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Abstract: Efficient collision arbitration protocol facilitates fast tag identification 
in radio frequency identification (RFID) systems. EPCGlobal-Class1-
Generation2 (EPC-C1G2) protocol is the current standard for collision 
arbitration in commercial RFID systems. However, the main drawback of this 
protocol is that it requires excessive message exchanges between tags and the 
reader for its operation. This wastes energy of the already resource-constrained 
RFID readers. Hence, in this work, reinforcement learning based anti-collision 
protocol (RL-DFSA) is proposed to address the energy efficient collision 
arbitration problem in the RFID system. The proposed algorithm continuously 
learns and adapts to the changes in the environment by devising an optimal 
policy. The proposed RL-DFSA was evaluated through extensive simulations 
and compared with the variants of EPC-C1G2 algorithms that are currently being 
used in the commercial readers. Based on the results, it is concluded that RL-
DFSA performs equal or better than EPC-C1G2 protocol in delay, throughput 
and time system efficiency when simulated for sparse and dense environments 
while requiring one order of magnitude lesser control message exchanges 
between the reader and the tags. 

Copyright © Research Institute for Intelligent Computer Systems, 2019.  
All rights reserved. 

 
 

1. INTRODUCTION 

Radio frequency identification (RFID) 
technology had found widespread acceptance in 
security, logistics, retailing and inventory 
management [1]. RFID system is the most efficient 
and reliable way to identify an entity and collect data 
[2]. An RFID system consists of one or multiple 
readers with numerous tags that communicate using 
a shared communication channel. Among the three 
types of tags that are available in the market – 
passive, active and semi-active – passive tags are the 
least complex and cheapest. It uses the backscatter 
electromagnetic energy from the reader’s signal to 
communicate the ID information. The 
communication protocol for the RFID system has to 
be simple since the tags are computationally 
challenged. Thus, the reader assumes full 

responsibility for managing or reducing collisions in 
the network. There are three types of collisions in an 
RFID system, namely, tag-to-tag, reader-to-tag and 
reader-to-reader [3]. The focus of this work is to 
propose a solution for reader-to-tag collisions using 
reinforcement learning technique. 

Collision arbitration protocols for the RFID 
system can be divided into two categories. The 
existing protocols are either deterministic (tree-
based) or probabilistic (Aloha-based). The tree-
based protocols use binary tree search method where 
tags are continuously split into subsets until each set 
has only one tag. Tree-based anti-collision 
algorithms (ACA) are found to be efficient when the 
number of tags is small. However, long 
identification delays for a large number of tags and 
high protocol complexity are the drawbacks of these 
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protocols [4]. On the other hand, Aloha-based ACA 
uses time slots and random transmission strategy to 
reduce the collision probabilities. They are known 
for minimal complexity and ease of implementation 
in the context of RFID applications. In fact, EPC-
Global Class 1- Generation 2 (EPC-C1G2) standard 
uses a variant of Aloha for its operation. However, 
the theoretical maximum throughput of slotted aloha 
ACA is only 37% [5]. Also, these protocols cannot 
guarantee low identification delay in a dynamic 
environment such as warehouse [6].  

In this paper, we present an efficient Aloha-based 
ACA which adapts its frame size dynamically using 
reinforcement learning mechanism. Framed slotted 
Aloha (FSA) is selected due to its simplicity and 
ability to handle a large number of tags or nodes 
when combined with capable algorithms [7]. The 
performance of the proposed algorithm (RL-DFSA) 
was evaluated using Monte-Carlo simulations and 
was compared with algorithms that are currently 
being used in commercial settings. RL-DFSA 
reduces collisions and improves throughput and 
delay significantly as compared to algorithms that 
are currently being employed in the commercial 
RFID readers. Besides, it is energy efficient since 
the control message overhead is an order of 
magnitude lower than that of the best performing 
algorithm in the commercial readers.  

The remainder of this paper is organized as 
follows. Section 2.0 discusses the current RFID 
standard and related works. In Section 3.0, the 
complete methodology of the proposed RFID anti-
collision protocol is presented in detail. Section 4.0 
presents results and discussion of the proposed 
protocol in relation to selected protocols from the 
literature. Finally, the paper concludes with 
concluding remarks and future works in Section 5.0. 

