold

value is calculated based on many times experiment.

The work presented in this paper is different from

the work presented in [22] in the sense that entropy

threshold value is not static as it changes based on

network dynamics that is due to link failure or hosts

joining and leaving the network. Another important

difference is that we consider entropy values for

both the IP destination addresses and IP source

addresses in such a way to detect attacks that target

multiple victims aiming at flooding the network

segment.

3. PROPOSED WORK

In this section, we present the proposed adaptive

entropy based DDoS detection and mitigation

scheme. The core of our proposed scheme is based

on the concept of entropy.

3.1 ENTROPY-BASED DDOS DETECTION

The randomness associated with a random

variable is typically measured using Entropy which

is a well-known concept in information theory.

Higher entropy of a random variable indicates higher

randomness of that variable. Several DDoS detection

schemes used entropy associated with different

traffic parameters such as IP destination addresses

and TCP flags, etc. In these schemes, entropy value

associated with each parameter is monitored during

specific time intervals. At the end of each interval, a

decision is made whether there is an attack or no

based on comparing current entropy value with a

pre-defined threshold value. In the proposed scheme

we monitor two entropy values: one is associated

with destination IP addresses and other is associated

with source IP addresses, such that we can detect

attacks not only targeting specific end system, but

also attacks that aim at flooding one or more

network segments by high packet volume destined to

multiple IP addresses belonging to the targeted

network segments.

In normal operation of SDN network (i.e., with

no attack scenario), packets can be destined to any

end system in the network without a concentration

on one or more end system. Therefore,

communication between end systems is expected to

be randomly distributed as pointed out in [22] and

[23]. However, in the presence of a DDoS attack

event, it is expected to observe either (i) large

number of packets with the same destination IP

address resulting in low entropy value associated

with the IP destination address parameter or (ii)

large number of packets with randomly spoofed IP

source addressees and destined to multiple IP

addresses belonging to one or more targeted network

segment. This would result in high entropy

associated with the IP source address parameter.

The SDN controller groups incoming Packet-IN

packets in batches each of size N. For each batch of

packets (also called window), it calculates the

entropy value associated with each variable (i.e., IP

detestation addresses and IP source addresses) using

equation 1. Here Pi represents the probability of IP

address (IPi) in the given window, which can be

calculated using equation 2. Here xi represents the

number of occurrences of IP address IPi during the

given window.

 𝐻 = − ∑ 𝑃𝑖 𝐿𝑜𝑔(𝑃𝑖) (1)

𝑁

𝑘=1

𝑃𝑖 =
𝑥𝑖

𝑁
 (2)

It is to be mentioned that the same method is

used to calculate entropy for both variables.

3.2 PROPOSED MECHANISM

The overall architecture of the proposed solution

is shown in Fig. 2. The proposed system consist of

two major units that include DDoS detection unit

and DDoS mitigation unit. The main objective of the

DDoS detection unit is to detect DDoS attack event

by calculating entropy associated with source and

destination IP addresses included in Packet-IN

packets, and comparing its value to a pre-defined

threshold. To this end, the entropy is calculated

continuously for each window of packets of size N.

A decision is made whether there is an attack or no

based on the entropy values calculated in the

previous k windows. This is to ensure that there is

enough evidence that there is an attack. The output

of this stage/unit is the list of end system IP

addresses targeted by a DDoS attack, and the source

(switch interface) responsible for forwarding

incoming attack traffic. The mitigation unit is

responsible for or blocks attack traffic identified by

the detection unit.

Figure 2 – Proposed detection and mitigation system

architecture

Entropy Threshold Calculation: Before we go

into the details of the DDoS detection algorithm, we

Jawad Dalou’, Basheer Al-Duwairi, Mohammad Al-Jarrah / International Journal of Computing, 19(3) 2020, 399-410

 403

explain how to set the entropy threshold values. The

SDN controller maintains two entropy threshold

values: (i) (ThresholdSrc) for IP source addresses

and (ii) (ThresholdDst) for IP destination addresses.

