
A.Attanasio, P.Beraldi, F.Guerriero / Computing, 2003, Vol. 2, Issue 1 (#3), 7-12

A PRACTICAL PERFORMANCE INDEX FOR COMPARING
OF OPTIMIZATION SOFTWARE

Andrea Attanasio1, Patrizia Beraldi2, Francesca Guerriero3

1) Center of Excellence for High Performance Computing, Università della Calabria,

87030 Rende (CS) - Italy, attanasio@unical.it
2) Dipartimento di Elettronica, Informatica e Sistemistica, Università degli Studi della Calabria,

87030 Rende (CS) - Italy, beraldi@deis.unical.it
3) Dipartimento di Elettronica, Informatica e Sistemistica, Università degli Studi della Calabria,

87030 Rende (CS) - Italy, guerrier@deis.unical.it

Abstract: In this paper we propose a new practical performance index for ranking of numerical methods. This
index may be very helpful especially when several methods are tested on a large number of instances, since it provides
a concise and precise idea of the relative efficiency of a method with the respect to the others. In order to evaluate the
efficiency of the proposed rule, we have applied it to the numerical results presented on previously published papers.

Keywords: Performance index, Optimization software performance.

1. INTRODUCTION

The increasing emphasis on the computational
aspects of optimization methods and their impact on
the solution real-world applications have prompted
the need to design meaningful indices for
performance evaluation. However, many difficulties
arise in evaluating and interpreting the results in a
fair and balanced way.

First of all, we have to establish the object of
evaluation. Actually, for any method, it is possible to
define different algorithms and software
implementations whose efficiency strongly depends
on the compiler and on the hardware platform used.

Furthermore, we have to choose the criteria on
which we shall carry out the evaluating process. The
traditionally used performance measures are: the
computational performance (speed and memory,
robustness), the solution quality (accuracy), and the
scope (problem type and size).

A frequently used notion in the comparison of
numerical methods is the one of “the best method”.
The “best” is a relative concept that depends on
subjective criteria, whose choice depends on the
goal of the comparison: the best may mean the
fastest, or the easiest to apply, or the most reliable.

Another important issue to address in the
evaluating process is the choice of the test problems.
The testing phase of optimization software could be
inadequate for several reasons: the number of test
problems could be too small, the instances could

have small size and present some regularity. We
observe that the testing is a very crucial phase since
if any error occurs in the manner of carrying out the
experiments, the same error may affect any
performance index used to compare the results.

Solving the controversy surrounding the
reporting of results from scientific experiments is
out the scope of this paper. Relevant papers try to
give instructions on the manner of carrying out
numerical experiments in a correct way. Interested
readers are referred, for example, to [1], [2] and [3],
where the authors examined the issues involved in
reporting on the empirical testing of parallel
mathematical programming algorithms.

The main contribution of this paper is to define a
new performance index, once the user has stated
clearly what is tested, which performance criteria are
considered, and which performance measure is used.
The proposed index gives a concise idea of the
relative efficiency of a method with respect to the
others, when it is applied to solve a given set of test
problems.

The rest of the paper is organized as follows. In
the next section we introduce a simple example
showing the weaknesses of certain known rules. In
Section 3, we define our performance index. Finally,
in Section 4, we illustrate the efficiency of our rule
by considering the computational results of some
numerical methods proposed to solve two classes of
optimisation problems.

7

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

A.Attanasio, P.Beraldi, F.Guerriero / Computing, 2003, Vol. 2, Issue 1 (#3), 7-12

2. AN EXAMPLE

Let p be the number of test problems, m the
number of methods that we want to rank, and let Ci,,j
be the cost (for example the execution time) required
to solve test j (j = 1, 2,..., p) by the method i (i = 1,
2,..., m).

Let us consider the simple case with m = 2 and p
= 3 reported in Table 1.

