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Abstract: This paper presents a centralized approach for energy optimization in 
large scale industrial production systems based on an actor-critic reinforcement 
learning (ACRL) framework. The objective of the on-line capable self-learning 
algorithm is the optimization of the energy consumption of a production process 
while meeting certain manufacturing constraints like a demanded throughput. 
Our centralized ACRL algorithm works with two artificial neural networks 
(ANN) for function approximation using Gaussian radial-basis functions (RBF), 
one for the critic and another for the actor, respectively. This kind of actorcritic 
design enables the handling of both, a discrete and continuous state and action 
space, which is essential for hybrid systems where discrete and continuous 
actuator behavior is combined. The ACRL algorithm is exemplary validated on a 
dynamic simulation model of a bulk good system for the task of supplying bulk 
good to a subsequent dosing section while consuming as low energy as possible. 
The simulation results clearly show the applicability and capability of our 
machine learning (ML) approach for energy optimization in hybrid production 
environments. 
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1. INTRODUCTION 

Energy has become a very valuable and discussed 
property in recent years. The main reason for this 
trend is the rethinking from an environmental 
polluting energy production to a green energy supply 
with the focus on renewable energy sources to 
reduce sustainably the emissions of detrimental 
greenhouse gases. This reorganization in the energy 
sector entails risks and costs which partly have to be 
borne also by the consumer, e.g. the industrial 
production sector. Therefore an energy efficient 
handling and facility operation is demanded, not 
least to be able to stay competitive on the market. 
These circumstances affect especially large-scale 
industrial plants with an extremely high number of 
energy consumers (like pumps, valves, conveyors 
etc.) as it is generally the case in process industry 
and basic material industry [1]. In this case, even 
minor energy savings can lead to decreasing 
emissions and costs [2, 3]. 

Generally, RL is a goal-oriented learning 
technique which learns the optimal policy by (long-
term) rewarded trial-and-error interactions with the 
environment, imitating the natural learning behavior 
of a child or an animal. Machine learning (ML) 
techniques like RL became particularly popular with 
the success in playing the game of Go [4, 5] 
demonstrating super-human performance of the 
technical system. Considering practical real-life 
applications, the main benefits of RL methods are 
the on-line capability and additionally the capability 
to cope with uncertainties and changes in system 
dynamics [6], which makes the framework 
especially attractive for analytically hard describable 
(technical) problems. 

In the literature actor-critic reinforcement 
learning (ACRL) methods that combine the 
strengths of actor-only and critic-only RL methods 
[7, 8], i.e. merging policy-based with value-based 
methods, are nowadays more present than ever 
before. They focus various research directions and 
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different domains like spoken dialogue systems 
(SDS), i. e. task-completion dialogue policy learning 
with an adversarial advantage actor critic (A2C) 
approach [9] or ACRL with experience replay 
(ACER) for dialogue systems with large action 
spaces [10], a decentralized collaborative MARL 
approach based on ACRL methods especially for 
continuous state and action spaces [11] and ACRL 
for optimal control of multiple-model discrete-time 
systems [12], to just name a few. Particularly, ACRL 
with suitably chosen Gaussian radial-basis function 
neural networks (RBFNNs) as function 
approximators is efficient and notably suitable for 
continuous domains or hybrid systems [6, 13–15] as 
it is the case in process industry or manufacturing. 
The strength to cope with large continuous action-
spaces within a hybrid system environment, is one of 
the most significant benefits of an RBFNN based 
ACRL structure. 

Other important ANN types addressing the 
artificial intelligence research are spiking neural 
networks (SNNs) [16–18] and recurrent neural 
networks (RNNs) [19]. SNNs proceed by sequences 
of spikes and have their explicit strengths in 
applications that require very fast processing times 
of huge amounts of data [18], e.g. in the field of 
robotics. A large list of engineering applications for 
SNNs in combination with different learning 
scenarios, e.g. RL, can be found in [17]. However, 
SNNs are still difficult to train because by their 
nature they are not back-propagation capable. In 
[19] an approximate dynamic programming (ADP) 
approach for the energy management of a microgrid 
based on deep RNN learning is proposed, which 
guarantees convergence while using linear models to 
approximate the value function. 