The threshold values are provided by equations 3

and 4, respectively.

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑆𝑟𝑐 = − 𝑙𝑜𝑔 (
1

𝑊𝑖𝑛𝑑𝑜𝑤 𝑆𝑖𝑧𝑒
) ∗ 0.8 (3)

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐷𝑠𝑡 = − log (
1

ℎ𝑜𝑠𝑡𝑠 − 1
) ∗ 0.8 (4)

We set the ThresholdSrc to the value given by

equation 3 because in the case of random source

address spoofing, which is a common feature of

DDoS attacks in general, the probability of a given

IP source address in a window of packets of size N

would be 1/N. This correspond to an ideal situation

where all packets in the monitored window of

packets have distinct IP source addresses (due to

random spoofing). On the other hand, we set the

ThresholdDst to the value given by equation 4

because in normal operation of the SDN network,

and as an extreme case, the controller is expected to

receive PACKET-IN packets that contain IP

destination addresses of all hosts in the network

except the sender IP address. This leads to the

probability of destination IP address for each packet

in the window to be equal (1/(hosts-1)). It should be

noted that both values are multiplied by 0.8 factor in

order to provide a 20% margin of the ideal value.

DDoS Detection: Algorithm 1 depicts the

proposed DDoS detection algorithm which is

performed by the SDN controller for each window

of PACKET-IN packets. In order to minimize false

positives, the algorithm takes a decision that there is

an attack, only if the entropy values calculated

according to equation 1 for both the IP source

address and IP destination address exceed the

specified thresholds for k consecutive windows,

where k is a design parameter that we study later in

Section IV. The algorithm starts by initializing the

number of entropy rounds counter c to 1. Once the

window is full, the entropy of destination IP

addresses is calculated. If the entropy value is

greater than the ThresholdDst, the counter c is reset

to 1 and the algorithm repeats after receiving new

window of PACKET-IN packets. Otherwise (i.e., in

case the entropy is less than ThresholdDst), the

entropy of the source addresses for the packets

found in the window is calculated and compared to

ThresholdSrc. If the entropy value is less than the

ThresholdSrc, the counter c is reset to 1 and the

algorithm repeats after receiving new window of

PACKET-IN packets. Otherwise (i.e., in case the

entropy is more than ThresholdSrc), the counter c is

incremented and compared to the number of

windows parameter k. If c is larger than k, then an

attack is detected. Otherwise, the algorithm starts

over waiting for new window of packets.

Fig. 3 – Threshold update mechanism

DDoS Mitigation: Mitigation of DDoS attack is

done by invoking the mitigation algorithm which is

based on the idea of initial blocking of all incoming

packets from the switch(s) responsible for

forwarding attack traffic. The switch that forwards

the largest number of packets during the monitoring

interval is considered first. This step is important in

order to relief the SDN controller and the network in

general from attack traffic overload. This is done by

using the OpenFlow tables of the switches where the

controller adds specific rules to achieve this goal. As

a result, all traffic coming through a specified switch

interface and destined to the victim node(s) is

blocked. This is followed by adding rules to these

switches such that only active hosts connected to

these switches are permitted to forward traffic to

victim nodes. These hosts can be identified by

performing host scanning for the subnetwork behind

that switch. In other words, these hosts are put in a

Calculate Number

of Hosts

Calculate

Threshold for

Source and

Destination

Run Topology

Set Window Size

Host

Join/Leave

Jawad Dalou’, Basheer Al-Duwairi, Mohammad Al-Jarrah / International Journal of Computing, 19(3) 2020, 399-410

 404

white list. The white list is dynamic, i.e., when a

new host is added to the attacks subnet, it will be

automatically added to the white list and can

forward traffic to victim nodes.

Algorithm 1: Entropy-Based DDoS Detection

Input : Sequence of Incoming PACKET-IN packets

Output: DDoS detection alert

1. c = 1

2. Form a new incoming window of PACKET-

IN packets (window size = N packets)

3. Calculate entropy of IP destination addresses

EntropyDst.