Table 1 - Prediction results

Method Test 1 Test 2 Test 3
1 60 10 5
2 30 20 10

In order to compare the results of Method 2 with

respect to those of Method 1, a straightforward rule
is to consider the ratio of the sum of the costs:

.25.1
60
75

1
,2

1
,1

)1(===

∑

∑

=

=
p

J
j

p

J
j

C

C

R

Another simple rule is defined by the following

index:

,1
3
3

)/(
1

,2,1
)2(===

∑
=

p

CC

R

p

J
jj

corresponding to the average speed-up of Method

1 over Method 2. The value of R(1) shows that
Method 2 works better than Method 1, whereas R(2)
indicates that there is no difference in the
performance of the two methods. However, the use
of both indices may be misleading since Method 2
improves 50% over Method 1 on the first test (the
improvement of Method 2 over Method 1 for
solving test j is defined by the ratio (C1,j/C2,j)/C1,j),
whereas Method 1 improves 50% over Method 2 for
the other two tests. This means that Method 1 is
globally more efficient than Method 2.

This simple example suggests that the above
exposed rules are not reliable. Actually, R(1) does not
consider the difference among the costs required by
each method to solve all the test problems. On the
other hand, R(2) is useful only if the ratio C1,j/C2,j is
greater than or equal to one, for all the test.

Other difficulties arise when, for some tests, one
method either fails to solve the test problem or it
finds a different solution with respect to the one
obtained by the other methods. In this situation, one

possibility is to avoid to include in the comparison
the results of this particular test problem.

3. A NEW PRACTICAL PERFORMANCE

INDEX

Much work has been devoted in defining
performance measures for comparing of
optimization software developed for specific
problems. The interested readers are referred, for
example, to [4], [5], [6] and [7]. Our index is more
general and can be used to compare a large number
of methods tested on a specified set of instances.
More specifically, for each method i, we define the
total quality index Ri by the following pair of values:

),()()(CP
i

SQ
ii RRR = .

Here Ri

(SQ) is a measure of the solution quality
(i.e., robustness) of the method i. In particular, we
have chosen to define Ri

(SQ) as the percentage of
successes, i.e. the ratio between the number of
successful exits over the number p of test problems;
as such Ri

(SQ∈ [0,1]. We observe that this index may
be omitted when the value is equal for all the
methods or meaningless for some particular
application.

Ri
(CP) is the index of the computational

performance defined as follows:

m ,...,2 ,1i ,
p

r
R

p

1j

)j(
i)CP(

i ==
∑ =

, (1)

where:

{ }jkk

jij
i C

C
r

,

,)(

min
= .

More specifically, for each method i and for each

test problem j, we define a score ri
(j) which is equal

to the ratio of the cost of this method over the cost of
the best-considered method. Thus, Ri

(CP) is an
average score that indicates how much a particular
method has been less efficient, on average, than the
most successful method (defined from now on as the
ideal method). This value takes into account not
only if a method works better than the others, but
also how much the method outperforms the others.

For the example reported in Table 2, we have:

8

A.Attanasio, P.Beraldi, F.Guerriero / Computing, 2003, Vol. 2, Issue 1 (#3), 7-12

Table 2 - Our performance index

Method Test 1 Test 2 Test 3
1 60 10 5
2 30 20 10
r1 2 1 1
r2 1 2 2

and we obtain R1
(CP) =

_

3.1 and R2
(CP) =

_

6.1

We observe that our definition of Ri
(CP) can be

viewed as a generalization of the rule used by
Brown and Bartholomew-Biggs in [8] to rank some
methods for solving unconstrained optimization
problems. Their idea consists in assigning 1 point to
the most successful code, 2 points to the second, and
so on. In this way, the total score obtained for each
method reflects the frequency of outperforming. The
main drawback of the Brown-Biggs' rule is that it
provides a qualitative ranking rather than a
quantitative one.

It is worth mentioning that the index of
computational performance R(CP) is particularly
useful also to establish the speed-up of parallel
methods and to compare their efficiency with the
sequential counterparts [9]. Obviously, this is
possible only when the costs Ci,,j used to rank the
methods correspond to the execution times.

In the case of failure for some test problem j, we
suggest to replace the failure with the maximum cost
computed over all the methods used for solving test
j. This solution seems to be reasonable because the
main aim of the rule is to rank the methods using a
relative index (i.e., we can only establish if a method
works better than the others considered for solving
the limited set of selected test problems). In this
case, the index R(SQ) will take into account the
percentage of the failure of the method.

