CLASSIFICATION OF PRODUCTS AND SERVICES TO SUPPORT
BUSINESS PROCESS ENGINEERING AND E-COMMERCE

Peter J. A. Reusch 1), Pascal Reusch 2)

1) University of Applied Sciences Dortmund, Peter.Reusch@FH-Dortmund.de
2) University of Cologne, ReuschP@t-online.de

Abstract: Decades ago individual approaches to classify products and services had been introduced within companies to unify products and to reduce stocks and costs. Other approaches had been introduced to support international trade and tariff systems. Today new approaches are introduced to support e-commerce and improve business processes. All these approaches are different in the way how to classify, what to classify, and what results to get – and the language they use. The harmonization of all these approaches is very difficult. But especially companies that want to take part in B2B-business need bridges between the different approaches.

In this paper we first present a new XML-based system to remove the language barrier within classification systems and to improve data exchange.

In the second part we present an implementation of classification systems based on topic maps according to the XTM standard to implement single classification systems and establish mappings between corresponding classes of different classification systems.

Keywords: - Classification, e-Commerce, Topic Map

1. CLASSIFICATION OF PRODUCTS
AND SERVICES FOR E-COMMERCE

1.1 INTRODUCTION

In Europe the most important product and service classification for e-commerce is ecl@ss 1, built by a network of supporting industries and managed by the Cologne Institute for Business Research 2 – the authors of this paper are associated to this institute. In America UNSPSC 3 is the classification system that is generally preferred. A lot of other classification systems exist for special industries and within companies.

eCl@ss features a four level, hierarchical classification key with a keyword index containing 14,000 terms. The hierarchical levels are: segment, main group, group and commodity class. This system provides a structure for classifying all materials and services, with a degree of detail that is well suited to the requirements of the industry to improve procurement and other processes.

In ecl@ss classes are linked to a set of attributes that can be used to describe the product of the class in a uniform way – to improve the communication between suppliers and buyers. In the middle of the year 2003 ecl@ss is available in German, English, Spanish, Italian, Czech and French. The Russian version is available as a prototype – at the State Economical University Minsk and at the Fachhochschule in Dortmund we work on this version.

20 Packing material
21 Tools, machine tools
22 Construction technology
23 Machine element, fixing
24 Communication technology, office
25 Service
26 Energy, basic chemicals, aux. agents
27 Automation, electrical-engineering,
27-11 Lighting installation, device
27-11-01 Lighting installation (interior)
27-11-02 Lighting installation (outside)
27-11-03 Interior light
27-11-04 Exterior lamp
27-11-05 Explosion proof light
27-11-06 Light medium
27-11-06-01 Fluorescent light
27-11-06-02 Energy saving light
27-11-06-03 Lightbulb (fluorescent)
28 Automotive technology
29 Home economics, technolology
30 Operating, cleaning material

1 www.eclass.de
2 http://www.iwkoeln.de/
3 www.unspsc.com/
equipment
31 Polymers
32 Laboratory material, technology
33 Installation (complete, turnkey)
34 Medicine, medical technology
35 Semifinished products, materials
36 Machine, apparatus
37 Pipeline technology
38 Chemical product (inorganic)
39 Chemical product (organic)
40 Occupational safety, accident prevention
41 Advertising

Fig. 1 - All segments and some main groups, groups and commodity classes of ecl@ss.

Some classes are linked to synonyms. For commodity class 27-11-06-03 lightbulb, light bulb, general purpose lamp (bulb) are keywords - synonyms. All keywords can be used to search for classes.

Classes are linked to attribute sets. The commodity class 27-11-06-03 is linked to attributes like capacity, color of glass body, product type, and voltage. These attributes are used for the specification of a lightbulb in a tender or in an order. If buyer and supplier use the same attribute sets offers, orders and other documents can be selected and handled more or less automatically.

1.2 THE NEW ECL@SS-XML-JSP-APPROACH

The ecl@ss-approach used so far separates the different language modules totally. If a German buyer for example selects a class and its attributes based on the German classification and wants to send an order to a Spanish company, he is not able to switch from the class descriptions and attributes in German to the corresponding descriptions and attributes in Spanish – or any other language.

In his master thesis Gerd Rosarius⁴ presented a new system based on XML and JSP to support the classification of products and services according to ecl@ss with additional assistance to work in different languages. This prototype system is also the first step to improve data exchange.

The following figure shows the XML specification of the class for lightbulbs. There are “universal” elements that hold the identification and the classification number, and there are elements for specific languages – the descriptions of the lightbulb in Russian, German and English, and keywords in several languages.

```xml
<subclass feautrelist="2" id="AAB808001"
revision="001" version="001">
<identification>AAB8008</identification>
<classification_no>27110603</classification_no>
<description lang="ru">Лампа накаливания</description>
<description lang="en">Lightbulb (fluorescent)</description>
<keyword lang="en">General purpose lamp</keyword>
<keyword lang="en">Light bulb</keyword>
<keyword lang="de">Glühlampe (Leuchtmittel)</keyword>
<keyword lang="de">Allgebrauchslampe (Glühlbirne)</keyword>
</subclass>
```

Fig. 2 - XML representation of ecl@ss class 27-11-06-03.