4. If (EntropyDst > ThresholdDst) then

• c = 1

• Go to Step2

5. end

6. else Calculate entropy of IP source addresses

EntropySrc.

7. If (EntropySrc < ThresholdSrc) then

• c = 1

• Go to Step2

8. else

• c++

9. end

10. If (c>k)

• DDoS attack is detected

11. else

• Go to Step2

12. end

Example: As an illustrative example, we consider

the network topology shown in Fig. 4. This network

consists of two switches (s1, s2) and four hosts (h1 -

h4). The SDN controller initializes the window size

to a certain value (for example 50 packets), then it

calculates the number of hosts, which is four in this

case. Based on equations 3 and 4, the initial value of

ThresholdSrc and ThresholdDst is set to 1.359 and

0.381, respectively. It is clear that the entropy

threshold value of the destination IP address is

affected by network dynamics. For example, if the

link connecting h1 and s1 is broken, the new number

of hosts will be three and ThresholdDst will be

0.241. On the other hand, when a new host is added,

the total number of hosts becomes 5, and

ThresholdDst becomes 0.482.

Assuming that there is an attack from host h1 to

host h3. The SDN controller detects this attack

according to algorithm1 as follows: It calculates the

entropy of destination IP addresses for each window

of packets. The entropy value of the destination IP

addresses will be zero according to equation 1

because the probability of destination packets will be

one as all the packets are directed to one h3 (i.e., the

victim). This value of entropy is considered the

minimum value that could be obtained because all

packets in the window are directed to one host. This

entropy value is compared to ThresholdDst (0.381).

Next, the controller calculates the entropy of IP

source addresses which will be 1.56 based on

equation 1. This value is greater than the threshold

value ThresholdSrc (1.359). As a result of that, the

counter will be incremented and the same process

will be repeated again for k consecutive windows

(We used k = 5 in this example). After that, the

attack is detected. If the condition of comparing the

entropy to the threshold is not met in any round, the

counter value will be reset to one to start checking

again. This means the attack must be in k

consecutive windows to be detected. The mitigation

process starts directly after an attack is detected.

This starts by adding a rule to the OpenFlow table of

switch s1 to block all traffic destined to h3.

Therefore, it leads to getting rid of attack traffic

directly. Then, the controller add rules to the

OpenFlow table of switch s2 to allow h1 and h2 to

reach h3. Furthermore, when adding a new host to

s1, this host will automatically be added to the

OpenFlow table of switch s2.

Figure 4 – SDN based network

It should be mentioned that it is possible for an

attacker to bypass the proposed detection

mechanism in certain attack scenarios. This depends

mainly on attacker’s ability to exploit entropy

skewness inherent limitations. For example, an

attacker may distribute his/her traffic to large

number of end systems in the network. Therefore, it

leads to increasing the entropy value associated with

IP destination addresses. Moreover, the attacker can

limit IP source address spoofing to certain number

of IP addresses during each time interval. Therefore,

the entropy value associated IP source addresses

decrease, which would result in evading attack

detection.

Jawad Dalou’, Basheer Al-Duwairi, Mohammad Al-Jarrah / International Journal of Computing, 19(3) 2020, 399-410

 405

4. EVALUATION

We have conducted extensive simulation

experiments to evaluate the proposed algorithm. In

this section, we discuss the different aspects of these

experiments and the results obtained. Subsection IV-

A introduces the simulation environment, the tools

and the network topology used to perform the

experiments. Subsection IV-B discusses the

performance metrics and introduces the simulation

parameters. Finally, Subsection IV-C discusses the

results obtained.

4.1 SIMULATION ENVIRONMENT AND
NETWORK TOPOLOGY

All the experiments have been carried out using

Mininet version 2.2.0 [24] running on Linux Ubuntu

14.4 machine. Mininet is a standard network

emulator tool for SDN networks that provides a

great way for developing OpenFlow and SDN

networks. We have used the popular POX [25]

controller as the SDN controller in our experiments.