 
2. BACKGROUND INFORMATION 

In FSA, a frame is divided into slots of the same 
length. At the beginning of each frame, interrogator 
or reader broadcasts the frame size to the tags. The 
tags then select a slot randomly and send the ID 
information to the reader in that slot. Due to this 
random slot selection policy, excessive collisions are 
bound to happen depending on the tag population if 
a non-optimal frame size is selected by the reader. 
The average throughput, U of FSA for N tag 
population and frame size L is, 

 

U=N �1-
1

L
�

N-1
,        (1) 

 
and the normalized throughput, Unorm is given by, 
 

Unorm=
N

L
(1-

1

L
)
N-1

.   (2) 

The normalized throughput is maximized when 
L = N. However, readers are not privy of the tag 
population and FSA has a fixed frame size. Due to 
these limitations, a variant of FSA called dynamic 
frame slotted Aloha (DFSA) which adapts frames 
dynamically based on the backlog tag estimation 
was proposed in the literature [8]. Depending on the 
accuracy of the backlog tag estimation method, the 
number of collisions in the proceeding frames varies 
for the better or worse. Besides, the throughput of 
the DFSA also drops when there is a large number 
of tags to read. Therefore, a variation of DFSA, 
called Q-algorithm was proposed to be used as the 
standard protocol in current generation RFID 
systems. 

 
2.1 EPCGLOBAL CLASS 1 GENERATION 
2 STANDARD 

EPC-Global Class 1 Generation 2 (EPC-C1G2) is 
the RFID air interface protocol which enables 
interoperation of RFID devices across the globe with 
the help of its standardization [9]. It uses a variant of 
dynamic frame slotted Aloha (DFSA) known as Q-
algorithm which operates per slot basis to arbitrate 
collisions and dynamically adapt the frame size. 

Operation of Q-algorithm is shown in Fig. 1. Q 
algorithm operates using two parameters, namely, a 
floating-point parameter, ��� and ��. The round ��� 

value is used to set the frame size, � and the �� is 

used to increase or decrease the ��� value in the 

event of collision or empty slots, respectively. An 
interrogation process is initiated by the reader with 
the broadcast of a ����� command which contains 
the frame size. Upon receiving this command, tags 
generate a random number in the range between  
0 − 2��� and set their counter equal to the generated 
value. Then, the reader interrogates each slot of the 
frame one by one using the Query_repeat 
command. For each Query_repeat command, tags 
decrease their counter by one. Tag with counter 
equals to zero transmits its ID information to the 
reader. However, if there are more than one tag with 
counter equals zero for current slot, a collision 
would be detected by the reader. Consequently, the 
��� is increased by some pre-determined ��value. In 

the case of empty slot,  ��� would be decreased by 

the same �� value. The round ��� value would be 

updated continuously for each slot until a change is 
detected upon which the reader would exit the 
current frame and broadcasts a new frame size using 
the Query_adjust command. This process repeats 
until all tags are identified. The standard limits the 
round ��� value in the range between 0 �� 15 for 

delay concerns. Besides, the reader has the 
autonomy to decide whether to exit the current 
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frame or continue interrogating it even when the 
round ��� value had changed. 

 

 

Figure 1 – Q-algorithm of EPC-C1G2 protocol where 
cq values are between 0.1 to 0.5 [9] 

 
One unique feature of the EPC-C1G2 algorithm 

is that it has different time durations for success, 
collision and empty slots as per the standard. Thus, 
the claim that the throughput of FSA maximized 
when � = � is not applicable even though EPC-
C1G2 is a variant of FSA. This has been verified 
analytically by [10] and the optimal frame size, � for 
EPC-C1G2 was calculated as, 

 
L=1.46×N-1,          (3) 

 
where, � − 1 is the contending tag population. 

However, Q-algorithm has several drawbacks as 
follow. The initial selection of the Q value affects its 
performance significantly. The reader has no means 
to know the population of tags in the network a 
priori to set the Q value appropriately. Besides, Q 
adjustment strategy using �� produces excessive 

protocol overheads and also performs poorly in 
dense tag environment. 

 
2.2 RELATED WORKS 

In this section, we discuss some representative 
past studies on DFSA based anti-collision 
algorithms for RFID systems. The objective of the 
proposed algorithms can be either solving for 
optimal frame size or estimating the tag population. 
More often, the proposed algorithms try to achieve 
both these objectives as can be seen from the 
reviewed protocols in this section. We also explain 
some shortcomings of these algorithms. 

Floerkemeier [11] and Bueno-Delgado et al. [12] 
proposed a solution for optimal frame size in the 
RFID system. Authors from both papers asserted 
that L = N is the optimal frame size. However, we 
know from [10] that optimal frame size for RFID 
system is not same as in the traditional networks due 
to the different slot durations for the success, empty 

and collision slots of the RFID networks. On the 
other hand, Zhen et al. [13] proposed that the 
optimal frame size should be set as 1.4 times the tag 
population based on their own experimentation. 

