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Abstract: Linear block noise-immune codes constructed according to algebraic 
curves (algebraic geometric codes) are considered, their design properties are 
evaluated, algorithms of construction and decoding are studied. The energy 
efficiency of the transmission of discrete messages by M-ary orthogonal signals 
in the application of algebraic geometric codes is studied; the achievable energy 
gain from the use of noise-immune coding is estimated. The article shows that in 
discrete channels without memory it is possible to obtain a significant energy 
gain, which increases with the transition to long algebraic geometric codes 
constructed from curves with a large number of points relative to the genus of 
the curve. It is found that the computational complexity of implementing 
algebraic geometric codes is comparable to other known noise-immune codes, 
for example, Reed-Solomon codes and others. Thus, high energy efficiency in 
combination with the acceptable computational complexity of implementation 
confirms the prospects of algebraic geometric codes use in modern 
telecommunication systems and networks to improve the noise immunity of data 
transmission channels. 

Copyright © Research Institute for Intelligent Computer Systems, 2019.  
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1. INTRODUCTION  

Algebraic geometric codes as linear systems on 
algebraic curves were first proposed by V.D. Goppa 
[1, 2]. The asymptotic properties of such codes were 
investigated in [3]. Codes constructed from curves 
with a large number of points in comparison with the 
genus lie above the Varshamov-Gilbert boundary [4-
12]. Schemes of the practical application of these 
codes for noise-immune transmission of discrete 
messages [10-12], algorithms for their construction 
and decoding [7-9], the resulting energy gain from 
coding [13-15] are in the sphere of interest.  

The aim of this paper is to study some algorithms 
for constructing and decoding algebraic geometric 
codes and to estimate the energy efficiency 
achieved. In addition, the paper presents the results 
of comparative studies of the complexity of the 
practical implementation of noise-immune coding 
and decoding using algebraic geometric codes and 

other (the most well-known and common) codes. 
The results of this research can be used to improve 
various code-based methods of information security 
[16-26]. 

The paper is structured as follows. In Section 2, 
the basic concepts and definitions of algebraic 
geometric codes are given, the constructive 
characteristics of the codes are evaluated, and their 
asymptotic properties are studied.  Section 3 is 
devoted to the development and study of 
computationally efficient procedures for encoding 
and decoding of algebraic geometric codes. In 
particular, we have presented several options for 
constructing codes (in a systematic and non-
systematic form) and a simple decoding algorithm. 
Section 4 examines the energy efficiency of 
algebraic geometric coding in the transmission of 
discrete messages by M-orthogonal signals. In 
Section 5, we conduct a comparative analysis of the 
complexity of the implementation of the encoding 
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and decoding algorithms. The conclusions of the 
work summarize the obtained results and show the 
promising areas for further research. 

 
2. DEFINITION AND CONSTRUCTIVE 

PROPERTIES OF ALGEBRAIC 
GEOMETRIC CODES 

Fix a finite field ( )GF q  and denote by X  a 

smooth projective algebraic curve in projective 

space 
nP . Consider the set of solutions 

1 0 1( , ,..., )np x x x , 2 0 1( , ,..., )np x x x , ..., 

0 1( , ,..., )N np x x x  of a system of homogeneous 

irreducible algebraic equations of degree d  with 

coefficients from ( )GF q . 

Let ( )g g X  be the curve genus, and, 

according to [1-3]: 
– if d n , then X  is a degenerate curve; 

– if d n , then X  is a rational normal curve of 
genus 0; 

– if 2n d n  , then g d n  ; 

– if 2d n , then 1g n  ; 

– if 2d n , then 
( 1)

( 1)
2

m m
g n m


   ,  

where 
1

1

d
m

n

 
   

, 1 ( 1)d m n     . 

Table 1 gives the upper bound for the genus of 
the curve X . 