POX is an extension of NOX controller [26]. It is a

light-weight and fast SDN controller written in

Python that can run on both Linux and Windows

platforms. We wrote a Python code that utilizes the

Scapy packet generation tool [27] to generate

background normal traffic and to perform DDoS

attacks with randomly spoofed IP source addresses.

All the experiments were accomplished following

these steps:

• On a terminal, the POX controller is started.

• On another terminal, Mininet is launched to

design a custom topology configured in a

separate file.

• Now the network topology is configured through

running the POX controller.

• In order to check the connectivity between hosts,

a ping is done in Mininet using the ping

command to check the connectivity between two

specific hosts, or the command pingall to check

the connectivity between all hosts.

• To launch terminals for running hosts the

command xterm is performed on Mininet (e.g.,

xterm h1 will open a terminal for host h1).

• To start the attack by opening a terminal for the

attacker host and running the Scapy script that is

configured to perform the attack.

• To view the OpenFlow tables in each switch the

command sh ovs-ofctl dump-flows is performed

in Mininet as follows: sh ovs-ofctl dump-flows

s1 shows the OpenFlow table of the switch s1.

Fig. 5 depicts the network topology used to

conduct the simulation experiments. The simulation

network consists of four switches: three of them are

connected to the hosts forming three subnets: 10.0,

10.1 and 10.2. Subnet 10.0 has four hosts

representing the servers (target machines). On the

other hand, the hosts in subnets 10.1 and 10.2 are

used mainly to generate background traffic and

DDoS attacks with twenty hosts in each subnet.

Figure 5 – Network Topology

4.2 PERFORMANCE METRICS AND
SIMULATION PARAMETERS

The proposed DDoS detection mechanism has

been evaluated in terms of the following

performance metrics:

• Average Detection Time: Detection time is

defined as the time from when an attack

starts until it is detected. This metric is very

important and should be as minimum as

possible. For a short detection time, the

damages resulting from the attack can be

reduced and eliminated quickly.

• Entropy: Entropy as defined before is the

randomness of the packets. The randomness

of source IP addresses in normal traffic is

usually small and from known IP addresses.

Furthermore, the randomness of destination

IP addresses in normal traffic is usually

large due to the wide range of destination IP

addresses. However, during an attack, the

randomness of source IP addresses is

usually large because they are spoofed. On

the other hand, the randomness of

destination IP addresses during an attack is

usually small because the traffic is destined

to one host which is the victim. Therefore, it

is very important to consider the entropy

value for attack detection.

• OpenFlow tables overhead: OpenFlow

tables overhead is defined as the number of

rules that are added to the switches’

OpenFlow tables as a result of attack flows.

The main objective of the DDoS mitigation

component is to reduce network overload

and to minimize OpenFlow tables overhead.

Jawad Dalou’, Basheer Al-Duwairi, Mohammad Al-Jarrah / International Journal of Computing, 19(3) 2020, 399-410

 406

• False positive rate: False positives are

defined as misclassifying non-attack as an

attack. This metric is very important in

detection algorithms and should be

minimized as possible. The effectiveness of

the algorithm is to be able to differentiate

between attack and non-attack scenarios.

The main simulation parameters that have been

used in our experiments were as follows:

• Attack rate (R): The Attack rate is defined

as the number of attack packets per second.

Usually in DDoS attacks, the attack rate is

high. High rate of packets makes the

controller unable to handle these packets

and becomes unavailable. In our

experiments, we study the performance of

the proposed mechanism under different

attack rates.

• Window Size (W): Recall that the SDN

controller groups incoming Packet-IN

packets in batches each of size N

representing window of packets that are used

as input for entropy calculation. Choosing

an appropriate window size is important to

measure the false positives rate and

detection time.

• Number of entropy rounds k: This parameter

specifies the number of rounds used for

calculating entropy before deciding that

there is an attack. Choosing an appropriate

value for this parameter is important as it

effects false positive rate and detection time.