Eom et al. [14] proposed an anti-collision 
protocol which updates the frame size using the 
estimated backlog tag population. An estimation 
algorithm is used to calculate the number of collided 
tags (γ) in each collision slot. The author reported 
that the proposed protocol exhibits improved tag 
estimation accuracy while reducing the total number 
of slots required for an interrogation round. 
However, the author failed to distinguish between 
the three types of slots (success, empty and 
collision) when evaluating the total number of slots. 
Therefore, it is safe to assume that the reported 
comparison with the rest of the protocol is not valid. 

Chen [15] introduced an anti-collision protocol 
which dynamically adjusts the frame length by 
examining only one slot per frame. This reduces the 
total number of examinations needed for setting the 
optimal frame size. The protocol updates the frame 
length using the estimated number of tag population. 
The author evaluated the protocol through 
simulations and reported that the normalized 
throughput of the protocol is higher as compared to 
the EPC-C1G2 protocol. However, the comparison 
is not valid since the author assumed all three types 
of time slots to have the same duration. 

Even though there are numerous anti-collision 
algorithms available in the literature, in this paper, 
we only compared our proposed algorithm with the 
EPC-C1G2 protocol and its variants due to reasons 
stated as follows. Since we already know the optimal 
frame size from the literature, we can create an 
upper bound for performance (Ideal algorithm) as 
we had explained in Section 4. Therefore, there is no 
need to compare the proposed anti-collision 
algorithm with any other algorithms from the 
literature except the EPC-C1G2 algorithm and its 
variants. Besides, we can compare the results 
reported in this paper with other protocols by getting 
the percentage of improvement from the EPC-C1G2 
protocol. 

 
3. REINFORCEMENT LEARNING BASED 

DYNAMIC FRAME SLOTTED ALOHA 
(RL-DFSA) 

In this section, the proposed RL-DFSA anti-
collision algorithm is explained in detail. The 
primary motivation for pursuing RL based frame 
adaptation method is inspired by the work of 
Shaheen [16]. In this work, the author had used 
Markov decision process (MDP) which is the 
framework for most reinforcement learning 
algorithms [17] to analyze the slotted Aloha 
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protocol. However, the author dropped the idea of 
solving the MDP for a large number of tags due to 
the need for an enormous number of computations. 
In turn, a heuristic-based method was adopted in the 
work. Accordingly, in this work, we approached the 
problem from a different point-of-view. Rather than 
calculating the transition probabilities, we used the 
Q-learning algorithm which updates the Q-value for 
each state based on its interaction with the 
environment. As a result, the computational 
complexity drops with the convergence time as a 
tradeoff. We used the Q-learning algorithm since it 
is known to be one of the most effective and popular 
algorithms to find an optimal policy in the absence 
of transition probability and reward function [18]. 

 
3.1 INTRODUCTION TO Q-LEARNING 

Q-learning is a model-free reinforcement learning 
algorithm which learns by interacting with the 
environment and receiving Q-value for the state-
action pair. The Q-value denotes the preference of 
taking an action over all other available actions 
when the system is at a certain state. Formally, for 
each state st∈S and action at∈A we define Q-value 
by, 

 
�(��, ��) ⟵ �(��, ��) + �[�� +
� max

�
�(����, ��) − �(��, ��)] ,    (4) 

 
where α is the learning rate, γ is the discount factor 
and rt+1 is the delayed reward. The α ∈ [0;1] value 
controls how quickly learning occurs. Besides, 
γ ∈ [0;1] controls the willingness or deferment for 
delayed rewards. The objective of a reward function 
is to lead the learning agent towards the goal by 
properly rewarding or punishing the agent for the 
action taken at a certain state. A carefully defined 
reward function will lead the Q algorithm towards 
convergence in a relatively short amount of time 
depending on the application. Q-learning pseudo 
code for a single agent is presented in Algorithm 1.  
 
Algorithm 1 Q-learning 
1. Set t=0 and initialized Q-values Q(st,at) for all �� ∈ � 

and �� ∈ �. 

2. while t<max_iteration do 

3.      Observe the current state ��. 

4.      Select next action at= arg max
a'∈A

Q(st,a'). 

5.      Apply at, observe the next state st+1 and  

     reward  rt≜r(st,at). 

6.      Update Q-value 

Q(st,at)←Q�st,at�+α[rt+γ max
a'

Q(st+1,a')-Q(st,at) ] 

7.      � = � + 1. 