RL in general and recently Deep-RL using deep 
neural networks (DNN), has already been applied to 
energy management systems with special emphasis 
on distributed smart grids and microgrids [20, 21] 
and on electric vehicles [22, 23] or energy 
optimization in electric water heaters [24]. An 
example of using ANNs for the function 
approximation of a Q-function for RL in the context 
of energy optimization can be found in [25]. 
Especially ACRL approaches are presented in, e.g. 
[26] for improving variable speed wind turbine 
controllers to changing wind conditions dealing with 
continuous valued state and action spaces or [27] 
where a transfer actor-critic learning framework for 
energy efficient radio access networks is proposed. 
In contrast, the adequate application of ACRL 
techniques to energy optimization in the 
manufacturing and process industry domain with its 
inherent challenges has still open research questions. 
The learning set-up with an appropriate pre-elected 
statespace and action-set, well suited timings like 

episode duration and hyperparameter tuning as well 
as incorporating process constraints are very crucial 
and the basis for a successful learning behavior. 

In this paper we present a centralized approach 
for energy optimization based on the ideas of ACRL 
with RBFNNs function approximators focusing the 
challenges of the application to hybrid 
manufacturing systems. We give a detailed 
description of the learning set-up for the actor and 
the critic network used in our ACRL algorithm. 
Furthermore we develop a bulk good process model 
of our physical laboratory testbed for co-simulation 
purposes which serves as application example for 
our approach. In relation to our exemplary plant we 
define the MDP for the energy optimization problem 
that can be scaled easily to larger systems. The 
gained results show typical learning behavior and 
outperform the baseline model with regard to the 
energy consumption and the throughput rate. A 
preliminary version of this paper has been presented 
in [1]. 

This paper is organized as follows. In Section 2 
we state the learning problem for energy 
management and optimization in manufacturing 
systems. Section 3 describes our ACRL-based 
approach using Gaussian RBFNNs for function 
approximation. In Section 5 we present an 
application example for energy optimization using 
ACRL with RBFNNs and discuss the results 
obtained from a simulation model of a laboratory 
bulk good system. Section 6 gives the conclusions 
and points toward further work. 

 
2. PROBLEM STATEMENT 

The considered general structure of the 
production environment is illustrated in the 
schematic of Fig. 1. As illustrated, we consider a 
distributed production process with a number of 
possibly different subsystems interacting with each 
other. The interaction is assumed to take place on 
the physical level by exchanging energy and 
material flows and on the cyber level by exchanging 
information and control signals. To this end each 
subsystem has its own control system with sensoring 
and monitoring devices to measure its production 
performance and a certain number of energy 
consumers like electrical drives, valves and 
compressors to actuate the subsystem. The 
considered energy consumers have either discrete 
behavior like DOL-motors or on-off valves, 
continuous behavior like VSD-drives or hybrid 
behavior like e.g. vacuum pumps. We consider 
different forms of energy consumption like electrical 
energy or instrument air. The energy consumption of 
the consumers is assumed to be continuously 
measured by suitable energy metering devices in the 
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local control systems and then communicated to a 
centralized control system for further analysis. 

 

 

Figure 1 – General Production System Set-Up [29] 

 

After describing the general system set-up, we 
will now state the problem to be solved: 

We consider a distributed system   with 

1i k   subsystems i  as illustrated in Fig. 1 for 

3k  . The system dynamics of the ith subsystem 
are given by 

 

( ( ), ( ), ( ), ( ))i i i i i ix f x t x t u t u t  ,      (1) 

 

where  R 0,1 ii
vn

ix    and  R 0,1 ii
km

iu    are 

the local states and actuators of the ith subsystem 

and if  is a generally nonlinear function representing 

the system dynamics. Following the usual notation 
we denote the state and actuators of others than the 

ith subsystem by ix  and iu . The performance of 

the ith subsystem is described by the performance 
output 
 

( ) ( ( ), ( ))i iy t g x t u t     (2) 

 

with R is
iy   while the energy consumption of the 

ith subsystem is represented by 
 

( ) ( ( ))i i ie t h u t     (3) 

 
only depending on the local actuators. 