Table I summarizes main simulation scenarios

and parameters and the range of values used for each

parameter. In the simulation experiments, we

consider single victim case and multiple victim case

in order to evaluate the performance of the proposed

detection and mitigation algorithm in both cases.

Table 1. Summary of simulation scenarios and parameters

Scenario Number of victims Attack rate (Packets/Sec.) Window size Number of rounds

S1 1 Varies from 50 to 500 Varies from 20 to 70 Varies from 2 to 7

S2 4 Varies from 50 to 500 Varies from 20 to 70 Varies from 2 to 7

4.3 EXPERIMENTAL RESULTS

1. Entropy: Attack detection depends mainly on

entropy variation during attack event.

Therefore, we start by presenting entropy

value for IP destination addresses and IP

source addresses during a DDoS event. Fig. 6

shows that IP destination addresses entropy

drops significantly during attack period

(between time 1.9 and 3.9 seconds). At the

same time, IP source address entropy shown

in Fig. 7 increases during the same time

period. This variation of entropy in both

cases is expected because of the decrease of

randomness in destination IPs observed

during attack interval, and the significant

increase of randomness in source IPs due to

random address spoofing.

Figure 6 – IP destination addresses entropy

Figure 7 – IP source addresses entropy

2. Detection Time: The average attack detection

time for single victim and multiple victims

scenarios listed in Table 1 is shown in

Figs. 8-13. The effect of attack packet rate on

the detection time for different values of

window size ranging from 20 to 70 packets is

shown for scenarios S1 and S2 in Figs. 8 and

9, respectively. It can be seen that the

detection time decreases by increasing attack

rate because more attack packets will be

observed by the SDN controller and this will

affect the entropy for each window of

packets leading to faster detection. Also, it

can be seen that a smaller window size

corresponds to smaller detection time

because in this case (i.e., when window size

is small) it takes the controller small amount

of time to collect the packets required for

Jawad Dalou’, Basheer Al-Duwairi, Mohammad Al-Jarrah / International Journal of Computing, 19(3) 2020, 399-410

 407

attack detection. However, it should be noted

that there is a tradeoff between window size,

number of entropy rounds, and false positive

rate, which means that there is a restriction

on decreasing the window size. As can be

noticed, when targeting multiple victims, the

detection time increases because it takes

more rounds to discover that there are attacks

targeting multiple victims. In general, for

lower false positives rate, the controller has

to collect enough number of packets and this

can be achieved in our algorithm by

increasing the window size and the number

of entropy rounds.

The effect of window size and number of

entropy rounds on the average detection time

for different attack rates (50 packets/second

and 500 packets/second) for single victim case

and multiple victims case is shown in Figs.

10, and 11, 12 and 13. Generally, it is clear

that the average detection time increases by

increasing the window size and it has higher

value for larger number of rounds.

3. The OpenFlow tables overhead is calculated

by the number of rules that are added in the

mitigation process. This overhead depends on

the number of subnets from where an attack

has been launched. If the attack has been

launched from the same subnet, the overhead

will be the same regardless the number of

attackers. The overhead increases if the

attack came from different subnets. Fig. 14

shows this overhead. In the figure, every 20

hosts constitute a subnet. As can be noticed,

when the attackers are from the same subnet,

the overhead is the same value regardless the

number of attackers. This is because of the

feature of phase two of the mitigation engine

described before. If the attack comes from

different subnets the overhead increases.

Figure 8 – Effect of attack rate on average attack

detection time -Single victim case, entropy rounds

(k)=5

Figure 9 – Effect of attack rate on average attack

detection time - Multiple victim case, entropy rounds

(k) =5

Figure 10 – The effect of window size parameter on

the average detection time- Single-victim, Attack rate

= 50 Packets/second.

Figure 11 – The effect of window size parameter on

the average detection time- Single-victim, Attack rate

= 500 Packets/second.