8. end while 

The goal of the learning agent is to map each 
state to an action that maximizes its expected 
discounted reward over the time. However, a policy 
which chooses only the known maximal action 
without occasional exploration may succumb to 
locally optimal solutions. Therefore, there are 
numerous exploitation-exploration strategies 
available in the literature to tackle this problem. As 
for this work, we selected the well-known epsilon-
greedy method [19] to balance between the 
exploitation and exploration. An agent following this 
learning strategy would occasionally choose actions 
which have lower Q-values with ε probability. 

 
3.2 RL-DFSA 

This subsection describes the methodology used 
to adapt FSA using Q-learning algorithm for the 
RFID systems. We are well aware of the 
computational restriction of the RFID tags and the 
complexity of the Q-learning algorithm. Thus, the 
proposed algorithm is created to run on the readers 
only. There are numerous high-end readers like 
GAORFID, RapidRadio etc. which have a powerful 
ARM processor and memory card supports [20], 
[21] that can run the proposed algorithm without any 
trouble. Besides, the algorithm also can be made to 
function in online or offline mode. In online mode, 
the reader would continuously update the Q-matrix 
until the end of the interrogation round. This mode 
also supports dynamic tag number population since 
the algorithm is actively learning. In the offline 
mode, the algorithm would be made to run on a 
reader for a certain tag population until convergence 
is achieved. After convergence, the Q-matrix can be 
transferred to low-end readers using memory cards 
so that they can function optimally for a certain tag 
population. This reduces the computational 
complexity since selecting an action with maximal 
Q-value from a matrix requires a smaller number of 
operations. The downside of the offline mode is that 
the low-end reader would produce errors when the 
tag population changes way beyond what it did 
during the training period in the high-end reader. We 
used offline mode for evaluating RL-DFSA due to 
the following reasons. 

The proposed RL-DFSA has two phases, namely, 
learning (exploration + exploitation) and testing 
(exploitation only) due to the technical difficulty in 
running both the learning and testing, concurrently. 
For 1000 tags, RL-DFSA requires 20,000 iterations 
(~ 12 minutes) to converge to a near optimal policy 
as shown in Fig. 2. Learning an optimal policy is not 
possible due to the stochastic nature of our 
application. Fig. 3 shows the downward trend of 
cumulative reward as the exploration probability, ε 
is decayed over time settles around 20,000 iterations. 
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Therefore, learning and testing phases were 
conducted separately for time concerns. The slow 
convergence of the algorithm is due to the stochastic 
nature of our application and Q-learning itself is 
slow as rightly observed in [22]. 

 

 
Figure 2 – Q-learning performance for 1000 tags 
 

3.2.1 BASIC SETUP 

In this work, the Q-learning algorithm was 
integrated into FSA to solve the reader-to-tag 
collision problem in the RFID networks. In FSA, a 
frame is comprised of multiple time slots of the 
same length. During each timeslot, the reader would 
interrogate the tags to get their ID information. Only 
the tag which had selected current time slot for 
transmission would reply in that particular timeslot. 
However, if the frame size is much smaller than the 
tag population, severe collisions would happen at the 
reader’s side and depletes its energy. To make the 
matter worse, readers are not privy of the tag 
population to set the frame size to be optimal. 
Therefore, there is a need to estimate the tag 
population and determine the optimal frame size for 
the RFID networks. In this regard, Q-learning can 
help the reader to adapt its frame size dynamically 
using the feedback it got from the network. Besides, 
it can also solve the tag estimation problem through 
experimenting with the various tag estimation 
methods by having them as its possible actions as 
explained in the rest of this subsection. 

The problem of determining optimal frame size 
for RFID network was solved analytically by [10] 
and it was found that the frame size should be set 
1.46 times the tag population. Therefore, in this 
work, we focused on creating a policy for the reader 
so that it can adjust its frame size by alternating 
between the various tag estimates. The tag estimates 
were calculated based on a rational intuition which 
was based on the fact that the number of collided 
tags in a timeslot can be equal to or greater than two 

only. Thus, we defined the action space of the Q-
learning algorithm as follow, 

 
Action 1=1.46 ×2.0 ×number_of_collision.  (5) 

Action 2=1.46 ×2.2 ×number_of_collision.    (6) 

And so on until, 

Action 11=1.46 ×4.0 ×number_of_collision.  (7) 