 

Table 1. Upper bound for the genus g  of the curve 

X  in 
nP  

d  2( )g P
 

3( )g P
 

4( )g P
 

5( )g P
 

6( )g P
 

2 0 - - - - 
3 1 0 - - - 
4 3 1 0 - - 
5 6 2 1 0 - 
6 10 4 2 1 0 
7 15 6 3 2 1 
8 21 9 5 3 2 
9 28 12 7 4 3 

10 36 16 9 6 4 

 

Let ( ( ))X GF q  be the set of points of a curve 

X  over a finite field ( )GF q , and 

( ( ))N X GF q  be the number of these points. 

The number N  of the points of the curve X  over 

( )GF q  is bounded above by the Hasse-Weil 

expression [1-3]: 2 1N q g q    . 

Table 2 gives the upper bound for the number of 
points of the curve over a finite field. The limit 
values of the number of points of smooth curves are 
summarized in Table 3. 

Let C  be the divisor class on X  of power  . 

Then C  defines a mapping : mX P  , and a set 

of generator functions ( )i iy x  specifies an 

algebraic geometric code of length n N . 

Table 2. Estimation of the upper boundary of the 
number of points of a smooth projective curve 

 

g  

 

d  
 ( )N X GF q  

(4)GF  (8)GF  (16)GF (32)GF (64)GF

0 2 5 9 17 33 65 

1 3 9 14 25 44 81 

2 4 10 18 33 53 97 

3 4 17 24 41 66 113 

4 5 21 29 49 77 129 

5 5  34 57 88 145 

6 5  39 65 99 164 

7 6  44 73 110 180 

8 6  49 81 121 196 

9 6  54 89 132 212 

10 6  59 97 143 228 

11 7  64 105 154 244 

12 7  69 113 165 260 

13 7   121 176 276 

14 7   129 187 292 

15 7   137 198 308 

 

Table 3. The maximum values of the points of the 

curve X  in 
2Р  over ( )GF q  

 

d  
 ( )N X GF q  

(4)GF  (8)GF  (16)GF
 

(32)GF
 

(64)GF
 

3 9 14 25 44 81 

4 14 24 34 63 113 

5 17 28 65 99 164 

 

Let C  be the divisor class on X  of power  . 

Then C  defines a mapping : mX P  , a set of 

generator functions ( )i iy x  specifies an 

algebraic geometric code of length n N . The code 

characteristics ( , , )n k d  are related by the relation 

1k d n g     [1-3]. If 2 2g n   , the code 

is related by characteristics 

( , 1, ),n g d d n     . A dual code to it is also 
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algebraic geometric with characteristics 

( , 1, ), 2 2n n g d d g        . 

As an evaluation of the potential of block codes, 
they are compared with the code boundaries. The 
code boundaries indicate the best theoretically 
possible linear block codes and are described in 
detail in [4-6].  

The Singleton boundary indicates the maximum 
achievable code distance for the given code 

parameters ( , , )n k d  and is written in the form 

 
1d n k   . 

 
The codes lying on the Singleton boundary are 

called Maximum Distance Separable Codes (MDS 
codes). 

The Varshamov-Gilbert boundary is the lower 
code boundary, i.e., it guarantees the existence of 

codes with parameters ( , , )n k d  lying on this 

boundary. The generalization of the Varshamov-
Gilbert boundary to non-binary codes has the form 

 

 
2

1
0

1
d

in k i
n

i

q C q







  , 

or  

 
2

1
0

log 1
d

ii
q n

i

n k C q





 
   

 
 . 

 

For the code ( , , )n k d , consider the following 

parameters: /R k n  is the relative speed of the 
code, as the fraction of information symbols in the 
transmitted data; /d n   is the relative minimum 
distance of the code, as a fraction of errors in the 
received word that the code can commit. Tend 
n . The asymptotic form of the Singleton 
boundary takes the form 1R   . The asymptotic 
Varshamov-Gilbert boundary takes the form 

 1 qR H   . In [3], the asymptotic boundary of 

algebraic geometric codes is given by 

 
1

1 1R q


    . Fig. 1 shows the asymptotic 

boundaries: 1 is the Singleton boundary; 2 is the 
Varshamov-Gilbert boundary; 3 is the boundary of 
the algebraic geometric codes.  