Figure 12 – The effect of window size parameter on

the average detection time- Multiple-victims, Attack

rate = 50 Packets/second

Jawad Dalou’, Basheer Al-Duwairi, Mohammad Al-Jarrah / International Journal of Computing, 19(3) 2020, 399-410

 408

Figure 13: The effect of window size parameter on the

average detection time- Multiple-victims, Attack rate

= 500 Packets/ second.

As can be noticed, when the attackers are

from the same subnet, the overhead is the

same value regardless the number of

attackers. This is because of the feature of

phase two of the mitigation engine described

before. If the attack comes from different

subnets, the overhead increases, that is, per

subnet attack, the overhead is 40 extra rules.

4. False Positive Rate: Fig. 15 depicts the false

positive rate of the proposed scheme

compared to that of the scheme proposed by

Mousavi et. al., [22]. In this experiment we

set the number of rounds. It can be seen that

the false positive rate decreases by

increasing the window size in both schemes.

This is expected, because both mechanisms

rely on collecting enough samples for

entropy calculation in order to accurately

detect an attack. This emphasizes that the

selection of the window size and the number

of rounds should take into consideration

false positive rate. Also, it can be noted that

false positive rate achieved by the proposed

scheme is much lower than that obtained in

[22] which due to the fact that the proposed

scheme calculates the entropy for destination

and source IP addresses rather than for

destination IP addresses only.

Figure 14 – OpenFlow table’s overhead

Figure 15 – False Positive Rate

5. CONCLUSIONS

Software Defined Networking (SDN) is a

modern approach to network management. SDN

provides flexibility for network configuration

through a centralized SDN controller. The

centralization of the controller makes it more likely

for DDoS attacks, such that if the controller goes

down, all other network elements become useless.

Moreover, DDoS attacks may have the objective of

flooding a network segment with huge traffic

volume targeting single or multiple end systems.

Recent DDoS attack incidents confirm the

devastating effects of these attacks and calls for

efficient methods to detect and mitigate them. The

algorithm presented in this paper detects such

attacks based on IP source and IP destination

addresses entropies. Furthermore, the proposed

algorithm has an adaptive approach to joining or

leaving hosts. The algorithm provides also a module

for mitigation of the attacks once detected.

The results showed the detection time for a

DDoS attack with different attack rate, different

Window size, and different entropy rounds. In

addition, the results show the entropy variation

during normal traffic and attack traffic. The value of

entropy for destination decreases during the attack

compared with its value during normal traffic. The

value of entropy for source, on the other hand,

increases during the attack compared with its value

during normal traffic. The OpenFlow tables

overhead results show that the algorithm has an

efficient method for minimizing the overhead, such

that when the attack is launched from the same

subnet, it will be the same overhead whether the

attack is launched from one attacker or many

attackers. The overhead is increased when the attack

is launched from different subnets.

6. REFERENCES

[1] P. Goransson, C. Black, and T. Culver,

Software Defined Networks: A Comprehensive

Approach, Morgan Kaufmann, 2016.

[2] L. Chung-Sheng and W. Liao, “Software

Jawad Dalou’, Basheer Al-Duwairi, Mohammad Al-Jarrah / International Journal of Computing, 19(3) 2020, 399-410

 409

defined networks,” IEEE Communications

Magazine, vol. 51, no. 2, pp. 113-113, 2013.

[3] M. Casado, T. Garfinkel, M. Freedman, A.

Akella, D. Boneh, N. McKeown, and S.

Shenker, “SANE: A protection architecture for

enterprise networks,” Proceedings of the 15th

Conference on USENIX Security Symposium -

Volume 15, ser. USENIX-SS’06, Berkeley, CA,

USA, 2006, pp. 137-151.

[4] B. A. A. Nunes, M. Mendonca, X. Nguyen, K.

Obraczka and T. Turletti, “A survey of

software-defined networking: Past, present, and

future of programmable networks,” IEEE

Communications Surveys & Tutorials, vol. 16,

no. 3, pp. 1617-1634, Third Quarter 2014.