The number of actions was limited to eleven 
since increasing it further introduces additional time 
complexity which is exponential. As for the state of 
the learning agent, it was set to be equal to the 
number of collisions in the previous frame. A reward 
function was defined using reward shaping 
methodology to assist the learning agent to achieve 
its goal. A metric called collision ratio 
number_of_collision

frame_size
  was used to define the reward 

function as follows, 

reward=

⎩
⎪⎪
⎨

⎪⎪
⎧-1 ,ratio>0 and< 

1

4
 

-2,  ratio≥
1

4
 and< 

1

2

-4,  ratio≥
1

2
 and< 

3

4

-8,            ratio≥
3

4
  

 .               (8) 

It is clear from the reward function that the goal 
of the learning agent is to reduce the number of 
collisions to receive higher rewards. 

 
3.2.2 LEARNING AND TESTING PHASES 

The number of actions space must be small so 
that the Q-learning can converge in a reasonable 
amount of time. Therefore, an initial study was 
performed to identify the dominant actions based on 
the cumulative sum of their Q values. Using this 
criterion, three actions (1, 2 and 4) were identified as 
dominant and a new simulation was done using the 
identified actions. Through this new simulation, an 
optimal policy and Q-matrix for a tag population of 
1000 were obtained. The number of tags was limited 
at 1000 since increasing it further would increase the 
simulation time exponentially. Besides, the policy 
obtained using 1000 number of tags can be used for 
tag population up to 2500 based on our own 
experiments. Beyond that error is produced since the 
state space exceeds the index of the Q-matrix. The 
parameters of RL-DFSA algorithm for the initial 
study are presented in Table 1. 
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Table 1. RL-DFSA parameters for the initial study 

Parameter Value 
Initial state 2 

Action 11 

Learning rate,� 0.1 

Discount rate,� 0.9 

Exploration,� 0.3 

Epsilon decay 
rate 

0.99971 

Maximum 
iteration 

30,000 

Number of tags 1000 
Initial frame 

size 
16 

 
The initial state of the agent can be any arbitrary 

value except one since state one is the goal state. 
The timing parameters given in Table 3.1 were used 
for all our simulations. The pseudocode of RL-
DFSA is presented in Algorithm 2.  

 
Algorithm 2 RL-DFSA 
1. Set t=0, max_iteration =30000 and initialize 

α,γ,ε and Q-values Q(st,at) for  

all �� ∈ � and �� ∈ �. 

2. while t<max_iteration do 

3. �� = 2 and select random action, �� 

4. Frame size = 16 

5. Collision    = 0; Success = 0; Empty = 0; 

6. while �� ≠ 1  do 

7.      Broadcast frame size and get C, S, E. 

8.      Next state st+1= C + 1; 

9.      Get reward rt≜r(st,at). 

10.      Update Q-value 

Q(st,at)←Q�st,at�+α �rt+γ max
a'

Q(st+1,a')-Q(st,at)� 

11.      if  � > random_float_between 0 and 1 

12.           Select random action, �� 

13.      else 

14.      Select next action at= arg max
a'∈A

Q(st,a
') 

15.      end 

16.      Frame size = �� 

17.      st= Next state st+1 

18. end while    

19. t=t+1  and  ε= ϵ×decay_rate 

20. end while 

 

During the testing phase, the learned Q-matrix 
was used to select an optimal action in each state. 
Monte-Carlo simulations with 5000 iterations were 
done for a various number of tags and the results are 
presented in Section 4. 

Table 2. RL-DFSA parameters for the initial study 
[23] 

Parameter Duration  Parameter Duration 

Tari 6.5μs  PRT 57.594μs 
RTcal 16.25μs  TFS 35.25μs 
BLF 394kHz  TQuery 236.34μs 
T1 20.84μs  TACK 181.5μs 
T2 7.61μs  TQRep 67.75μs 

TRext 1  TQueryAdj 96.68μs 
M 1  TS 1.1ms 

TRN16 126.9μs  TC 223.11μs 
TEPC 695.43μs  TE 113.97�� 
T3 25.381μs  

 