The above dependences show that as the power 
q  of the alphabet of code symbols increases, the 

asymptotic properties of algebraic geometric codes 
improve. Obviously, for large q , these codes lie 

above the Varshamov-Gilbert boundary, which 
indicates high potential characteristics. 

 

 

Figure 1 - Asymptotic properties of algebraic 
geometric codes 

 

The constructive code characteristics of algebraic 

geometric codes over curves of genus 0g  , 1g  , 

3g  , 6g  , over (4)GF  are summarized in 

Table 4. The corresponding constructive estimates of 
the code parameters for curves of the various genus 

values  0g  , 1g  , 3g  , 6g  , over (8)GF , 

(16)GF , (32)GF , (64)GF  are summarized in 

Tables 5-8. 
 

3. CODING AND DECODING BY 
ALGEBRAIC GEOMETRIC CODES 

We consider the coding operations by algebraic 
geometric codes for the general case. In other words, 

for curves defined in the projective space 
uP  by the 

set of solutions 1u   of homogeneous irreducible 
algebraic equations in n  unknowns, we investigate 
algorithms for the formation of code words in a 
systematic and unsystematic manner. 

Table 4. Constructive code characteristics of algebraic geometric codes over (4)GF  

d
eg

f deg 2X  , 0g   deg 3X  , 1g   deg 4X  , 3g   deg 5X  , 6g   

a  , ,n k d  , ,n k d  a  , ,n k d  , ,n k d  a  , ,n k d  , ,n k d  a  , ,n k d  , ,n k d  

1 2 5, 3, 3 5, 2, 4 3 9, 3, 6 9, 6, 3 4 14, 2, 10 – 5 – – 
2 4   6 9, 6, 3 9, 3, 6 8 14, 6, 6 14, 8, 4 10 17, 5, 7 – 
3 6   9   12 14, 10, 2 14, 4, 8 15 17, 10, 2 17, 7, 5 
4 8   12   16   20  17, 2, 10 
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Table 5. Constructive code characteristics of algebraic geometric codes over (8)GF  
d

eg
f deg 2X  , 0g   deg 3X  , 1g   deg 4X  , 3g   deg 5X  , 6g   

a  , ,n k d  , ,n k d  a  , ,n k d  , ,n k d  a  , ,n k d  , ,n k d  a  , ,n k d  , ,n k d  

1 2 9, 3, 7 9, 6, 4 3 14, 3, 11 14, 11, 3 4 24, 2, 20 – 5 – – 
2 4 9, 5, 5 9, 4, 6 6 14, 6, 8 14, 8, 6 8 24, 6, 16 24, 18, 4 10 28, 5, 18 – 
3 6 9, 7, 3 9, 2, 8 9 14, 9, 5 14, 5, 9 12 24, 10, 12 24, 14, 8 15 28, 10, 13 28, 18, 5 
4 8   12 14, 12, 2 14, 2, 12 16 24, 14, 8 24, 10, 12 20 28, 15, 8 28, 13, 10 
5 10   15   20 24, 18, 4 24, 6, 16 25 28, 20, 3 28, 8, 15 
6 12   18   24   30  28, 3, 20 

Table 6. Constructive code characteristics of algebraic geometric codes over (16)GF  

d
eg

f deg 2X  , 0g   deg 3X  , 1g   deg 4X  , 3g   deg 5X  , 6g   

a  , ,n k d  , ,n k d  a  , ,n k d  , ,n k d  a  , ,n k d  , ,n k d  a  , ,n k d  , ,n k d  