Furthermore, we assume necessary constraints on 
the state variables as 

 

min max( )x x t x      (4) 

 
Then, the optimization problem is stated as 

follows. Given a predefined production episode 
0,t T  , find the optimal energy consumption 

 

0

min ( )
T

u i
t i

e t


     (5) 

. . (1) (4)s t      (6) 

0
( ( ))

T

t
r y t Y


 ,   (7) 

 

where sY  is the required performance over the 

considered production episode previously defined. 
Note, that the previously scheduled production 
performance can depend either on the performance 

iy  of each module or on the performance of only a 

subset of modules. This relation is formally modeled 
by the function r . For instance, in certain processes 
only the last subsystems output is responsible for the 
overall performance while the other modules 
influence this output indirectly by suitable supply 
actions. 

Some remarks to the previously defined problem 

are in order. The performance outputs ( )iy t  can be 

arbitrarily defined based on the given process 
objectives and available process measurements. 
Examples include product concentrations in 
chemical plants, mass flows in bulk good plants or 
processing times in manufacturing plants. The length 
of the considered production episode is closely 
related to these requirements as performance 
parameters might only be accessible after some 
processing time. Typical examples include batch 
operations. Hence, the episode should be at least as 
long as the processing times. The number of samples 
per episode should be determined such that the 
important dynamics of the energy consumption and 
the process parameters are represented. Particularly, 
the processing times and operation points of 
actuators strongly influence the energy consumption 
of the overall system and need to be carefully 
examined. 

Note, that the problem description mainly focuses 
on discrete and hybrid processes where operations 
and system behavior are not solely continuous. Such 
hybrid systems containing discrete and continuous 
dynamics and actuation are quite common in the 
process and basic materials industries due to 
discontinuous and delaying components like buffers, 
reactors or conveyors as well as on-off actuators and 
actuators with discontinuous actions. We will 
introduce an example of such a process in Sec. 5. 

 
3. ACTOR-CRITIC REINFORCEMENT 

LEARNING: AN INTRODUCTION 

In general RL is a machine learning technique 
that is based upon the animal trial-and-error 
learning. The learner, also called agent, acts on its 
environment and learns from rewards gained from 
these interactions within a given time horizon called 
episode. Analytically, the environment can be 
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formulated as a Markov decision process (MDP) 
with its states, possible actions to take and the 
resulting rewards as an evaluation of the chosen 
actions. Formally, the MDP is described by the tuple 

0( , , , , )P R p   with: 

 
 the set of states  ,  
 the set of actions  ,  

 the transition model : [0 1]P S A S   , 

such that 1 1( , , ) ( | , )t t t t t tP s a s p s s a   is the 

transition probability from state ts  to the 

following state 1ts   by applying action ta ,  

 the reward function :R S A S    , which 

assigns a reward 1( , , )t t tr s a s   to each state 

transition 1t ts s  ,  

 an initialization probability 0p  of the states. 

The decision, which action to take next given the 
current state, depends on the agents policy 

: S A  . The policy can be chosen based on the 
agents past experiences or even randomly. The goal 
of the reinforcement learning problem is to find the 
optimal policy by interacting with the environment, 
i.e. the policy which results in the highest possible 
cumulated reward. Hence, we want to maximize the 
return 

 

[ | ]E R       (8) 

 
with the discounted reward 

 
t

t
t

R r ,     (9) 

 
where 0 1   is the discount factor. 