4. SIMULATION SETTINGS, RESULTS, 
AND DISCUSSION 

In this section, simulation results and discussions 
for all five algorithms (EPC-Fixed, EPC-Q-Frame, 
EPC-Q-Slot, Ideal, and RL-DFSA) are presented. In 
EPC-Fixed, the fixed frame size of 16 (for sparse) 
and 128 (for dense) were used to simulate 
commercial readers with similar characteristics such 
as Symbol, ThingMagic Mercury 4, Samsys and 
Intermec [12]. Fixed frame size commercial readers 
are available in two variants which are the non-
customizable and user customizable readers. The Q 
value for non-customizable tag readers is fixed at 4 
while for the user-customizable tag readers, the user 
can select Q value from a range of 1 to 7 at the start 
of the interrogation round [12]. Therefore, in this 
simulation, the frame size of 16 and 128 were 
selected for simulating fixed frame size commercial 
readers in the sparse and dense environment, 
respectively. In the case of EPC-Q-Frame, initial 
frame size was set to be 16 as per the EPC-Gen2 
standard requirement. However, there are no clear 
rules available in the EPC-Gen2 standard for fixing 
the cq value. Nevertheless, cq value of 0.3 was 
selected since it is found to perform most stable for 
sparse and dense networks [24]. EPC-Gen2 also 
allows the reader to decide whether to continue 
interrogating the current frame or abandon it when 
the round (Qfp) value varies due to collision and 

empty slots. In this regard, EPC-Q-Frame 
(Algorithm 3) simulates the situation where reader 
decides to continue interrogating current frame even 
though the round (Qfp)  value had changed mid-

frame. New Q value is only broadcasted at the 
beginning of next frame. As for the EPC-Q-Slot, 
reader abandons the current frame as soon as it 
detects a variation in round (Qfp) value. In Ideal 

case, initial frame size was set 16 and it is assumed 
that the reader knows exactly the number of 
remaining tags in the system after the expiration of 
the first frame. Subsequent frame sizes were set to 
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1.46 ×remaining_tags which is the optimal frame 
size as explained in Section 2. The Ideal case is 
treated as the upper bound of performance that can 
be achieved by an optimal algorithm. Finally, in RL-
DFSA, initial frame size was set to 16 and the 
subsequent frames were adjusted dynamically based 
on the optimal action (3 actions available) selected 
by the reader at each state. 

 
Algorithm 3 EPC-Q-Frame Implementation 
Require: Qfp, cq and total_unidentified_tags 
Ensure:  total_unidentified_tags = 0 
1. while (collision ≠ 0) do 
2.     collision = 0; 
3.     success   = 0; 
4.     empty     = 0; 
5.     Q = round (Qfp) 
6.    current_frame = 2Q  
7.    slot_for_each_tag = random_slot (1, 2Q) 
8.        for (each slot in current_frame) 
9.               if (more than one tag selects current slot) 
10.                       collision = collision + 1 
11.                       Qfp         = min (15, Qfp + cq) 
12.        elseif (only one tag selects current slot) 
13.                       success = success + 1 
14.        elseif (current slot is unselected by tags) 
15.                       empty = empty + 1 
16.                        Qfp = max (0, Qfp - cq) 
17.        end 
18.  end 
19.  total_unidentified_tags = total_unidentified_tags -   
        success 
20.  end while       

 
Simulations were performed for a single reader 

with a various number of tags (10 - 1000) using 
Matlab 2017 software. Also, our simulation used the 
394-kbps tag-to-reader link rate which obeys the 
regulation set by EPCGlobal [9]. The timing details 
presented in Table 3.1 were obtained from [23] since 
the same frequency as in the present work was used. 
Besides, the simulation scenario was divided into 
two – sparse (10 – 100 tags) and dense (100 – 1000 
tags) environments – for an easier interpretation of 
the results. In order to get more reliable and accurate 
results, Monte-Carlo simulations with 5000 
iterations were conducted for each algorithm and the 
following five performance metrics were recorded.  

 

4.1 TIME SYSTEM EFFICIENCY (TSE) 
[10] 

This metric gives the percentage of time 
successfully spend in identifying tags. It is 
calculated as follow: 

 

TSE= 
Success×Ts

Success×Ts+Empty×Te+Collision×Tc
  ,       (9) 

 

where, Success, Collision, and Empty denote the 
number of successful, collided and empty slots in the 
frame, respectively. Ts, Te, and Tc are the duration of 
successful, empty and collision slots, respectively. 
 
4.2 THROUGHPUT (tag per second) 

This metric gives average tags per second that 
can be identified using the given algorithm. It is 
calculated as follow: 

 
Tag

s
=

Success

Success×Ts+Empty×Te+Collision×Tc+Tquery
 ,         (10)  

 
where, ������ denotes duration of the query 

command issued by the reader. 
 
4.3 AVERAGE FRAME PER ROUND  

This metric gives us an average number of 
frames issued by the reader for each interrogation 
round. 

 
4.4 AVERAGE SLOTS PER ROUND 

This metrics shows an average number of slots 
required for each interrogation round.  