1 2 17, 3, 15 17, 14, 4 3 25, 3, 22 25, 22, 3 4 34, 2, 30 – 5 – – 
2 4 17, 5, 13 17, 12, 6 6 25, 6, 19 25, 19, 6 8 34, 6, 26 34, 28, 4 10 65, 5, 55 – 
3 6 17, 7, 11 17, 10, 8 9 25, 9, 16 25, 16, 9 12 34, 10, 22 34, 24, 8 15 65, 10, 50 65, 55, 5 
4 8 17, 9, 9 17, 8, 10 12 25, 12, 13 25, 13, 12 16 34, 14, 18 34, 20, 12 20 65, 15, 45 65, 50, 10 
5 10 17, 11, 7 17, 6, 12 15 25, 15, 10 25, 10, 15 20 34, 18, 14 34, 16, 16 25 65, 20, 40 65, 45, 15 
6 12 17, 13, 5 17, 4, 14 18 25, 18, 7 25, 7, 18 24 34, 22, 10 34, 12, 20 30 65, 25, 35 65, 40, 20 
7 14 17, 15, 3 17, 2, 16 21 25, 21, 4 25, 4, 21 28 34, 26, 6 34, 8, 24 35 65, 30, 30 65, 35, 25 
8 16   24   32 34, 30, 2 34, 4, 28 40 65, 35, 25 65, 30, 30 
9 18   27   36   45 65, 40, 20 65, 25, 35 

10 20   30   40   50 65, 45, 15 65, 20, 40 
11 22   33   44   55 65, 50, 10 65, 15, 45 
12 24   36   48   60 65, 55, 5 65, 10, 50 
13 26   39   52   65  65, 5, 55 

 

Table 7. Constructive code characteristics of algebraic geometric codes over (32)GF  

d
eg

f deg 2X  , 0g   deg 3X  ,  deg 4X  , 3g   deg 5X  , 6g   

a  , ,n k d  , ,n k d  a  , ,n k d  , ,n k d  a  , ,n k d  , ,n k d  a  , ,n k d  , ,n k d  

1 2 33, 3, 31 33, 30, 4 3 44, 3, 41 44, 41, 3 4 63, 2, 59 – 5 – – 
2 4 33, 5, 29 33, 28, 6 6 44, 6, 38 44, 38, 6 8 63, 6, 55 63, 57, 4 10 99, 5, 89 – 
3 6 33, 7, 27 33, 26, 8 9 44, 9, 35 44, 35, 9 12 63, 10, 51 63, 53, 8 15 99, 10, 84 99, 89, 5 
4 8 33, 9, 25 33, 24, 10 12 44, 12, 32 44, 32, 12 16 63, 14, 47 63, 49, 12 20 99, 15, 79 99, 84, 10 
5 10 33, 11, 23 33, 22, 12 15 44, 15, 29 44, 29, 15 20 63, 18, 43 63, 45, 16 25 99, 20, 74 99, 79, 15 
6 12 33, 13, 21 33, 20, 14 18 44, 18, 26 44, 26, 18 24 63, 22, 39 63, 41, 20 30 99, 25, 69 99, 74, 20 
7 14 33, 15, 19 33, 18, 16 21 44, 21, 23 44, 23, 21 28 63, 26, 35 63, 37, 24 35 99, 30, 64 99, 69, 25 
8 16 33, 17, 17 33, 16, 18 24 44, 24, 20 44, 20, 24 32 63, 30, 31 63, 33, 28 40 99, 35, 59 99, 64, 30 
9 18 33, 19, 15 33, 14, 20 27 44, 27, 17 44, 17, 27 36 63, 34, 27 63, 29, 32 45 99, 40, 54 99, 59, 35 

