A MODULAR NEUROCONTROLLER FOR A SENSOR-DRIVEN REACTIVE BEHAVIOR OF BIOLOGICALLY INSPIRED WALKING MACHINES

Authors

  • Poramate Manoonpong
  • Frank Pasemann
  • Hubert Roth

DOI:

https://doi.org/10.47839/ijc.5.3.411

Keywords:

Walking machines, recurrent neural networks, locomotion control, autonomous robots, modular neural control, obstacle avoidance, sensor-driven reactive behavior, neural oscillator network, central pattern generators

Abstract

In this article, a modular neurocontroller is presented. It has the capability to generate a reactive behavior of walking machines. The neurocontroller is formed on the basis of a modular structure. It consists of the three different functionality modules: neural preprocessing, a neural oscillator network and velocity regulating networks. Neural preprocessing is for sensory signal processing. The neural oscillator network, based on a central pattern generator, generates the rhythmic movement for basic locomotion of the walking machines while the velocity regulating networks change the walking directions of the machines with respect to the sensory inputs. As a result, this neurocontroller enables the machines to explore in- and out-door environments by avoiding obstacles and escaping from corners or deadlock situations. It was firstly developed and tested on a physical simulation environment, and then was successfully transferred to the six-legged walking machine AMOS-WD06.

References

J. E. Clark, J. G. Cham, S. A. Bailey, E. M. Froehlich, P. K. Nahata, R. J. Full, and M. R. Cutkosky. Biomimetic Design and Fabrication of a Hexapedal Running Robot. Proceedings of the IEEE International Conference on Robotics and Automation, 2001, pp. 3643-3649.

J. Hilljegerdes, D. Spenneberg, and F. Kirchner. The Construction of the Four Legged Prototype Robot ARAMIES. Proceedings of the International Conference on Climbing and Walking Robots (CLAWAR’05), 2005, pp. 335-342.

R. Breithaupt, J. Dahnke, K. Zahedi, J. Hertzberg, and F. Pasemann. Robo-Salamander an approach for the benefit of both robotics and biology. Proceedings of the International Conference on Climbing and Walking Robots (CLAWAR’02), 2002, pp. 55-62.

R. D. Quinn, G. M. Nelson, R. J. Bachmann, D. A. Kingsley, J. Offi, and R. E. Ritzmann. Insect Designs for Improved Robot Mobility. Proceedings of the International Conference on Climbing and Walking Robots (CLAWAR’01), 2001, pp. 69-76.

M. Toyomasu and A. Shinohara. Developing dynamic gaits for four legged robots. Proceedings of the International Symposium on Information Science and Electrical Engineering, 2003, pp. 577-580.

R. Kurazume, K. Yoneda, and S. Hirose. Feedforward and feedback dynamic trot gait control for quadruped walking vehicle. Autonomous Robots 12(2), 2002, pp. 157-172.

C. R. Linder. Self-organization in a Simple Task of Motor Control Based on Spatial Encoding. Adaptive Behavior 13(3), 2005, pp. 189-209.

H. Cruse, V. Durr, and J. Schmitz. Control of hexapod walking in biological systems. Proceedings of the International Symposium on Adaptive Motion of Animals and Machines, 2003, On CD.

M. A. Jimenez and P. Gonzalez de Santos. Terrain adaptive gait for walking machines. International Journal of Robotics Research 16(3), 1997, pp. 320-339.

D. Spenneberg and F. Kirchner. Embodied Categorization of Spatial Environments on the basis of Proprioceptive Data. Proceedings of the International Symposium on Adaptive Motion in Animals and Machines, 2005, on CD.

E. Celaya and J. M. Porta. A Control Structure for the Locomotion of a Legged Robot on Difficult Terrain. IEEE Robotics and Automation Magazine 5(2), 1998, pp. 43-51.

J. Albiez, T. Luksch, K. Berns, and R. Dillmann. Reactive Reflex-based control for a four-legged walking machine. Robotics and Autonomous Systems 44(3), 2003, pp. 181-189.

J. Ingvast, C. Ridderstrom, F. Hardarson, and J. Wikander. Warp1: Towards walking in rough terrain - control of walking. Proceedings of the International Conference on Climbing and Walking Robots (CLAWAR’03), 2003, pp. 197-204.

K. S. Espenschied, R. D. Quinn, R. D. Beer, and H. J. Chiel. Biologically based distributed control and local reflexes improve rough terrain locomotion in a hexapod robot. Robotics and Autonomous Systems 18(1-2), 1996, pp. 59-64.

A. D. Horchler, R. E. Reeve, B. Webb, and R. D. Quinn. Robot phonotaxis in the wild: A biologically inspired approach to outdoor sound localization. Advanced Robotics 18(8) (2004), pp. 801-816.

D. Filliat, J. Kodjabachian, and J. A. Meyer. Incremental evolution of neural controllers for navigation in a 6 legged robot. Proceedings of the International Symposium on Artificial Life and Robotics, Oita University Press, 1999, pp. 745-750.

K. S. Ali and R. C. Arkin. Implementing Schema-theoretic Models of Animal Behavior in Robotic Systems. Proceedings of the International Workshop on Advanced Motion Control (AMC’98), Coimbra, Portugal, 1998, pp. 246-253.

R. D. Brooks. A Robot That Walks: Emergent Behavior from a Carefully Evolved Network. Neural Computation 1(2) (1989), pp. 253-262.