 
4.5 AVERAGE DELAY PER ROUND 

This metric gives the average time taken by the 
reader to finish each interrogation round. 

 
4.6 RESULTS AND DISCUSSION 

The performance of RL-DFSA in terms of TSE 
was evaluated by comparing it with the other four 
algorithms for a various number of tags as shown in 
Fig. 4. As expected, EPC-Fixed performed the worst 
since the frame size was fixed for both the sparse 
and dense environments. As the number of tags 
increases, TSE drops abruptly due to the increase in 
collisions. One persistent trend in TSE and 
throughput results pertaining to EPC-Q-Frame is its 
performance deteriorate from 100 to 400 tags then 
increases gradually. This is because that Q-algorithm 
is slow to adapt to the rapid changes in the tag 
number population. Such behavior of Q-algorithm 
had also been reported by other researchers [25]. In 
contrast, EPC-Q-Slot performed far better since it 
abandons current frame as soon as it detects 
variation in the Q value. The performance of RL-
DFSA and EPC-Q-Slot are almost identical to the 
Ideal case in sparse tag environment. However, 
unlike EPC-Q-Slot, RL-DFSA adapts to the changes 
in the frame with an order of magnitude fewer 
message exchanges as presented in Fig. 4.2. Its 
superior performance is due to the efficient learning 
method using feedback received in the form of 
reward/cost. In dense tag environment, there is a 
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small gap in TSE for Ideal case and EPC-Q-Slot and 
RL-DFSA algorithms which denote there is still 
some room for improvements. Overall, RL-DFSA is 
6.3% – 250 %, 0.4% - 18.6% and 0.4% - 5.7% better 
at TSE for sparse tag environment as compared to 
EPC-Fixed, EPC-Q-Frame and EPC-Q-Slot 
algorithms, respectively. Also, for dense tag 

environment, RL-DFSA performs 5.3% - 707.4% 
and 17% - 578.8% better as compared to EPC-Fixed 
and EPC-Q-Frame algorithms, respectively. The 
performance increment or decrement is insignificant 
(less than 1%) as compared to EPC-Q-Slot 
algorithm. 

 

 

(a) Sparse tag environment (10 – 100 tags) 

 
(b) Dense tag environment (100 – 1000 tags) 

Figure 4 – TSE of the algorithms for various number of tags 

 
The conventional normalized throughput of the 

algorithms fails to give an accurate picture on how it 
may translate to the real-life applications. Hence, for 
RFID systems, the throughput of an algorithm is 
given as the number of tags that can be identified per 
second as shown in Fig. 4.1. A similar trend as in the 
TSE can be observed here.  RL-DFSA and EPC-Q-
Slot perform almost identical on both sparse and 
dense environments except at a very low number of 
tags where RL-DFSA performed better. However, 
the performance of EPC-Fixed drops rapidly for the 

dense environment as the fixed 128 frame size is 
insufficient to accommodate large tag numbers. 
EPC-Q-Frame performs better than EPC-Fixed when 
the number of tags is small. In dense tag 
environment, its performance is unstable for the 
similar reasons mentioned during the discussion of 
TSE. Overall, RL-DFSA performs far better than 
EPC-Fixed and EPC-Q-Frame algorithms in both the 
sparse and dense tag environments with significant 
performance gap when the number of tags is large as 
can be seen in Fig. 4.1 (b). 
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(a) Sparse tag environment (10 – 100 tags) 

 
(b) Dense tag environment (100 – 1000 tags) 

Figure 4.1 – Throughput (tags/s) performance of the algorithms for various number of tags 
 

Energy efficiency is critical in RFID systems as 
the readers are battery operated [26]. Therefore, an 
efficient ACA should be able to reduce the collisions 
while guaranteeing fast tag identification time. In 
addition, the number of frames required per 
interrogation round also need to be kept at a 
minimum for energy and delay concerns. Fig. 4.2 
shows an average number of frames per 
interrogation round issued by the reader for all five 
algorithms. EPC-Fixed and EPC-Q-Slot require an 
order of magnitude higher number of frames as 
compared to the other three algorithms. In the case 
of EPC-Fixed, the number of frames required 
increases with the number of tags due to lack of 
dynamic frame size adaptivity in the algorithm. It 
performs much better at dense tag environment since 
the frame size is 128 as compared to 16 in sparse tag 
environment. As for the EPC-Q-Slot, the decision to 
abandon a frame as soon as there is a difference in 
the Q value leads to excessive frame adjustment 
queries which is much more pronounced in dense 
tag environment. Even though EPC-Q-Slot performs 
similarly to RL-DFSA in TSE and throughput, this 
excessive overhead makes it ill-suited for RFID 

application since it is not energy efficient. Finally, 
RL-DFSA performed the best due to its efficient 
learning capability even in a stochastic environment. 