10 20 33, 21, 13 33, 12, 22 30 44, 30, 14 44, 14, 30 40 63, 38, 23 63, 25, 36 50 99, 45, 49 99, 54, 40 
11 22 33, 23, 11 33, 10, 24 33 44, 33, 11 44, 11, 33 44 63, 42, 19 63, 21, 40 55 99, 50, 44 99, 49, 45 
12 24 33, 25, 9 33, 8, 26 36 44, 36, 8 44, 8, 36 48 63, 46, 15 63, 17, 44 60 99, 55, 39 99, 44, 50 
13 26 33, 27, 7 33, 6, 28 39 44, 39, 5 44, 5, 39 52 63, 50, 11 63, 13, 48 65 99, 60, 34 99, 39, 55 
14 28 33, 29, 5 33, 4, 30 42 44, 42, 2 44, 2, 42 56 63, 54, 7 63, 9, 52 70 99, 65, 29 99, 34, 60 
15 30 33, 31, 3 33, 2, 32 45   60 63, 58, 3 63, 5, 56 75 99, 70, 24 99, 29, 65 
16 32   48   64  63, 1, 60 80 99, 75, 19 99, 24, 70 
17 34   51   68   85 99, 80, 14 99, 19, 75 
18 36   54   72   90 99, 85, 9 99, 14, 80 
19 38   57   76   95 99, 90, 4 99, 9, 85 
20 40   60   80   100  99, 4, 90 
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Table 8. Constructive code characteristics of algebraic geometric codes over (64)GF  
d

eg
f deg 2X  , 0g   deg 3X  , 1g   deg 4X  , 3g   deg 5X  , 6g   

a  , ,n k d  , ,n k d  a  , ,n k d  , ,n k d  a  , ,n k d  , ,n k d  a  , ,n k d  , ,n k d  

1 2 65,3,63 65,62,4 3 81,3,78 81,78,3 4 113,2,109 – 5 – – 
2 4 65,5,61 65,60,6 6 81,6,75 81,75,6 8 113,6,105 113,107,4 10 164,5,154 – 
3 6 65,7,59 65,58,8 9 81,9,72 81,72,9 12 113,10,101 113,103,8 15 164,10,149 164,154,5 
4 8 65,9,57 65,56,10 12 81,12,69 81,69,12 16 113,14,97 113,99,12 20 164,15,144 164,149,10 
5 10 65,11,55 65,54,12 15 81,15,66 81,66,15 20 113,18,93 113,95,16 25 164,20,139 164,144,15 
6 12 65,13,53 65,52,14 18 81,18,63 81,63,18 24 113,22,89 113,91,20 30 164,25,134 164,139,20 
7 14 65,15,51 65,50,16 21 81,21,60 81,60,21 28 113,26,85 113,87,24 35 164,30,129 164,134,25 
8 16 65,17,49 65,48,18 24 81,24,57 81,57,24 32 113,30,81 113,83,28 40 164,35,124 164,129,30 
9 18 65,19,47 65,46,20 27 81,27,54 81,54,27 36 113,34,77 113,79,32 45 164,40,119 164,124,35 