 
For our optimization problem stated in Sec. 2, we 

choose an actor-critic (AC) framework with artificial 
neural network (ANN) function approximators in 
order to emerge a self-learning system behavior. 
This approach allows us to avoid a theoretically 
complicated solution for analyzing the condition for 
optimality, by using a neural network approximation 
within our ACRL algorithm, learning the unknown 
system dynamics. ACRL methods combine notions 
of policy iteration (PIT) with adaptive function 
approximation [8]. Compared to general Q-learning, 
the ACRL method has the advantages of reduced 
variance in function approximation, efficient 
computation in continuous domains and a high 
similarity to neural mechanisms in mammalian 
brains [28]. In contrast to the Q-learning approach in 
[29], where the state and action space has to be 

discretized, this approach allows to cope with not 
only a hybrid state but also a hybrid action space 
where continuous and discrete behavior are merged. 
The fundamental idea of the ACRL method is the 
partition into a critic part for policy evaluation (PE) 
and an actor part for policy improvement (PI). In our 
algorithm we use two normalized RBFNNs, one as 
policy approximator within the actor and another 
one as state-action value function approximator 
within the critic. In this context the critic evaluates 
the actor’s policy using the SARSA( ) method 
which updates the state-action value estimation and 
calculates a kind of temporal difference (TD) error 
between the state-action value at the next and the 
current state. Independent of the critic’s PE, the 
actor updates the current followed policy according 
to its own assessment of the TD error with a second 
RBFNN. Fig. 2 gives a general overview of the 
ACRL algorithm structure. 

ACRL is usually introduced with policy gradient 
methods augmented by a suitable evaluation of the 
policy. In policy gradient methods, a class of 
parameterized randomized policies 

1{ ( ,.), , R }ds s    is defined. Then the 

gradient of the average reward with respect to the 
policy parameters   is estimated from the observed 
states, actions, and rewards. The policy is finally 
improved by adjusting its parameters in the direction 
of the estimated gradient. The average reward is 
usually defined as 

 

1

1
( ) lim

T

T
t

J
T

 




  .   (10) 

 
Hence, the optimal parameters are obtained from 
 

argmax ( )opt J  .   (11) 

 
By means of the policy gradient theorem [30], 

the gradient can be calculated as 
 

1

1
( ) lim ( , ) ( , )

T

T
t a

J s a A s a
T

 


 

  


,  (12) 

 
where 
 

( , ) ( , ) ( )A s a Q s a V s      (13) 

 
is the advantage function, i.e. the difference 

between the state-action value function ( , )Q s a  

and the state value function ( )V s  defined as 
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0 0( , ) [ | , , ]t
t

t

Q s a E r s a         (14) 

 
and 
 

( ) ( , ) ( , )
a

V s s a Q s a 





.   (15) 

 
The update of the policy parameters is finally 

obtained by 
 

1 ( )t t J              (16) 

 
with the learning rate  . Note, that the functions 

Q  and V   determine the expected reward to be 

gained when starting in state s  and respectively, 
taking action a  and then following policy  . 

Consequently, $,$Q V   and the advantage 

function A  all allow to evaluate a certain policy 
and serve as critics during the policy learning. This 
ACRL variant is well known as advantage actor-
critic (A2C) [31] and has even been extended to 
asynchronous advantage actor-critic (A3C) [32]. 
However, all the above mentioned functions are not 
available during learning but have to be estimated. 
Different approaches are possible including Monte-
Carlo (MC) methods or temporal difference (TD) 
learning. In this work, we use the well known 
SARSA( )-algorithm 

 

( , ) ( , )TA s a s a   ,   (17) 

 

where T  are the learning parameters and ( , )s a  

are in general, continuous differentiable nonlinear 
functions in the states and actions. 