In contrast to the number of frames, number of 
slots in each frame should be larger than the 
contending tags population so the tags can find a 
unique transmission slot. However, the number of 
slots cannot be increased indefinitely as a large 
number of empty slots would increase the system 
delay. The performance of EPC-Fixed and EPC-Q-
Frame follows the same trend as in the earlier 
metrics with the performance of EPC-Q-Frame is 
better in the sparse environment. Since EPC-Q-Slot 
is utilizing a slot-by-slot frame updating mechanism, 
its performance should be the upper bound for this 
metric. In both sparse and dense tag environments, 
RL-DFSA performs almost identical to EPC-Q-Slot 
which shows its superior performance even though it 
utilizes a frame-by-frame updating mechanism. This 
is mainly because the actions of the Q-learning 
algorithm are optimal as they had been carefully 
selected from the initial study. Consequently, the 
performance of RL-DFSA is equal to EPC-Q-Slot 
algorithm as shown in Fig. 4.3. 
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(a) Sparse tag environment (10 – 100 tags) 

 
(b) Dense tag environment (100 – 1000 tags) 

Figure 4.2 – Average number of frames required per interrogation round for various algorithms 

 
(a) Sparse tag environment (10 – 100 tags) 

 
(b) Dense tag environment (100 – 1000 tags) 

Figure 4.3 – Average number of slots required per interrogation round for various algorithm 
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Fig. 4.4 shows the delay performance of all five 
algorithms. The list of the algorithms ranked from 
best to worst for the delay performance is as follow: 
Ideal, RL-DFSA, EPC-Q-Slot, EPC-Q-Frame, and 
EPC-Fixed. Due to its static frame size, the EPC-
Fixed algorithm took so much longer time as 
compared to the other four algorithms to finish an 
interrogation round. The difference is much more 
pronounced in the dense tag environment. As for the 
EPC-Q-Frame it performed much better since it has 

dynamic frame adaptation mechanism. RL-DFSA 
algorithm performed much better than EPC-Q-Slot 
algorithm despite using a frame-by-frame adaptation 
mechanism. In fact, RL-DFSA is 7.9% - 9.3% and 
4.9% - 5.5% better in delay performance as 
compared to EPC-Q-Slot in sparse and dense tag 
environments, respectively. This shows the 
superiority of the employed learning algorithm 
which was able to learn an optimal policy even in a 
dynamic environment. 

 

 
(a) Sparse tag environment (10 – 100 tags) 

 

 
(a) Dense tag environment (100 – 1000 tags) 

Figure 4.4 – Average time required per interrogation round for various algorithms 

 
5. CONCLUSION 

Energy efficiency is crucial in the internet of 
things application and RFID systems are no 
exception. Hence, a great amount of care must be 
taken when designing the algorithm so it has low 
overheads while being efficient in doing the 
intended task. In this work, we proposed an ACA 
which utilizes the Q-learning algorithm for selecting 
optimal frame size based on the number of collisions 
detected in the previous frame. The proposed RL-
DFSA was trained with 1000 tags during the 

learning period and the resultant Q-matrix was used 
for evaluating the performance of the algorithm for 
varying number of tags from 10 to 1000. Its 
performance was compared with four algorithms, 
namely, EPC-Fixed, EPC-Q-Frame, EPC-Q-Slot, 
and Ideal. Through extensive simulations, it is 
concluded that RL-DFSA performs equal to or better 
than commercial algorithms at various performance 
metrics. Specifically, the number of frames required 
by RL-DFSA is an order of magnitude lower than 
the best performing algorithm that is currently being 
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utilized by the commercial readers. Hence, RL-
DFSA is proven to be an efficient anti-collision 
algorithm which is also energy efficient. The energy 
efficiency claim is valid since computational cost is 
more than 70 times cheaper as compared to the 
communication cost depending on the processor 
architecture. However, RL-DFSA still has some 
room for improvements as follow. The algorithm has 
slow convergence speed and its computational cost 
is relatively higher than the commercial algorithms. 
Thus, the application of another Q-learning 
derivative such as Speedy-Q can be investigated to 
speed up the learning process. Finally, RL-DFSA 
should be implemented on a software-defined radio 
platform and evaluated in real life applications. 
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