10 20 65,21,45 65,44,22 30 81,30,51 81,51,30 40 113,38,73 113,75,36 50 164,45,114 164,119,40 
11 22 65,23,43 65,42,24 33 81,33,48 81,48,33 44 113,42,69 113,71,40 55 164,50,109 164,114,45 
12 24 65,25,41 65,40,26 36 81,36,45 81,45,36 48 113,46,65 113,67,44 60 164,55,104 164,109,50 
13 26 65,27,39 65,38,28 39 81,39,42 81,42,39 52 113,50,61 113,63,48 65 164,60,99 164,104,55 
14 28 65,29,37 65,36,30 42 81,42,39 81,39,42 56 113,54,57 113,59,52 70 164,65,94 164,99,60 
15 30 65,31,35 65,34,32 45 81,45,36 81,36,45 60 113,58,53 113,55,56 75 164,70,89 164,94,65 
16 32 65,33,33 65,32,34 48 81,48,33 81,33,48 64 113,62,49 113,51,60 80 164,75,84 164,89,70 
17 34 65,35,31 65,30,36 51 81,51,30 81,30,51 68 113,66,45 113,47,64 85 164,80,79 164,84,75 
18 36 65,37,29 65,28,38 54 81,54,27 81,27,54 72 113,70,41 113,43,68 90 164,85,74 164,79,80 
19 38 65,39,27 65,26,40 57 81,57,24 81,24,57 76 113,74,37 113,39,72 95 164,90,69 164,74,85 
20 40 65,41,25 65,24,42 60 81,60,21 81,21,60 80 113,78,33 113,35,76 100 164,95,64 164,69,90 
21 42 65,43,23 65,22,44 63 81,63,18 81,18,63 84 113,82,29 113,31,80 105 164,100,59 164,64,95 
22 44 65,45,21 65,20,46 66 81,66,15 81,15,66 88 113,86,25 113,27,84 110 164,105,54 164,59,100 
23 46 65,47,19 65,18,48 69 81,69,12 81,12,69 92 113,90,21 113,23,88 115 164,110,49 164,54,105 
24 48 65,49,17 65,16,50 72 81,72,9 81,9,72 96 113,94,17 113,19,92 120 164,115,44 164,49,110 
25 50 65,51,15 65,14,52 75 81,75,6 81,6,75 100 113,98,13 113,15,96 125 164,120,39 164,44,115 
26 52 65,53,13 65,12,54 78 81,78,3 81,3,78 104 113,102,9 113,11,100 130 164,125,34 164,39,120 
27 54 65,55,11 65,10,56 81   108 113,106,5 113,7,104 135 164,130,29 164,34,125 
28 56 65,57,9 65,8,58 84   112 113,110,1 113,3,108 140 164,135,24 164,29,130 
29 58 65,59,7 65,6,60 87   116   145 164,140,19 164,24,135 
30 60 65,61,5 65,4,62 90   120   150 164,145,14 164,19,140 
31 62 65,63,3 65,2,64 93   123   155 164,150,9 164,14,145 
32          160 164,155,4 164,9,150 

 

3.1. ENCODING IN UNSYSTEMATIC 
FORM VIA THE GENERATING MATRIX 

Fix a smooth projective algebraic curve X  in the 

projective space 
uP  over a field ( )GF q  as the 

collection of solutions 1u   of homogeneous 
irreducible algebraic equations in n  variables with 

coefficients from ( )GF q : 
 

 

 

 

1 0 1 1

2 0 1 1

1 0 1 1

, ,..., 0

, ,..., 0

...

, ,..., 0

u

u

u u

f x x x

f x x x

f x x x





 







 

.  (1) 

 

Let  0 0 1 1, ,..., up x x x  ,  1 0 1 1, ,..., up x x x  , …, 

 1 0 1 1, ,...,N up x x x   be N  of the joint solutions of 

equations (1) for the points of the curve X . 

We fix the divisor D  of the curve X  and the set 
of rational functions associated with the divisor D , 
i.e., the set consisting of zero and functions 0F   

for which   0F D  . This is equivalent to the set 

of generator functions 
 

 0 0 1 1, ,..., uF x x x  ,  1 0 1 1, ,..., uF x x x  , 

 2 0 1 1, ,..., uF x x x  , …,  1 0 1 1, ,...,w uF x x x  , 

 

where 0 1, ,..., wF F F  are forms with the same degree 

and 0 0 1 1( , ,..., ) 0uF x x x   .  

In other words, 
 

 0 1 1( ) ( ), ( ),..., ( )wx F x F x F x   

 

is a point in 
wP . 
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Let   be the degree of the divisor class, 

1g   , then the mapping : wX P   defines 

the generating matrix 
 

  0 1 1
,

, ,...,j i u
n k

G F p x x x  , 

 0, 1j k  , 0, 1i n  ,  (2) 

 
of the algebraic geometric code with the constructive 
characteristics 
 

  
1

0 1 1
0

, ,...,
k

i i j u j
i

I F p x x x c





 , 0,..., 1j n  , 

 

(here and below the symbol ...  is used to denote 

the matrix). 