Based on this approach the user of ecl@ss-XML-JSP can follow the classification tree in his language. If he comes to the class he needs he can switch at that node to any description that is implemented and can send this description to his foreign partner.

2. CLASSIFICATION OF PRODUCTS AND SERVICES BASED ON TOPIC MAPS

XTM provides an XML-based notation for representing information based on topics, and the relationships between topics. A topic map defines a multidimensional topic space — a space in which the locations are topics, and in which the distances between topics are measurable in terms of the number of intervening topics which must be visited in order to get from one topic to another, and the kinds of relationships that define the path from one topic to another. A topic map provides links to any kind of documents including URLs related to the topics mentioned in the topic map. Topic map engines for web browsers are available to navigate through topic maps based on XTM – for example OMNIGATOR®⁵, USU®⁶ or EMPOLIS K42®⁷.

⁵ http://www.ontopia.net
⁶ www.usu.de

134
2.1 A MONO-HIERARCHICAL APPROACH FOR ECL@SS

Topic maps can be used to implement classification systems. In the first step metadata are defined to prepare the tree for any hierarchical classification. First we start with a mono-hierarchical representation for ecl@ss. Using the OMNIGATOR\(^8\) topic map engine and the Internet Explorer\(^8\) we can navigate through the frames or the graphical representation of the class hierarchy.

The class hierarchy is based on a general metadata definition for a topic superclass and a topic subclass according to XTM.

```
<topic id="superclass">
  <subjectIdentity>
    <subjectIndicatorRef xlink:href="http://www.topicmaps.org/xtm/1.0/core.xtm#superclass"/>
  </subjectIdentity>
  <baseName>
    <baseNameString>superclass</baseNameString>
  </baseName>
</topic>

<topic id="subclass">
  <subjectIdentity>
    <subjectIndicatorRef xlink:href="http://www.topicmaps.org/xtm/1.0/core.xtm#subclass"/>
  </subjectIdentity>
  <baseName>
    <baseNameString>subclass</baseNameString>
  </baseName>
</topic>
```

Fig. 3 - First group of metadata in the topic map.

Thereafter topic types and topics for individual classes can be introduced. eClass classes is the root element for classification tree representing ecl@ss.

```
<topic id="eClass classes">
  <baseName>
    <baseNameString>eClass classes</baseNameString>
  </baseName>
</topic>
```

```
<topic id="eClass attributes">
  <baseName>
    <baseNameString>eClass attributes</baseNameString>
  </baseName>
</topic>
```

Fig. 4 - Some topics to implement ecl@ss.

The following figures show the OMNIGATOR-Internet Explorer-presentation of a topic map with a partial representation of ecl@ss.

```
<topic id = "Packing material">
  <variant>
    <topicRef xlink:href="#eclass ID"/>
  </variant>
  <parameters>
    <topicRef xlink:href="#eclass ID"/>
  </parameters>
  <variantName>
    <resourceData>20</resourceData>
  </variantName>
</topic>
```

Fig. 5 - Top level representation of a topic map for ecl@ss.

The graphical representation shown above is only available for one and only one hierarchy within the topic map. That is a restriction, but no problem. The graphical representation for classification systems is often useless because of the branching type of these trees, where one node may have about 50 successors. The following approach ignores graphical representations but supports multiple hierarchies. All approaches are open to the representation of synonyms, attributes, … .
2.2 AN OPEN APPROACH FOR UNSPSC

The UNSPSC-approach for the classification of products and services is quite different from ecl@ss. The following figure shows some segments and some families, classes and commodity classes of UNSPSC.

Fig. 8 - Graphical representation of the class Lightmedium with some commodity classes.

<table>
<thead>
<tr>
<th>UNSPSC Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000000</td>
<td>Live Plant and Animal Material and Accessories and Supplies</td>
</tr>
<tr>
<td>11000000</td>
<td>Mineral and Textile and Inedible Plant and Animal Materials</td>
</tr>
<tr>
<td>12000000</td>
<td>Chemicals including Bio Chemicals</td>
</tr>
<tr>
<td>13000000</td>
<td>Resin and Rosin and Rubber and Foam and Film and Elastomeric Mat.</td>
</tr>
<tr>
<td>14000000</td>
<td>Paper Materials and Products</td>
</tr>
<tr>
<td>15000000</td>
<td>Fuels and Fuel Additives</td>
</tr>
<tr>
<td>20000000</td>
<td>Mining Machinery and Accessories</td>
</tr>
<tr>
<td>21000000</td>
<td>Farming and Fishing and Forestry and Wildlife Machinery</td>
</tr>
<tr>
<td>22000000</td>
<td>Building and Construction Machinery</td>
</tr>
<tr>
<td>23000000</td>
<td>Industrial Manufacturing and Processing Machinery</td>
</tr>
<tr>
<td>24000000</td>
<td>Material Handling and Conditioning and Storage Machinery</td>
</tr>
<tr>
<td>25000000</td>
<td>Commercial and Military and Private Vehicles and their Accessories</td>
</tr>
</tbody>
</table>
Most segments in UNSPSC have no corresponding element in ecl@ss - for example 10000000. Some parts of the classification trees are similar, for example the parts for lamps and light media. But it is really a hard problem for those who need both classification systems to build the bridges between them.

