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Abstract: This paper reports the implementation of a neural processing structure as a component of an intelligent 
measuring system that uses ion selective electrodes (ISEs) as sensing elements of heavy metal ions (Pb+2, Cd+2) 
concentration. The neural network (NN), designed and implemented to reduce errors due to ion interference and to pH and 
temperature variations, is of the multiple-input multiple-output Multilayer Percepton (MLP-NN) type. The NN is a 
component of a virtual instrument that includes a PC laptop, a PCMCI data acquisition board with associated conditioning 
circuits and the specific ISE sensors. A practical approach concerning the optimal neural processing solution (number of 
NN structures, number of neurons, neuron transfer functions) to increase the performance of low cost ISEs is presented. 
Results are presented to evaluate the performance of the NN intelligent ISE system and to discuss the possibility of 
transferring the acquisition and processing task to a low cost acquisition and control unit such as a microcontroller. 
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1. INTRODUCTION 

Ions of heavy metals, such as lead and cadmium, 
are an undesired presence in river waters. The 
monitoring of its concentration requires the utilization 
of measuring systems often based on ion selective 
sensors (ISE). Glass electrodes ISEs are characterized 
by fragility, temperature dependent sensitivity and 
limited selectivity [1]. All these limitations make their 
use unsuitable for permanent field measurements 
required for continuous river water quality monitoring. 
Other groups of ISEs are solid-state crystal membrane 
sensors, such as NASICON, and PVC membranes, 
such as ELIT, which detect the ions (i.e. Pb+2,Cd+2, 
Hg+2) in aqueous solutions [2][3].  

These types of ISEs are robust enough to permit its 
field utilization. However, most of them have ion-
selective membranes that allow transit of more than 
one type of ions. Methods to increase the selectivity of 
this type of sensors are reported in the literature and 
are based on multivariable modeling techniques 
applied to reduce the interference effects. Solutions in 
the multivariable modeling area use both the fuzzy 
system [4] and neural networks [5][6] to perform the 

modeling of sensor with non-linear characteristics and 
multiple influence factors.  
 

2. ISE SYSTEM: ISE PRESENTATION AND 
MODELING 

The present work proposes a ISE pH and 
temperature sensor based unit that includes an 
intelligent processing of sensors information in order 
to measure the lead and cadmium ions concentration 
with better accuracy, reducing the errors caused by 
temperature, pH variation and ion interference ions.  
The data sensor fusion based on NNs [7][8] is the 
main technique used in the present case.  

Ion sensing part of the system includes an ISE for 
lead ions, an ISE for cadmium ions and a reference 
electrode.  

The potential of lead and cadmium ISEs depends 
on the Pb+2 and Cd+2, respectively, and is given by 
Nernst equation: 

( )0 X
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E E log a
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                 (1) 
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where: E0 - reference electrode potential, R - constant 
of gases, T - absolute temperature, Z - charge on the 
ion with sign, F - Faraday constant, aX - activity of the 
measured ion, X.  

Due to the dependence of E on temperature, a 
temperature sensor is included in the system to allow 
the on-line correction of ISE characteristics with 
temperature. 

The activity of each ISE depends on the 
concentration of the main ions (Pb+2 for Pb-ISE or 
Cd2+ for Cd-ISE) but also on the presence of other ions 
in the analyzed medium (i.e. river water). In these 
conditions the Pb-ISE and Cd-ISE output voltages are 
expressed by Nikolsky-Eiseman equations: 

( )2 2
Pb,X i ii

pot
0 X ZCd Cd

2.3 R T
E E log a k a

Z F
+ +

⋅ ⋅= + ⋅ + ⋅
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where +2Pb
a  +2Cd

a are the Pb+2 and  Cd+2 activities, 

i

pot
Pb,Xk and 

i

pot
Cd,Xk  represent the potentiometric 

selectivity coefficients of the ISE considered 
electrodes for different interfering ions, Zi are the 
charge number of the interfering ions and R the 
constant of gases. The potentiometric selectivity 
coefficient defines the ability of an ion-selective 
electrode to distinguish a particular ion from others 
[9]. Ion activity is proportional to concentration. Thus, 
in the particular case of Pb+2 and Cd+2, activities are 
expressed by: 

2 21Pb Pb
a C+ += γ ×    ;  2 22Cd Cd

a C+ += γ ⋅         (3) 

where γ1 and γ2 are the activity coefficients that 
depend on the  ionic strength of the measured solution 
and CPb

+2 and CCd
+2 are the concentrations of lead and 

cadmium, respectively.  
Taking into account the complexity of ISE sensors, 

a global characterization using neural networks is a 
solution to consider. 
 
