PREDICTION OF FATIGUE CRACK GROWTH PROCESS VIA ARTIFICIAL NEURAL NETWORK TECHNIQUE

Authors

  • Konstantin N. Nechval
  • Nicholas A. Nechval
  • Irina Bausova
  • Daina Skiltere
  • Vladimir F. Strelchonok

DOI:

https://doi.org/10.47839/ijc.5.3.406

Keywords:

Artificial neural network, fatigue crack growth, on-line monitoring

Abstract

Failure analysis and prevention are important to all of the engineering disciplines, especially for the aerospace industry. Aircraft accidents are remembered by the public because of the unusually high loss of life and broad extent of damage. In this paper, the artificial neural network (ANN) technique for the data processing of on-line fatigue crack growth monitoring is proposed after analyzing the general technique for fatigue crack growth data. A model for predicting the fatigue crack growth by ANN is presented, which does not need all kinds of materials and environment parameters, and only needs to measure the relation between a (length of crack) and N (cyclic times of loading) in-service. The feasibility of this model was verified by some examples. It makes up the inadequacy of data processing for current technique and on-line monitoring. Hence it has definite realistic meaning for engineering application.

References

R. Jones. L. Molent. S. Pitt. Studies in multi-site damage of fuselage lap joints, J. Theor. Appl. Fract. Mech. 32 (1999), pp. 18–100.

B.E. Anderson. N.T. Goldsmith. Prediction of crack propagation in Mirage wing fatigue test spar. Aeronautical Research Labs Structures Note 448, Melbourne, April 1978.

A. Krausz. X.W. Zhiven. K. Krausz. On the constitutive law of environment assisted fatigue: the physical meaning of the Paris type equations, Zeitschrieft der Metallkunde 83 (1992), pp. 356–363.

T.S. Rolfe. J.M. Barsom. Fracture and Fatigue Control in Structures-Applications of Fracture Mechanics. Prentice-Hall Inc., Englewood Cliffs, NJ, 1977.

T.L. Anderson. Fracture Mechanics Funda-mentals and Applications. (2nd ed.), CRC Press, 1995.

K.N. Nechval. N.A. Nechval. Stochastic fatigue models and criteria for efficient planning inspections in service of aircraft structures. Proceedings of the 6th Hawaii International Conference on Statistics, Mathematics and Related Fields, Honolulu, Hawaii, January 17-19, 2007, 26 pages, in press.

R.J.H. Wanhill. Damage Tolerance Engineering property Evaluations of Aerospace Aluminium Alloys with Emphasis on Fatigue Crack Growth, National Aerospace Laboratory NLR, Amsterdam, Technical Publication NLR TP 94177 U, 1994.

P.C. Paris. M.P. Gomez. W.E. Anderson. Rational analytical theory of fatigue, Trend Eng 13 (1961), pp. 9–14.

P.C. Paris. F. Erdogan. Critical analysis of propagation laws, J. Basic Eng. Trans. ASME Ser. D 55 (1963), pp. 528–534.

A. Pourartip. M.F. Ashby. P.W.R. Beaumont. The fatigue damage mechanics of a carbon fiber composite laminate: I ? development of the model, Compos Sci Technol 25 (1986), pp. 193–218.

S. Barter. L. Molent. N. Goldsmith. R. Jones. An experimental evaluation of fatigue crack growth, Engineering Failure Analysis 12 (2005), pp. 99-128.

D.A. Virkler. B.M. Hillberry. P.K. Goel. The statistical nature of fatigue crack propagation, ASME Journal of Engineering Materials and Technology 101 (1979), pp. 148-153.

H. Ghonem. S. Dore. Experimental study of the constant-probability crack growth curves under constant amplitude loading, Engineering Fracture Mechanics 27 (1987), pp. 1-25.

N.A. Nechval. K.N. Nechval. E.K.Vasermanis. Statistical models for prediction of the fatigue crack growth in aircraft service. Fatigue Damage of Materials 2003, A. Varvani-Farahani & C. A. Brebbia (eds), Southampton, Boston: WIT Press, 2003, pp. 435-445.

N.A. Nechval. K.N. Nechval. E.K. Vasermanis. Estimation of warranty period for structural components of aircraft, Aviation (An International Research Journal of Air Transport) VIII (2004), pp. 3-9.

A. Tsurui. H. Tanaka. T. Tanaka. Probabilistic analysis of fatigue crack propagation in finite size specimens, Probabilistic Engineering Mechanics 4 (1989), pp. 120-127.

J. Tang. B.F. Spencer. Reliability solution for the stochastic fatigue crack growth problem, Engineering Fracture Mechanics 34 (1989), pp. 419-433.

Y.K. Lin. W.F. Wu. J. N. Yang. Stochastic modeling of fatigue crack propagation. Probabilistic Methods in Mechanics of Solids and Structures, S. Eggwertz and N.C. Lind (eds), Berlin, Springer, 1985, pp. 103-110.

K. Ortiz. A.S. Kiremidjian. Time series analysis of fatigue crack growth rate data, Engineering Fracture Mechanics 24 (1986), pp. 657-675.

J.L. Bogdanoff. F. Kozin. Probabilistic Models of Cumulative Damage. New York, John Wiley, 1985.

G.F. Oswald. G. I. Schueller. Reliability of deteriorating structures. Engineering Fracture Mechanics 20 (1984), pp. 479-488.