4. NUMERICAL ILLUSTRATION

In order to evaluate the efficiency of our rule, we
have considered methods proposed in the literature
to solve two classes of classical optimization
problems, i.e. the shortest path problem in a directed

graph, and the problem of finding the stationary
points of a nonlinear and unconstrained function.

In the former case, we use the results collected by
Bertsekas [10] on 16 network problems solved by
using the Bellman-Ford (B-F) method, the D'Esopo-
Pape (D-P) method, the Small Label First (SLF)
method, the Threshold (THR) method and the
combination of the last two methods (SLF-THR).
The cost chosen by Bertsekas to evaluate the
performance of the method is the execution time (in
secs).

On the basis of the results reported in table 3, we
obtain the ranking of Fig. 1. Note that, we have
reported only the values of the index R(CP) of the
computational performance, since all the methods
terminate with the optimal solution.

Our index reveals that the D-P method is about
11 times slower on the average than the SLF-THR,
whereas the performance of SLF-THR is very close
to that of the ideal method, which solves all the test
problems in the minimum time over all the
considered methods (this means that none of the
methods is ideal). The analysis of the results
presented by Bertsekas in [10] completely matches
our conclusions: “... the SLF method can also be
combined with the threshold algorithm thereby
considerably improving its practical performance”,
or: “... for some test problems the D'Esopo-Pape
algorithm performs very poorly; we have not seen in
the literature any report of a class of randomly
generated sparse problems where this algorithm
exhibits such poor behaviour”, and so on.

As another example we have considered the
numerical results reported in [11] to solve
unconstrained non linear optimisation problems by
limited memory Quasi-Newton methods. In
particular, comparative tests have been conducted on
a set of 18 well-known test problems (three of these
have two different dimensions). Among the
noticeable variety of collected results, we have
considered (according to the choice of the authors of
[10]) only the CPU time for nine different codes,
whose names are reported in Table 4.

1.021.351.87

11.13

2.10

0

2

4
6

8

10

12

B-F D-P SLF THR SLF-THR

Rule

R
(C

P
)

Figure 1 - Ranking based on our rule

9

A.Attanasio, P.Beraldi, F.Guerriero / Computing, 2003, Vol. 2, Issue 1 (#3), 7-12

Table 3 - Time (in seconds) to solve 16 network problems by 5 shortest paths methods

Test Problem B-F D-P SLF THR SLF-THR
1 0.117 0.1 0.083 0.066 0.05
2 0.467 0.583 0.383 0.2 0.2
3 1,25 1.82 1.13 0.533 0.433
4 1.983 2.683 2.017 0.867 0.717
5 0.417 0.4 0.333 0.217 0.233
6 0.993 0.917 0.717 0.5 0.533
7 1.933 1.767 1.483 0.95 1.017
8 3.333 2.75 2.1 1.5 1.62
9 1.5 6.65 1.28 1.47 1.15
10 7.28 332.2 5.4 6.42 4.43
11 14.6 279.2 10.3 12.73 8.677
12 19.97 326 13.88 18 11.95
13 0.483 1 0.55 0.3 0.2
14 0.883 1.783 1.033 0.733 0383
15 1.233 2.333 1.56 0.95 0.65
16 1.75 3.567 2.033 1.85 0.817

Table 4 - Nonlinear optmization codes used for computational experiments

Code Reference Code Reference
C1 CONMIN-CG C2 CONMIN-BFGS
C3 E04DGF C4 L-BFGS (m=3)
C5 L-BFGS (m=5) C6 L-BFGS (m=7)
C7 BBVSCG (m=3) C8 BBVSCG (m=5)
C9 BBVSCG (m=7)

The results are summarized in Table 5.