 

3. ISE SYSTEM: HARDWARE 

The ISE sensors are part of a virtual instrument 
designed and implemented to measure the ion 
concentration in the river water. Sensors used are 
ELIT8231 and ELIT8241, specific ISE for Pb+2 and 
Cd+2, and a double junction lithium acetate ELIT003 
as the reference electrode  (Fig.1). 

Considering that the used sensors are 
potentiometric, the electrode polarization due to the 
current should be avoided. For this purpose a 
conditioning circuit with two 1,2µA Max, single-
supply MAX406 operational amplifiers (AO1 and 
AO2) is implementeded. AO1 and AO2 output 
voltages are acquired using two analog differential 
inputs (ACH0 and ACH8 for VPbISE and ACH1 and 
ACH9 for VCdISE) of a PC notebook plugged-in data 
acquisition board (PCMCIA DAQ6022). 
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Fig. 1. ISEs conditioning block. 

Referring to the temperature conditioning circuit, a 
LM324 based controlled current source is implemented in 
order to obtain a voltage signal VT linearly dependent on the 
resistance variations of a ON401 thermistor. The injected 
current is 0.2mA in order to prevent self-heating effects.  

The value of concentration’s pH is also an important 
parameter that influences ISEs output, namely for low 
values of ion concentrations. Fig. 2 shows the effects of pH 
variation on the concentration measurement in the particular 
case of Cd+2 ion measured with ELIT8241. In the figure, 
VISE_Cd  expresses Cd+2 ion sensor acquired voltage, pH 
represents the value of pH measured with ISI model 11 pH 
sensor and ∆epXCd represents the pXCd

+2 absolute errors 
obtained for different pH values. The ∆epXCd error is defined 
by the following relation: 
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Thus, the pH of the tested solution is measured 

using the ISI11 pH transducer that delivers a voltage 
included in 0-300mV interval for pH=[1-10]. After 
conditioning, the voltage signal corresponding to pH is 
digitized using the DAQ. 

Fig. 3 shows the overall hardware and its interface 
with the software component of the measuring system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4. ISE SYSTEM: SOFTWARE 

The software components of the virtual system are 
related with the acquisition and filtering of VPb-ISE, 
VCd-ISE , VpH, VT and with the neural processing of the 

acquired voltages in order to obtain the accurate 
values of Pb+2 and Cd+2 ions concentration with 
compensation of temperature, pH and interfering ion 
effects.  

Data acquisition and filtering are performed using a 
set of LabVIEW functions. Acquisition sampling rate 
is fs=10kS/s. For each sampling set corresponding to 
∆ti=1s acquisition time, average voltages VISE_Cdi

avg. 
VISE_Pbi

avg , VTi
avg., VpHi

avg are calculated in order to 
increase the signal to noise ratio (SNR). The time 
interval between two acquisition times is set at 
τI=1min. Different Cd+2 and Pb+2 based solutions ( 
CCd

+2 and CPb
+2 =[0.14;10]ppm) with different pH 

(3÷9) values and temperature (T=[273-303]K) are 
considered  in order to obtain the corresponding sensor 
voltage responses used to train and test the neural 
network (NN) processing structure design. The main 
blocks included in the NN processing structure are the 
NN temperature sensor-processing block (NN-T), the 
NN pH sensor-processing block (NN-pH) and the NN-
ISE processing block (NN-ISE) all of them expressed 
by multilayer perceptron neural networks (Fig. 4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. The NN processing structure. 
 

 

4.1 NN temperature sensor processing 
block 

The NN-T performs temperature (T) calculation of the 
aqueous solution under test using the VTi

avg acquired 
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Fig. 3. The ISE based virtual instrument for Pb2+ 
and Cd+2 ion concentration measurement. 
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Fig. 2.  pH influence on Cd+2 measurement using 
ELIT8241 sensor (pH∈[3,9] and pXCd ∈[4,7].  
(a) sensor’s output voltage, VCd-ISE versus pH for 

pXCd+2=5; (b) pX absolute errors versus pH. 
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voltage. The main characteristics of the considered neural 
networks are:  
• type - multilayer perceptron, single input, single output; 
• number of layers - 3 layers (input layer, hidden layer, 

output layer); 
• number of neurons - 1 in the input layer, 2 to 10 in 

the hidden layer, 1 in the output layer; 
• neuron transfer functions – linear, for output 

neurons (foutput), tansignoid [10], for hidden 
neurons (fhidden). 