P. Manoonpong, F. Pasemann, and J. Fischer. Modular neural control for a reactive behavior of walking machines. Proceedings of the IEEE Symposium on Computational Intelligence in Robotics and Automation (CIRA’05), Helsinki University of Technology, Finland, 2005, pp. 403-408.

P. Manoonpong, F. Pasemann, J. Fischer, and H. Roth. Neural Processing of Auditory Signals and Modular Neural Control for Sound Tropism of Walking Machines. International Journal of Advanced Robotic Systems 2(3), 2005, pp. 223-234.

P. Manoonpong and F. Pasemann. Advanced MObility Sensor driven-Walking Device 06 (AMOS-WD06). Proceedings of the Third International Symposium on Adaptive Motion in Animals and Machines, Robot data sheet, Ilmenau, 2005, p. R23.

R. E. Ritzmann, R. D. Quinn, and M. S. Fischer. Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots. Arthropod Structure and Development 33(3), 2004, pp. 361-379.

F. T. Abushama. On the behaviour and sensory physiology of the scorpion Leirus quinquestriatus. Animal behaviour 12 (1964), pp. 140-153.

R. Smith. Open Dynamics Engine v0.5 User Guide. http://ode.org/ode-0.5-userguide.html, 2004.

M. Hulse, S. Wischmann, and F. Pasemann. Structure and function of evolved neuro-controllers for autonomous robots. Connection Science 16(4), 2004, pp. 249-266.

M. Hulse and F. Pasemann. Dynamical Neural Schmitt Trigger for Robot Control. Proceedings of the International Conference on Artificial Neural Networks (ICANN 2002), J. R. Dorronsoro (Ed.), LNCS Vol. 2415, 2002, pp. 783-788.

F. Mondada, E. Franzi, and P. Ienne. Mobile robot miniaturisation: A tool for investigation in control algorithms. Proceedings of the Third International Symposium on Experimental Robotics, 1993, pp. 501-513.

F. Pasemann. Discrete dynamics of two neuron networks. Open Systems and Information Dynamics 2, 1993, pp. 49-66.

K. Matsuoka. Mechanisms of frequency and pattern control in the neural rhythm generators. Biolog. Cybern. 56, 1987, pp. 345-353.

W. Ilg, J. Albiez, H. Jedele, K. Berns, and R. Dillmann, Adaptive periodic movement control for the four legged walkingmachine BISAM. Proceedings of the IEEE International Conference on Robotics and Automation, 1999, pp. 2354-2359.

G. Endo, J. Morimoto, J. Nakanishi, and G. Cheng. An Empirical Exploration of a Neural Oscillator for Biped Locomotion Control. Proceedings of the IEEE International Conference on Robotics and Automation, 2004, pp. 3036-3042.

L. Righetti and A. J. Ijspeert. Programmable Central Pattern Generators: an application to biped locomotion control. Proceedings of the IEEE International Conference on Robotics and Automation, 2006, pp. 1585-1590.

I. Markelic. Evolving a neurocontroller for a fast quadrupedal walking behavior. Master thesis, Institut fur Computervisualistik Arbeitsgruppe Aktives Sehen, Universitat Koblenz-Landau, Germany, 2005.

H. Kimura, Y. Fukuoka, and A. H. Cohen. Biologically Inspired Adaptive Dynamic Walking of a Quadruped Robot. Proceedings of the International Conference on the Simulation of Adaptive Behavior (SAB2004), 2004, pp. 201-210.

F. Pasemann, M. Hild, and K. Zahedi. SO(2)-Networks as Neural Oscillators. Proceedings of the International Work- Conference on Artificial and Natural Neural Networks (IWANN 2003), LNCS Vol. 2686, pp. 144-151.

F. Kirchner and D. Spenneberg. A Biologically Inspired Approach towards Autonomous Real World Robots. Complex Systems Science in BioMedicine. Kluwer Academic - Plenum Publishers, New York, 2004 (in Press).

K. Nakada, T. Asai, and Y. Amemiya, Biologically-inspired locomotion controller for a quadruped walking robot: Analog IC implementation of a CPG-based controller. Journal of Robotics and Mechatronics 16(4), 2004, pp. 397-403.

H. Cruse. The functional sense of central oscillations in walking. Biological Cybernetics 86(4), 2002, pp. 271-280.

E. Marder and D. Bucher. Central pattern generators and the control of rhythmic movements. Current Biology 11(23), 2001, pp. 986-996.

J. Fischer, F. Pasemann, and P. Manoonpong. Neuro-Controllers for Walking Machines - an evolutionary approach to robust behavior. Proceedings of the International Conference on Climbing and Walking Robots (CLAWAR’04), 2004, pp. 97-102.

J. Fischer. A Modulatory Learning Rule for Neural Learning and Metalearning in Real World Robots with Many Degrees of Freedom. Ph.D. Thesis, university of Muenster, Germany, Shaker Verlag, 2004.

Downloads

Published

2014-08-01

How to Cite

Manoonpong, P., Pasemann, F., & Roth, H. (2014). A MODULAR NEUROCONTROLLER FOR A SENSOR-DRIVEN REACTIVE BEHAVIOR OF BIOLOGICALLY INSPIRED WALKING MACHINES. International Journal of Computing, 5(3), 75-86. https://doi.org/10.47839/ijc.5.3.411

Issue

Section

Articles