Table 5 - Time (in seconds) to solve 18 unconstrained optimization problems by the 9 codes

P C1 C2 C3 C4 C5 C6 C7 C8 C9
1 0.0233 0.0238 0.0211 0.0278 0.0316 0.0383 0.0229 0.0326 0.0315
2 0.026 0.0557 0.0301 0.0556 0.0523 0.0513 0.0456 0.0619 0.0516
3 0.0028 0.0058 0.007 0.0059 0.0073 0.0074 0.0032 0.0042 0.0031
4 0.0912 0.1042 0.077 0.1752 0.2045 0.2461 0.1066 0.1359 0.1723
5 0.0109 0.0285 0.0278 0.031 0.0361 0.0383 0.0175 0.023 0.0279
6 0.0052 0.0373 0.0148 0.0187 0.0224 0.0256 0.0129 0.0142 0.0218
 0.0224 1.7774 0.0464 0.0733 0.0936 0.1125 0.0288 0.0586 0.0707

7 0.4707 0.287 F 3.5291 0.7419 0.4794 0.4597 0.4616 0.4111
 2.1548 1.1544 F F 5.7458 3.2839 1.8518 1.4923 0.7219

8 0.0604 3.5806 F 0.1266 0.159 0.1824 0.1276 0.1066 0.1271
 0.1437 0.0355 0.1997 0.0182 0.0261 0.0236 0.0186 0.019 0.0228

9 0.2719 F 0.1596 0.4425 0.5301 0.5577 0.2381 0.2883 0.3168
10 0.0063 0.0073 0.0097 0.0142 0.0162 0.0177 0.0098 0.0108 0.0191
11 0.4817 0.0356 0.0231 0.0432 0.0305 0.0387 0.0344 0.0262 0.0279
12 0.0207 0.0183 0.033 0.0337 0.0355 0.0402 0.0187 0.0199 0.0222
13 0.1457 2.1017 0.0749 0.1094 0.1345 0.1574 0.0968 0.1431 0.1422
14 0.0457 1.7946 0.0378 0.0706 0.0941 0.1227 0.0576 0.0645 0.0854
15 0.1247 2.0963 0.0536 0.1367 0.1512 0.1243 0.0854 0.1087 0.1494
16 0.0078 0.0103 0.0114 0.015 0.0151 0.0169 0.013 0.0161 0.0163
17 0.0497 0.0362 0.0871 0.1073 0.1152 0.126 0.0272 0.0253 0.0262
18 8.8249 26.57 9.0296 8.2528 6.6732 6.6005 8.5565 7.229 9.2365

10

A.Attanasio, P.Beraldi, F.Guerriero / Computing, 2003, Vol. 2, Issue 1 (#3), 7-12

By ranking the codes according to our rule, we
obtain the scores reported in Fig. 2.

1.00

0.95

0.86

0.95

1.00

1.00

1.00

1.00

1.00

13.73

2.63

5.63

3.00

2.81

2.84 1.53

1.75

1.97

0

2

4

6

8

10

12

14

16

C1 C2 C3 C4 C5 C6 C7 C8 C9

Rule

R(SQ)

R(CP)

Figure 2 - Ranking based on our rule

In [11] it is pointed out that all methods have a

practical appeal. E04DGF appears to be the least
efficient method for the library test problems, and
when the number m is increased from 3 to 7, there is
no significant improvement in performance. Similar
conclusions (and many others) can be derived by
examining the details of the results of Figure 2. This
confirms that our rule is sound and reliable.

5. CONCLUSION

In this paper we have proposed a new cumulative
index for ranking numerical methods used to solve
optimization problems. The results have confirmed
that our index is sound and reliable and, thus, it
promises to be a useful tool to measure the
performance of any optimization method, even
implemented in parallel, especially when several
methods are used for the comparison and the number
of test problems is so large to make difficult the
analysis of the numerical results using other
approaches.

ACKNOWLEDGEMENT

This research was partially supported by the
Center of Excellence for High Performance
Computing, University of Calabria, Italy. This
support is gratefully acknowledged.

REFERENCES
1. R.H.F. Jackson, P.T. Boggs, S.G. Nash and S.

Powell, “Guidelines for Reporting Results of
Computational Experiments: Report of the ad hoc
Committee”, Mathematical Programming, Vol. 49,
pp. 413-425, 1991.

2. F.A. Lootsma, “Comparative Performance
Evaluation, Experimental Design, and Generation of
Test Problems in Non-Linear Optimization”, In K.
Schittkowski (editor), Computational Mathematical
Programming, NATO ASI Series, Springer-Verlag,
Berlin, pp. 249-260, 1985.