 

 

Figure 2 – Actor-Critic Reinforcement Learning Schematic with RBF Neural Networks for Function 
Approximation 

 
4. RADIAL-BASIS FUNCTION NEURAL 

NETWORKS FOR FUNCTION 
APPROXIMATION IN A2C 

In order to represent hybrid systems, we use 
radialbasis function neural networks (RBFNN) for 
function approximation within the critic and the 
actor, which should be chosen in a certain 
interdependency [7]. A simple RBFNN generally 
consists of an input layer, a hidden neural layer with 
RBFs and an output layer with linear neurons whose 
inputs are weighted. The advantage of RBFs for our 
application is the possibility to use a locally limited 

activation function (radial functions) like the 
Gaussian function with special approximation 
properties. The Gaussian function is defined as 

 
22

2 22 2

x cp

y e e 




  .   (18) 
 

Hence, the weighted output function of the 
network is calculated to 

 
2

22

,
1

·

j

j
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y w e
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2

,
1

( , ) · j j

L
z c

i i j
j

A s a e
 
 



  ,  (19) 

where [ ]T T Tz s a , L is the number of basis 

functions, jc  is the mean and j  the variance of the 

j-th basis function. 
Hence, the normalized output, yielding accuracy 

improvement, can be written as 
 

,
1

( , ) · ( )
L

i i j j
j

A s a z c  


  ,  (20) 

 
where 
 

2

2

1

( )
j j

j j

z c

j L
z c

j

e
z c

e






 

 



 


.  (21) 

 
For the sake of simplicity regarding a future PLC 

implementation, we reduce the learning task of the 

RBF network to a learning of the weights ,i jw , ,i j  

respectively, and define the other parameters, the 

centers ,j kc  and variances j , with special 

reference to the learning data pairs  ,i ix y  , 

 , ( , )i iz A s a  respectively. 

Finally, the resulting ACRL algorithm executes 
as follows:  

1. Initialize learning parameters  ,  , z  to zero 
and choose first action 1a .  

2. Execute the system using the chosen action a 

and observe state ts  and reward tr .  

3. Draw the next action from the distribution 

( ,.)ts .  

4. Calculate t , tz  by executing  

SARSA( 1 1 1 1, , , , , , ,t t t t t t ts a r s a z     )-

algorithm.  
5. Calculate policy parameters θt using Eq. (16) 

and (12).  
6. Update states and actions. 
 
Note, that by using the ideas of natural actor-

critic (NAC) algorithms [30], the update law of the 
policy parameters can be further simplified to 

 

1t t t     .     (22) 

 
In Step 3 of the above algorithm the actions have 

to be drawn from the policy distribution which has 
so far not been defined. As we will deal with hybrid 

action spaces, i.e. both discrete and continuous 
actions, the choice of the distribution has to be done 
differently for both classes of actions. To this end, 

we split the action set   into discrete [01] dl
d   

and continuous cl
c    action sets with 

d c    . Then, we draw the discrete and 

continuous actions independently from 
corresponding distributions. In the discrete case, we 
apply Gibb’s sampling using the softmax function 

 
( , )

( , )
( | )

T

T
d

d

s a

s a

a

e
a s

e

 

  








.   (23) 

 
In the continuous case, we use the multivariate 

Gaussian distribution 
 

11
( ( , )) ( ( , ))

2
1

( | )
(2 ) det( )

T

c
c

a s a a s a

l
a s e

   








   




 (24) 
 

with positive definite matrix  , often chosen to 

I    with 0  . The parametric mean 

functions ( , )s a  as well as the feature functions 

( , )s a  are chosen as RBFs similar to ( , )s a . 