 
The weights (W1, W2) and biases (b1, b2) of the 

NN are obtained using the Levenberg Marquardt 
algorithm [11] for an imposed training stop condition 
expressed by the sum square error value, SSESTOP. The 
training and testing sets correspond to 273 to 303K-
temperature interval.  

In the training phase a data set including half of the 
48 pairs of VT and temperature experimentally 
obtained is used to design the neural network Taking 
into account the capabilities of the Matlab NN training 
implemented program, a study concerning the 
nhidden(SSESTOP) characteristic is performed. A 
graphical expression of the above mentioned 
characteristic is presented in Fig. 5. As shown in the 
figure, for nhidden>9 neurons the test error (et) defined 
as: 

 

M1iitestiNNt oomaxe
K=

−=                     (6) 

 
where oNNi is the NN output value and the otesti 
represents the test NN target value is ten times greater 
than the et calculated for 2≤nhidden ≤9 case. The training 
stop condition for both situations is SSESTOP=0.005. 
Considering as the aim of the NN design the higher 
accuracy of numerical linearization and, at the same 
time, the reduction of NN number of neurons, the 
possible solutions for temperature linearization are 
presented in Table 1. 
 

Table 1. NN-T architecture and performances 

nhidden SSESTOP et(K) 
5 0.00005 0.13 
6 0.0005 0.21 
7 0.0001 0.21 
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Fig. 5. The evolution of test error et for different NN-T 
architectures and training stop conditions. 

 

4.2 NN pH sensor processing block 

Referring to the NN-pH architecture, a two inputs 
and one output structure is used [12]. Its main 
characteristics are: (a) number of layers - 3 layers 
(input layer, hidden layer, output layer); (b) number of 
neurons - 2 in the input layer (corresponding to T and 
VpH

avg.), 10 to 40 tansignoid hidden neurons, 1 linear 
output neuron.  

In the NN-pH training phase a 2×20 input matrix 
(PpH), including the normalised values of temperature 
and VpH, and 1×20 target matrix (TpH), including the 
temperature compensated pH normalised values, are 
used. The network is trained using the Levenberg-
Marquardt algorithm and a stop condition expressed 
by SSESTOP≤1E-4.  

Results of the network testing for different number 
of neurons in the hidden layer are summarized in Fig. 
6. Analysing the figure it can be underlined that the 
best approximation of 2D pH characteristics is 
obtained for nhidden=45 and the corresponding weights 
and biases are implemented in LabVIEW for on line 
extraction of temperature compensated pH value. 
 

4.3.NN ISE processing block 

After having the temperature and the temperature 
corrected pH values, the first natural solution to obtain 
the concentration of metals taking into account not 
only those two quantities but also ion cross 
interference on sensors output voltage using a neural 
network, is to convert sensors voltage from 
temperature T to temperature T0 at which data is 
obtained in laboratory and then to implement a three 
input, two output neural network whose inputs are 
those converted values and the temperature corrected 
pH value and whose outputs are metal concentrations. 

et(K) 

nhidden 
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This solution is not however considered. In fact, the 
problem faced of finding a 2 dimensional solution in a 
3 dimensional space using neural networks is only 
well or fairly solved if the network is trained using a 
large set of input values, that is to say, if the region of 
training finely covers the region where solutions are. 
In the absence of such a set, and similarly to the NN 
pH sensor-processing block, the NN ISE processing 
block uses a two input single output multilayer 
perceptron but whose weights and biases are a 
function of the temperature corrected pH value (Fig. 
4). The main characteristics of the network are: 
• type - two-inputs-two outputs multilayer 

percepton; 
• number of layers - 3 layers (input layer, hidden 

layer, output layer); 
• number of neurons - 2 in the input layer 

(corresponding to the voltage acquired on the 
temperature channel, 10 to 50 tansignoid neurons 
in the hidden layer, 2 linear on the output layer. 

 
 

nhidden 
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Fig.6. The evolution of ∆∆∆∆pHNN versus number of 
neurons of the NN-pH hidden layer. 

The neural network training set is composed by 
several pairs of input PISE

pHi (2×36) and target TISE
pHi

 

(2×36) matrices each pair corresponding to a pH value 
(pHi) of the ISEs calibration solution. PISE

pHi includes 
the pairs of VCd_ISE|T0 and VPb_ISE|T0 values acquired 
from the ISE channels in the laboratory conditions 
(T0) and ISE calibration phase. The target matrix is 
expressed by the concentration of the Cd+2 and Pb+2 
ions in the measured solution. In order to reduce 
errors, the NN-ISE is designed using voltages and ion 
concentration values corresponding to two ion 
concentration ranges, CCd

+2, CPb+2∈[0.14; 1] ppm, 
CCd

+2, CPb+2∈[0.14:10] ppm. 