A first topic map-approach for UNSPSC is available at http://www.techquila.com/tmsamples/xtm/unspsc/unspsc_11.zip. There are topic types for segments, families, classes and commodities, and topics for the individual occurrences of these types.

There are topics to define association types, for example the following topic to define an association type between segments and families.

```xml
<topic id="assoc-segment-family">
  <baseName>
    <baseNameString>UNSPSC Segment Consists Of Families</baseNameString>
  </baseName>
  <instanceOf>
    <topicRef xlink:href="#segment"/>
  </instanceOf>
  <member>
    <roleSpec>
      <topicRef xlink:href="urn:x-unspsc:10.10.15.01"/>
    </roleSpec>
  </member>
</topic>
```

There are associations defined according to the topic types, for example the following association between segment 10000000 Live Plant and Animal Material and Accessories and Supplies and family 10100000 Live Animals.

```xml
<association>
  <instanceOf>
    <topicRef xlink:href="#assoc-segment-family"/>
  </instanceOf>
  <member>
    <roleSpec><topicRef xlink:href="urn:x-unspsc:10.10.15.01"/>
  </member>
</association>
```
The following figure shows the OMNIGATOR® view of the complete topic map for UNSPSC – top level view.

![Topic Map](image)

Fig. 13 - UNSPSC topic map OMNIGATOR® view.

The following figure shows the OMNIGATOR® view of the UNSPSC segment 39000000.

![Segment View](image)

Fig. 14 - UNSPSC topic map OMNIGATOR® view – detail.

This approach is appropriate for UNSPSC, but not appropriate if we want to build a topic map including several classification systems and bridges between corresponding elements. To open the topic map we have to find a unique way to define the topics of all included classification systems. The following figure shows a first step to get unique topic types.

![Unique Topic Types](image)

Fig. 15 - Unique topic types.

Based on these topic types different association types can be defined to build different kind of bridges between corresponding elements of various classification systems.

![Association Type](image)

Fig. 16 - Association type

Based on such association types concrete links
between corresponding classes can be defined.

3. CONCLUSION

3.1 RESULTS

XML gives us the key to use classification systems in a multilingual environment. Topic maps give us the key to a representation of classification systems supporting associations between different classification systems.

This result is important to support “standards” like UNSPSC or ecl@ss, it is even more important today to support mappings between in-house-systems and “standards”. In-house-systems are used in any bigger company to support workflows and reduce stocks and costs. It is a hard job and it will take a lot of years to convert from the in-house-system to a “standard”. And most companies will not even start to convert now, because all “standards” are still weak in some aspects and the evolution of the “standards” is going on and in some aspects is far away from the level some companies need. So in the time of globalization and mergers the mapping of in-house-systems and “standards” is necessary to support business processes and e-commerce.

The topic map approach is appropriate for all classification systems used. For a single classification system like ecl@ss about 10^5 topics are necessary to implement the system - language versions implemented as variants and separated by scopes.

That is within the range of topic map engines and similar approaches. So that is a key to solve the problem to integrate different classification systems and different language versions.

An essential point is that topic maps are appropriate for a precise description of complex topics and associations with a lot of different roles and many kinds of relations.

3.2 FURTHER RESEARCH

There are so many classification systems for products, processes, services, patents, job etc. one has to use almost every day in a bigger company for customs documents or patent registration or the statistical organizations – and they all are different – and there are no appropriate mappings between them. Even the mappings between UNSPSC and the Harmonized Classes of the World Customs Organization failed so far. Both classification systems have common roots – but passed through an evolution that made the systems incompatible.

A unification of these classifications will not come within our generation. The structure of the classification systems is based on different needs and interests. The Harmonized Classes of the WCO for example do not include services because one does not need that for customs documents. And a lot of branches starting at similar segments are expanded in different ways.

If we are not able to unify these classification systems, we must build mappings between them. For mass mappings we need high sophisticated methods and tools – classifiers, text miners, a new kind of dictionaries, etc.

4. REFERENCES

Pascal Reusch was born: 18.05.1980

Education: Diploma in Information Systems from the University of Cologne
Diploma Thesis: Support of e-learning processes with Topic Maps
Since 2003: Working as a research associate at the Production Management Department of University Duisburg-Essen
Writing a dissertation on: “Coordination of hierarchical production planning systems”