[5] S. S. Mohammed, R. Hussain, O. Senko, B.

Bimaganbetov, J. Lee, F. Hussain, C. A.

Kerrache, E. Barka, and M. Z. A. Bhuiyan, “A

new machine learning-based collaborative

DDoS mitigation mechanism in software-

defined network,” Proceedings of the 14th Int.

Conf. Wireless Mobile Comput., Netw.

Commun. (WiMob), Oct. 2018, pp. 1–8.

[6] K. Bhushan and B. B. Gupta, “Distributed

denial of service (DDoS) attack mitigation in

software defined network (SDN)-based cloud

computing environment,” J. Ambient Intell.

Humanized Comput., vol. 10, no. 5, pp. 1985–

1997, May 2019.

[7] K. Kalkan, G. Gur, and F. Alagoz, “Defense

mechanisms against DDoS attacks in SDN

environment,” IEEE Commun. Mag., vol. 55,

no. 9, pp. 175–179, Sep. 2017.

[8] Q. Yan, F. R. Yu, Q. Gong and J. Li,

“Software-defined networking (SDN) and

distributed denial of service (DDoS) attacks in

cloud computing environments: A survey,

some research issues, and challenges,” IEEE

Communications Surveys & Tutorials, vol. 18,

no. 1, pp. 602-622, First quarter 2016.

[9] N. Handigol, B. Heller, V. Jeyakumar, D.

Mazires, and N. McKeown, “I know what your

packet did last hop: Using packet histories to

troubleshoot networks,” Proceedings of the

11th USENIX Symposium on Networked

Systems Design and Implementation (NSDI

2014), 2014, pp. 71-85.

[10] Y. Ye, C. Qian, and X. Li, “Distributed and

collaborative traffic monitoring in software

defined networks,” Proceedings of the third

Workshop on Hot Topics in Software Defined

Networking, ACM, 2014, pp. 85-90.

[11] R. Sahay, G. Blanc, Z. Zhang, and H. Debar,

“Towards autonomic DDoS mitigation using

software defined networking,” Proceedings of

the NDSS Workshop Security Emerging

Networking Technologies (SENT), San Diego,

CA, USA, 2015, pp. 1–7.

[12] H. Wang, L. Xu and G. Gu, “FloodGuard: A

DoS attack prevention extension in software-

defined networks,” Proceedings of the 2015

45th Annual IEEE/IFIP International

Conference on Dependable Systems and

Networks, Rio de Janeiro, 2015, pp. 239-250.

[13] T. Chin, X. Mountrouidou, X. Li, K. Xiong,

Selective packet inspection to detect DoS

flooding using software defined networking, in:

(SDN),” Proceedings of the 2015 IEEE 35th

International Conference on Distributed

Computing Systems Workshops (ICDCSW),

2015, pp. 95-99.

[14] L. Zhou and H. Guo, “Applying NFV/SDN in

mitigating DDoS attacks,” Proceedings of the

IEEE Region 10 Conference TENCON 2017,

Penang, 2017, pp. 2061-2066.

[15] S. Nguyen, J. Choi, K. Kim, “Suspicious traffic

detection based on edge gateway sampling

method,” Proceedings of the 19th Asia-Pacific

Network Operations and Management

Symposium (APNOMS), Seoul, 2017, pp. 243-

246.

[16] M. S. Akbar, J. Khalid, and S. A. Khayam,

“Revisiting traffic anomaly detection using

software defined networking,” Proceedings of

the International Workshop on Recent

Advances in Intrusion Detection, Springer,

Berlin, Heidelberg, 2011, pp. 161-180.

[17] S. Shin, V. Yegneswaran, P. Porras, and G. Gu,

“Avant-guard: Scalable and vigilant switch

flow management in software-defined

networks,” Proceedings of the 2013 ACM

SIGSAC Conference on Computer &

Communications Security, New York, NY,

USA, 2013, pp. 413-424.