 
5. THE BULK GOOD SYSTEM: AN A2C 

APPLICATION 

5.1 LABORATORY TESTBED 

After introducing the general ACRL-approach, 
we will now focus on the application to a laboratory 
testbed as schematically illustrated in Fig. 3. As 
depicted, the testbed consists of four interacting 
modules forming a bulk good handling system. 
Modules 1 and 2 represent typical supply, buffer and 
transportation stations. Module 1 consists of a 
container and a continuously controlled belt 
conveyor from which the bulk good is carried to a 
mini hopper which is the interface to module 2. 
Module 2 consists of a vacuum pump, a buffer 
container and a vibration conveyor. The vacuum 
pump itself transports the material from module 1 
into an internal container. The material is then 
released to the buffer container by a pneumatically 
actuated flap and then charged via the vibration 
conveyor into a mini hopper which is the interface to 
the dosing station module 3. It contains a further 
vacuum pump and a dosing unit composed of a 
buffer container with a weighing system and a rotary 
feeder. The dosed material is finally transported by a 
third vacuum pump to module 4 and then filled into 
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transport boxes. Additionally, every module is 
equipped with its own PLC-based control system 
which communicate with each other via a suitable 
communication protocol. Each module has a set of 
sensors to monitor the modules state, particularly, 
each buffer is equipped with min/max level sensors 
and each mini hopper with overflow sensors. The 
electrical energy consumption is measured by 
energy metering modules. As the energy 
consumption of the vacuum pump and vibration 
conveyor is influenced by instrument air 
consumption, we take this ancillary into account. 
Note, that the testbed mimics to some extend typical 
large scale systems which are modularized in 
smaller subsystems with their own control systems 
and suitable communication interfaces. Besides, it is 
mentionable that such a system set-up is especially 
qualified for distributed control and decentralized 
optimization approaches. Furthermore, due to the 
system structure with different buffer containers as 
well as due to the inherent discontinuous behavior of 
the vacuum pumps, this process constitutes a typical 
hybrid system with a mixture of discrete and 
continuous behavior. For this reason a learning 
based energy management optimization is 
particularly beneficial allowing for enhancing the 
energy optimal operation strategy. 
 

 

Figure 3 – Laboratory Testbed Schematic and 
Modeling Set-Up 

 
In the following experiments we will concentrate 

mainly on modules 1 and 2 which are the supply 
units for the subsequent dosing station. In particular, 
the target is to supply the dosing unit with the 
required amount of material continuously processed 
by the dosing station while keeping the energy 
consumption of all the actuators within the supply 
stations as low as possible. Note, that there exists no 
pre-programmed sequence of actuator operations in 
the PLC when starting with the learning process. 

However, to assure a safe operation of the process, 
some interlocks to avoid buffer overflows are 
implemented at the basic PLC level using the 
available sensor information described above [29]. 
 

5.2 BULK GOOD PROCESS MODELING 

To allow for fast development times and reduce 
the effort to gain machine data, we additionally 
derive a simulation model. Hence, the ACRL can be 
analyzed using a co-simulation approach before 
testing at the real plant. To this end, we briefly state 
the basic system equations of the physical model 
based on mass-flow balance equations as well as the 
equations for the energy consumption used in the 
reward calculation. Note that the simulation model is 
set up as a modular model where subsystems can 
arbitrarily be plugged in and removed. 

To define the mass-flow balances, we define a 
state equation for each storage element, i.e. buffer 
and hopper using the sum of differences between 

input mass flow ,in im  and output mass-flow ,out im  as 

 
˙

, ,( )i
i i i in i out i

i i

dh
V A m m m

dt
          

(25) 
 
More specific, for the first module we derive the 

massflow differential equations (MFDE) for the 
buffer (bf1) and hopper (hp1) respectively: 

 

1

, 1 , 1

, 1

bf

in bf out bf

in bf bc bc

dh
A m m

dt

m n





 

 

 


  (26) 

 

1

, 1 , 1

1( , )

hp

in hp out hp

bc bc vac start stop

dh
A m m

dt

n f t t





 

 

 
,  (27) 

 

where bcn  denotes the speed of the belt conveyor, 

bc  is the mass flow coefficient and 

1( , )vac start stopf t t  represents the nonlinear mass flow 

of the vacuum pump for the activation time 

stop startt t . 

Similar equations can be obtained for Module 2: 
 

2

, 2 , 2

1( , )

bf

in bf out bf

vac start stop vc vc

dh
A m m

dt

f t t n





 

 

 
    (28) 
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2

, 2 , 2

2 ( , )

hp

in hp out hp

vc vc vac start stop

dh
A m m

dt

n f t t





 

 

 
      (29) 

 
and Module 3: 
 

3

, 3 , 3

2 ( , )

bf

in bf out bf

vac start stop rot rot

dh
A m m

dt

f t t n





 

 

 
.  (30) 

 

Herein, vcn  and rotn  denote the speed and vc  

and rot  the mass flow coefficients of vibration 

conveyor and rotary valve, respectively. The model 

output is , 3output out bfm m  . 