R.M.V. Pidaparti. M.J. Palakal. Neural network approach to fatigue-crack-growth predictions under aircraft spectrum loadings, J Aircraft 32 (1995), pp. 825–831.

M.E. Haque. K.V. Sudhakar. Prediction of corrosion-fatigue behavior of DP Steel through artificial neural network, Int J Fatigue 23 (2001), pp. 1–4.

F. Aymerich. M. Serra. Prediction of fatigue strength of composite laminates by means of neural networks, Key Eng Mater 144 (1998), pp. 231–240.

J.A. Lee. D.P. Almold. B. Harris. The use of neural networks for the prediction of fatigue lives of composite materials, Compos Part A: Appl Sci Manuf 30 (1999), pp. 1159–1169.

P. Artymiak. L. Bukowski. J. Feliks. S. Narberhaus. H. Zenner. Determination of S–N curves with the application of artificial neural networks, Fatigue Fract Eng Mater Struct 22 (1999), pp. 723–728.

T.T. Pleune. O.K. Chopra. Using artificial neural networks to predict the fatigue life of carbon and low-alloy steels, Nucl Eng Des 197 (2000), pp. 1–12.

V. Venkatesh. H.J. Rack. A neural network approach to elevated temperature creep-fatigue life prediction, Int J Fatigue 21 (1999), pp. 225–234.

H. Fujii. D.J.C. Mackay. H.K.D.H. Bhadeshia. Bayesian neural network analysis of fatigue crack growth rate in nickel base superalloys, ISIJ Int 36 (1996), pp. 1373–1382.

T.L. Biddlecome. M.J. Palakal. R.M.V. Pidaparti. An optimization neural network model for fatigue predictions of panels with multiple site damage, Intell Eng Syst Artif Neural Networks 5 (1995), pp. 911–916.

J.Y. Kang. J.H. Song. Neural network application in determining the fatigue crack opening load, Int J Fatigue 20 (1998), pp. 57–69.

Y. Al-Addaf. H. El Kadi. Fatigue life prediction of unidirectional glass fiber/epoxy composite laminae using neural networks, Compos Struct 53 (2001), pp. 65–71.

Y. Han. X. Liu. S. Dai. Fatigue life calculation of flawed structures-based on artificial neural network with special learning set, Int J Pressure Vessels Piping 75 (1998), pp. 263–269.

S.W. Choi. E.J. Song. H.T. Hahn. Prediction of fatigue damage growth in notched composite laminates using an artificial neural network, Compos Sci Technol 63 (2003), pp. 661–675.

S.T. Smith. J.G. Teng. M. Lu. Neural network prediction of plate end debonding in FRP-plated RC beams. Proceedings of the 6th International Symposium on FRP Reinforcement for Concrete Structures (FRPRCS), Singapore, vol. 1, 2003. pp. 193–204.

L. Fausett. Fundamentals of Neural Networks Architectures, Algorithms, and Applications. Prentice Hall, 1994.

T. Raju Damarla. P. Karpur. P.K. Bhagat. A self-learning neural net for ultrasonic signal analysis, Ultrasonics 30 (1992), pp. 317–324.

F.W.Margrave. K. Rigas. D.A. Bradley, P. Barrowclifie. The use of neural networks in ultrasonic flaw detection, Measurement 25 (1999), pp. 143–154.

A. Masnata. M. Sunseri. Neural network classification of flaws detected by ultrasonic means, NDT&E Int. 29 (1996), pp. 87–93.

A. Oishi. K. Yamada. S. Yoshimura. G. Yagawa. Quantitative nondestructive evaluation with ultrasonic method using neural networks and computational mechanics, Comput. Mech. 15 (1995), pp. 521–533.

J. Rhim. S.W. Lee. A neural network approach for damage detection and identification of structures, Comput. Mech. 16 (1995), pp. 437–443.

G.E. Stavroulakis. H. Antes. Neural crack identification in steady state elastodynamics, Comput. Meth. Appl. Mech. Engrg. 165 (1998), pp. 129–146.

R. Wendel. J. Dual. Application of neural networks to quantitative nondestructive evaluation, Ultrasonics 34 (1996), pp. 461–465.

X. Wu. J. Ghaboussi. J.H. Garrett. Use of neural networks in detection of structural damage, Comput. Struct. 42 (1992), pp. 649–659.

K. Zgonc. J.D. Achenbach. A neural network for crack sizing trained by finite element calculations, NDT&E Int. 29 (1996), pp. 147–155.

D. Howard. B. Mark. Neural Network Toolbox for Use with MATLAB. The MathWorks Inc., 1992.

N. Draper. H. Smith. Applied Regression Analysis. (2nd ed.), Wiley, New York (1981).

R. Ciocan. P. Petulescu. D. Ciobanu. D.J. Roth. The use of the neural networks in the recognition of the austenitic steel types. NDT&E Int 33 (2000), pp. 85–89.

Downloads

Published

2014-08-01

How to Cite

Nechval, K. N., Nechval, N. A., Bausova, I., Skiltere, D., & Strelchonok, V. F. (2014). PREDICTION OF FATIGUE CRACK GROWTH PROCESS VIA ARTIFICIAL NEURAL NETWORK TECHNIQUE. International Journal of Computing, 5(3), 21-32. https://doi.org/10.47839/ijc.5.3.406

Issue

Section

Articles