[18] S. Lim, J. Ha, H. Kim, Y. Kim and S. Yang, “A

SDN-oriented DDoS blocking scheme for

botnet-based attacks,” Proceedings of the 2014

Sixth International Conference on Ubiquitous

and Future Networks (ICUFN), Shanghai,

2014, pp. 63-68.

[19] N. I. G. Dharma, M. F. Muthohar, J. D. A.

Prayuda, K. Priagung and D. Choi, “Time-

based DDoS detection and mitigation for SDN

controller,” Proceedings of the 2015 17th Asia-

Pacific Network Operations and Management

Symposium (APNOMS), Busan, 2015, pp. 550-

553.

[20] Y. Xu and Y. Liu, “DDoS attack detection

under SDN context,” Proceedings of the 35th

Annual IEEE International Conference on

Computer Communications INFOCOM 2016,

San Francisco, CA, 2016, pp. 1-9.

[21] P. Dong, X. Du, H. Zhang and T. Xu, “A

detection method for a novel DDoS attack

Jawad Dalou’, Basheer Al-Duwairi, Mohammad Al-Jarrah / International Journal of Computing, 19(3) 2020, 399-410

 410

against SDN controllers by vast new low-traffic

flows,” Proceedings of the 2016 IEEE

International Conference on Communications

(ICC), Kuala Lumpur, 2016, pp. 1-6.

[22] S.M. Mousavi and M. St-Hilaire, “Early

detection of DDoS attacks against software

defined network controllers,” Journal of

Network and Systems Management, vol. 26,

no. 3, pp. 573-591, 2018.

[23] P. Kumar, M. Tripathi, A. Nehra, M. Conti and

C. Lal, “SAFETY: Early detection and

mitigation of TCP SYN flood utilizing entropy

in SDN,” IEEE Transactions on Network and

Service Management, vol. 15, issue 4, pp.

1545-1559, 2018.

[24] Mininet. [Online]. Available at: http://mininet.

org. last access 10/2/2019.

[25] noxrepo/pox: The POX network software

platform – GitHub. [Online]. Available at:

https://github.com/noxrepo/pox. last access

10/2/2019.

[26] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M.

Casado, N. McKeown, and S. Shenker, “NOX:

towards an operating system for networks,”

ACM SIGCOMM Computer Communication

Review, vol. 38, no. 3, pp. 105-110, 2008.

[27] Scapy Project. [Online]. Available at:

https://scapy.net/. Last access: 10/2/2019.

Jawad Dalou’ is a network
engineer at the Information
Technology and Communi-
cations Center at Jordan
University of Science and
Technology (JUST), Irbid,
Jordan. Prior to that he worked

as a teaching assistant in the department of network
engineering at JUST from 2012 to 2017. He

received his B.S. in computer engineering from
JUST in 2011 and his M.S. in computer engineering
from Yarmouk University, Irbid, Jordan in 2019. His
research interests are in the areas of computer
networking and network security.

Basheer Al-Duwairi is an
Associate Professor at the
department of Network Engi-
neering and Security at Jordan
University of Science & Techno-
logy. He received his B.S. in
electrical and computer engine-
ering from Jordan University of
Science and University (JUST)

in 1999, and his M.S. and PhD in computer
engineering from Iowa State University, Ames, IA in
2002 and 2005, respectively. Over the past 15
years, Dr. Al-Duwairi investigated the area of
network security focusing mainly on developing
efficient schemes for DDoS mitigation, Botnet
detection, Email spam filtering, and studying the

emerging threat of Fast Flux Networks.

Mohammad A. Al-Jarrah is a
professor of computer eng-
ineering at Yarmouk University,
Irbid, Jordan. He Earned his
Ph.D. in 2000 from University of
Ohio, USA, MS and BS in Com-
puter Engineering from Jordan

University of Science and Technology, Jordan in
1992, 1989. Since 2000, he has been working with
the Department of Computer Engineering at
Yarmouk University. His research interests include
image indexing and retrieval, multimedia systems,
distributed systems, medical imaging, Network
managements and security, data Encryption and
many others.