For the modeling of the energy consumption, we 
have to deal with two different energy sources, 

namely electrical energy eiE  and pneumatic energy 

piE  in terms of instrument air. The consumptions 

for Module 1-3 are calculated as follows 
 

1 1 1( ), ( , ) e bc p vac start stopE f n E f t t   (31) 

2 2 2), , ( ( )e vib p vac start stopE f n E f t t   (32) 

3 3 3), , ( ( )e rot p vac start stopE f n E f t t   (33) 

 
resulting in the overall energy consumption 
 

( ) ( )ges y
y

E a E a .  (34) 

 
Note that all above listed functions and constants 

used in the simulation model rely on measurements 
and regression analysis based on real process data. 

Additionally, it is worth mentioning that the 
vacuum pumps exhibit a specific behavior. After 
switching on, first an evacuation period occurs 
where conveying of product is not possible. 
Afterward the conveyed product follows a 
polynomial function until the buffer in the vacuum 
pump is full which results in a sudden drop of mass 
flow. The ACRL-algorithm should be able to cope 
with this specific system behavior. 

 

5.3 ENERGY MANAGEMENT SET-UP 
FOR THE A2C APPROACH 

After the introduction to ACRL in Sec. III and a 
detailed description of our application example, we 
will now formulate our ACRL-learning framework 
for energy management and optimization. As 

application example we built a bulk good process 
simulation model of our laboratory testbed which 
has a modularized system architecture like the 
presented system setup illustrated in Fig. 1. To this 
end, we need to define the MDP for the energy 
optimization problem by specifying the system 
states, the set of possible actions and the rewards to 
be gained. The definition of the state and action 
space can be seen in Table 1. 

Table 1. Definition of States and Actions 

No.  Sensor  State 

1  Buffer Station 1 
Full 
Empty 

2  Buffer Station 2 
Full 
Empty 

3  Mini Hopper 1  
Sensor 
Reading 

4  Mini Hopper 2  
Sensor 
Reading 

 

No.  Actuator  Action 

1  Vacuum Pump 1  
Priming Time 
Setting 

2  Vacuum Pump 2  
Priming Time 
Setting 

3  Belt Conveyor  Speed Setting 

4  
Vibration 
Conveyor 

On 
Off 

 

As we are interested in energy optimization 
during an industrial process the state of the MDP 
need to mainly represent the energy flows in the 
system as described in Sec. 2. To this end, we assign 

a set of states ,i j  to each sensor measurement of 

the ith subsystem. A typical examples of such a state 

set is , {full, empty}i j   for the discrete states of 

the buffer sensors. However, also continuously 
operating sensors with more than two states are 
located in the system, like the sensors in the mini 
hoppers. These continuous sensor states are covered 
by Gaussian basis functions in the hidden layer of 
the RBF network. Finally, the resulting set of states 

of subsystem i than yields ,1 ,i i i n    . 

The definition of the action space ,i j  is done by 

the actuators behavior which also can be either 
discrete or continuous. Continuous actuator behavior 
is captured with Gaussian basis functions likewise. 

Furthermore the rewards for each state transition 
have to be defined. The appropriate definition of 
rewards is of major importance as the energy 
optimization problem has to fulfill different partly 
counteracting objectives [29]. On the one hand, the 
energy consumption should be minimized, but on 
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the other hand, the plant has to supply at least a 
certain product amount, which costs energy. From 
the energy point of view a standstill would be the 
optimal solution. Hence, the reward function should 
contain both, the energy consumption during the 

sample period , ( )i je t  and necessary process 

specifications like a certain product amount in a 
given time period. For this reason the reward for the 
ith subsystem is calculated as follows 

 

,( , ) ( ) ( ) ( )i i i j i
j

r s a m t e t p t         (35) 

where ( )im t  is the mass flow of the module, 

, ( )i j
j

e t  is the energy consumption of all actuators 

of the module and ( )ip t  is a term penalizing 

overflow of the buffer and mini hopper. 
 