The designed NN-ISE operates with the VCd_ISE|T0 
and VPb_ISE|T0 obtained from the measured VCd_ISE|T 
and VPb_ISE|T using the following relations. 

T

T
VV 0

TCd_ISE
0TCd_ISE ⋅=  

(7) 

T

T
VV 0

TPb_ISE
0TPb_ISE ⋅=  

where T represents the temperature of the measured 
solution and T0 is the temperature at which training 
and testing values are obtained 

The used training algorithm is Levenberg 
Marquardt and the stop condition is SSESTOP=0.001. In 
order to obtain an optimal solution in terms of ISE 
characteristics modeling accuracy, different NNs with 
different number of hidden neurons are trained and 
tested, the final structure being represented by 2 input 
neurons, 20 tansignoid-hidden neurons and 2 linear 
output neurons. 
 

RESULTS AND DISCUSSION 

After the NNs are designed in Matlab, on line data 
processing is fully implemented in LabVIEW. Thus, 
weights and biases of NN-T, NN-pH and NN-ISE 
stored in files are directly accessed according to the 
acquired voltage on the T, pH, ISE_Cd and ISE_Pb 
channels and used as factors and terms involved in 
matrices multiplication that lead to CCd

+2 and CPb
+2 

values.  
The designed neural network based system is tested 

on-line for different solutions characterized by 
different concentrations of Cd+2 and Pb+2 ions included 
in [0.1;1] ppm and [0.1;10] ppm. The temperature and 
pH of the tested solutions correspond to typical river 
water conditions: pH=5.2 and T=293 K. Results are 
presented in Fig.7 and Fig.8 and reveal the 
concentration absolute errors are smaller than 0.01 
ppm for the 0 to 1 ppm scale and 0.1 ppm for 0 to 10 
ppm scale that, which represent less than 1% of full 
scale in both cases.  

In order to evaluate the advantage of the NN 
utilization in the presented application, errors with NN 
processing (NN T, NN-pH and NN-ISE) are compared 
with errors without correction. 

Ignoring temperature correction, ion concentration 
measurement errors are about 6% when the 
temperature of the ISE is in the 278 K to 303 K 
interval. Using the above presented temperature 
scaling technique, and considering that the errors 
associated with temperature measurement are about 
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0.2 K, system's errors negligible since they are 
reduced to some 0.05%. 

In what concerns pH and ion interference 
correction, ELIT sensor manufacturers indicates only 
that under particular conditions (one single type of 
ion, pH=3-7, activity coefficient>0.98), the 
concentration value obtained has an error of some 5%. 
In our case, only with two ions present and 
concentrations between 0.1 and 1o ppm, the error of 
concentration evaluation neglecting interference 
effects and thus using (1) is much higher reaching 
some 500% (for an interference concentration 10 
times greater than the primary ion concentration). This 
fact renders useless this type of sensors in applications 
where several ions are simultaneously present in the 
medium under measurement without some sort of post 
data processing. As can be seen in Fig. 7 and Fig. 8, 
this error is reduced with the proposed data fusion 
method to 1% in the worst case ((0.1 ppm/10 
ppm)× 100), 
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Fig. 7. Concentration error  (eC) versus concentration 

for low concentrations of Cd+2 and Pb+2 ions. + - Pb; o 
– Cd. 

 

6. CONCLUSION 

The ISE based system proposed increases the 
performance of ion selective electrodes used for heavy 
metal concentration measurement compensating the 
effects of interfering ions, of temperature and pH 
variations using additional sensors and adequate 
neural processing structures. 

In what acquisition of sensors output voltages is 
concerned, a microcontroller with a 12 bits analog-to-

digital converter can be used instead of the PC 
plugged-in data acquisition board. 
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Fig. 8. Concentration error  (eC) versus concentration 
for high concentrations of Cd+2 and Pb+2 ions. + - Pb; o 

– Cd. 

A practical approach concerning the dependencies 
between the NNs performance and the number of 
processing units was performed in order to evaluate 
the relationship between the performance and the NN 
implementation complexity. The conclusion obtained 
is that after NN optimization, the proposed solution 
can be easily implemented also in a microcontroller. 
The possibility of microcontroller usage both for data 
acquisition and processing tasks is very attractive for 
field measurements and monitoring applications. 

Also, the flexibility of the system permits to add 
new ISEs to the system without important changes of 
system's hardware and of increase of system’s 
software complexity. 
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