3. R.S. Barr, and B.L. Hickman, “Reporting
Computational Experiments with Parallel
Algorithms: Issues, Measures, and Experts' Options”,
ORSA Journal on Computing, Vol. 1, pp. 2-32, 1993.

4. K.L. Hiebert, “An Evaluation of Mathematical
Software that solves Nonlinear Least Square
Problems”, ACM Transaction of Mathematical
Software, Vol. 7, pp. 1-16, 1981.

5. J.J. More, B.S. Garbov, and K.E. Hillstrom, “Testing
Unconstrained Optimization Software”, ACM
Transaction of Mathematical Software, Vol. 7, pp.
17-41, 1981.

6. K.L. Hiebert, “An Evaluation of Mathematical
Software that solves Systems of Nonlinear
Equations”, ACM Transaction of Mathematical
Software, Vol. 8, pp. 5-20, 1982.

7. M. Al-Baali, “A Rule for Comparing Two Methods
in Practical Optimization”, Technical Report No. 119,
Department of Systems, University of Calabria,
Rende, Italy, 1992.

8. A.A. Brown and M.C. Bartholomew-Biggs, “Some
Effective Methods for Unconstrained Optimization

11

A.Attanasio, P.Beraldi, F.Guerriero / Computing, 2003, Vol. 2, Issue 1 (#3), 7-12

Based on the Solution of Systems of Ordinary
Differential Equations”, Technical Report No. 178,
Numerical Optimization Centre, The Hatfield
Polytechnic, Hatfield, England, 1987.

9. D.P. Bertsekas, F. Guerriero and R. Musmanno,
“Parallel Shortest Paths Methods for Globally
Optimal Trajectories”, In J. Dongarra, L. Grandinetti,
J. Kowalik, G. Joubert (editors), High Performance
Computing: Technology and Applications, Elsevier,
Amsterdam, pp. 303-315, 1995.

10. D.P. Bertsekas, “A Simple and Fast Label Correcting
Algorithm for Shortest Paths”, Networks, Vol. 23, pp.
703-709, 1993.

11. X. Zou, M. Navon, M. Berger, K.H. Phua, T. Schlick
and F.X. Le Dimet, “Numerical Experience with
Limited-Memory Quasi-Newton and Truncated
Newton Methods”, SIAM Journal on Optimization,
Vol. 3, pp. 582-608, 1993.

Andrea Attanasio is graduated
in Electrical Engineering (1989)
at University of Calabria; he
obtained a master degree in
Information Technology (1990)
at CEFRIEL Center in Milan.
He worked several years in
multinational information
technology companies. Actually
he works as Technical Director
of the Center of Excellence for

High Performance Computing at University of
Calabria, a multi disciplinary center which addresses
many topics, including grid computing, optimization
and simulation of large scale systems. His areas of
interest are: high performance computing; grid
computing; optimization of logistics and
transportation systems; information &
communication technology.

Patrizia Beraldi is an
Assistant Professor of
Operations Research at the
Faculty of Engineering,
University of Calabria. She
received in 1999 the Ph.D in
Computer Science and
System Engineering from the
University of Calabria. Her
major research interests:
network optimisation, stochastic programming,
theory and applications, and parallel computing.

Her publications have appeared in a variety of
journals, including Computational Optimization and
Applications, Optimization Methods & Software,
Journal of Optimization Theory and Applications,
Parallel Computing, Operations Research,
Computers and Operations Research, European
Journal of Operational Research.

Francesca Guerriero is an
Associate Professor of
Operations Research at the
University of Calabria, Italy,
Faculty of Engineering. She
received a Ph.D in Computer
Science and System
Engineering from the
University of Calabria. Her
major research interests are
in optimisation theory,

logistics, network optimisation and parallel
computing.

Her publications have appeared in a variety of
journals, including Computational Optimization and
Applications, Optimization Methods & Software,
Journal of Optimization Theory and Applications,
Parallel Computing, Operations Research,
Computers and Operations Research, European
Journal of Operational Research.

12