5.4 RESULTS 

In this section we present the results of our 
ACRL approach applied to a bulk good process 
simulation model. 

The results are gained with the following 
parameter settings: discount factor 0.9   , 

learning rate 0.1 , vanishing for high number of 

episodes, and trace decay rate 0.9 . The setting 

of the centers and variances necessary for 
determination of the Gaussian functions rely on 
measurements at the laboratory bulk good system. 
Note that empirical investigations revealed, that 
variations in the location and the width of the RBFs 
do not have a significant influence on the results. 
Furthermore we fix the number of the Gaussian 
functions to two for discrete behavior and to three 
for the continuous case. 

The resulting learning curves in Fig. 4 and Fig. 5 
show the energy consumption and volume output 
over the number of episodes, respectively, where 
one episode comprises 15s. As indicated, a typical 
learning behavior with a notable exploration period 
at the beginning can be observed, followed by more 
exploitation till around learning episode 250. From 
episode 250 to 450 no visible changes occur 
anymore which is an indicator for reaching the 
optimal operating sequence. In the end, obviously a 
cyclic process sequence is the optimal result gained 
from the RBF-A2C learning algorithm, which is 
quite plausible considering the type of actuators in 
the bulk good handling process, in particular the 
vacuum pumps. The vacuum pumps exhibit a 
specific operation with a short evacuation period at 
the beginning of an operation sequence where no 

material can be transported, followed by a suction 
period where the material is transported linearly with 
the suction time. Thus, the operation behavior of the 
vacuum pumps is periodic by nature and as they are 
the dominant actuators in the system, it can be 
assumed that they have the biggest influence on the 
process itself. Hence, the baseline model also shows 
this kind of system behavior. In comparison to the 
baseline, the energy consumption is considerably 
reduced (about 22%) while generating a slightly 
higher volume output, which is a noticeable 
improvement. An obvious reason for this could be a 
deceleration or increased shut-off times of the 
conveyors in contrast to a continuous operation in 
the baseline. In Fig. 6 the gained reward during the 
learning procedure is shown. Due to the reward 
definition, where a multi-objective balancing 
between three parameters is required (high 
throughput demand, low energy, no overflow) in 
combination with the periodic process behavior, it 
has not to converge necessarily to the highest end 
value but shows also periodic behavior. In relation to 
the graphs of the energy consumption and the 
volume output, until episode 200 the exploration is 
clearly visible. After episode 200 the reward signal 
becomes more and more consistent and finally ends 
up in a periodic graph. 

 

 

Figure 4 – Energy from ACRL vs. Energy Baseline 
over Episodes 

 

 

Figure 5 – Volume Output from ACRL vs. Volume 
Output Baseline over Episodes 
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Figure 6 – Reward over Episodes 

 

6. CONCLUSIONS 

We here introduced a novel approach for energy 
optimization in large scale industrial process plants. 
The approach is based on a formulation of the 
optimization problem in form of an advantage actor-
critic reinforcement learning (A2C) with RBFNNs 
as function approximators that enables to account for 
hybrid system behavior. The approach is applied to a 
bulk good process simulation model with very 
promising results. Hence, the energy consumption of 
the production process is minimized compared to the 
baseline model by learning from subsequent 
operation sequences while maintaining the 
production quality and performance. In future 
research, the developed A2C approach can be 
implemented on an industrial PLC for validation on 
the real laboratory bulk good testbed. Moreover, as 
the current approach requires a centralized learning 
process, a distributed approach for the ACRL-
problem, potentially involving game theoretical 
ideas, leading to a game-based coordination of the 
multi-agent system (MAS), could be a forward-
looking topic for further research activities. In this 
context, also the investigation of the deep 
deterministic policy gradient (DDPG) method [34] 
would be an interesting issue for a continuative 
research direction. 
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