To form the code word  0 1 1, ,... nc c c   of the 

algebraic geometric code given through the 
generator matrix, it suffices to multiply the 

information vector  0 1 1, ,... kI I I   by matrix (2), i.e., 

for all 0,..., 1j n  , perform the following 

conversion: 
 

  
1

0 1 1
0

, ,...,
k

j i i j u
i

c I F p x x x





 . (3) 

 
Obviously, the formation of the code word is 

carried out by an iterative procedure, allowing at 
each step of the algorithm to generate the 
appropriate code symbol. 

 
3.2. CODING IN A SYSTEMATIC MANNER 
THROUGH A CHECK MATRIX 

Let 2 2g   , then the mapping : wX P   

generates the check matrix 
 

  0 1 1
,

, ,...,j i u
n r

H F p x x x  , 

 0, 1j r  , 0, 1i n  ,  (4) 

 
of the algebraic geometric code with the constructive 
characteristics 
 

 , 1, 2 2n N k n g d g         . 

 
The algebraic geometric code from the curve X  

over ( )GF q  constructed through the verification 

matrix H  is a linear code consisting of all words 

 0 1 1, ,... nc c c   of length n N  for which 

 1d g   equations are true  

 

  
1

0 1 1
0

, ,..., 0
n

i j i u
i

c F p x x x





 ,  0,...,j w .  (5) 

 
To form the code words of the algebraic 

geometric code given in this way on the space 
curves, we use the matrix inversion techniques [4-6]. 

We divide the code word  0 1 1, ,... nc c c   into sets 

of information and verification positions (see Fig. 2). 
Let U  be the set of k  information positions of the 
code word (i.e., the set of position numbers included 
in the given information code set) and W  be the set 
of r n k   verification items. The union of the sets 
U W  contains all the integers from 0 to 1n  .  

In k  information positions of the code word, i.e., 
in the positions of the set U  , we place k  symbols 

of the message  0 1 1, ,... kI I I  , and in the 

verification positions of the set W , we place r  zero 
symbols. 

 

 

Figure 2 – Splitting the code word into information 
and verification items 

 
Let us calculate the sums 
 

  
1

0 1 1
0

, ,...,
n

j i j i u
i

S c F p x x x





 , 0, 1j r  , 

 
or in the matrix form, 
 

  0 1 1 ,
, ,...,

T

j j i u i kr k r
S F p x x x c .  (6) 

 
The task of forming a code word is to compute 

and put in r  verification positions symbols ic , 

i W  , satisfying equations (5). 
It follows from the definition of an algebraic 

geometric code that the values of r n k   
verification symbols can be found from a system of 
linear equations 

 

  0 1 1, ,...,i j i u j
i W

с F p x x x S


  , 0, 1j r  . 
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In the matrix representation, the last notation is 
equivalent to the expression 

 

  0 1 1 ,
, ,...,

T

j i u i jr rr r
F p x x x с S   . 

 
To find the values of r n k   verification 

symbols, using matrix inversion methods, we write 
 

  
1

0 1 1
,

, ,...,
T

i j i u jr rr r
с F p x x x S



  , (7) 

 

where   
1

0 1 1
,

, ,...,j i u
r r

F p x x x


  is the inverse 

matrix for the matrix   0 1 1
,

, ,...,j i u
r r

F p x x x  , 

i.e., 
 

  

  

,

1

0 1 1 , ,

0 1 1 ,

,

, ,...,

, ,...,
.

j r r

j i u r r r r

j i u r r

F

r r

F p x x x

A F p x x x









 
  



 

 

Here,   0 1 1 ,
, ,...,j i u r r

А F p x x x 
 
  

 is the 

algebraic complement of an element of the matrix 

  0 1 1
,

, ,...,j i u
r r

F p x x x  , and 
,j r r

F
  is the 

determinant of the matrix 

  0 1 1
,

, ,...,j i u
r r

F p x x x  . 

Since the placement of verification items is 
usually known and fixed, the inverse matrix for the 
system of equations (5) can be found in advance and 
all the verification symbols can be obtained by 

multiplying the vector  0 1 1, ,... rS S S   by the matrix 

  
1

0 1 1
,

, ,...,j i u
r r

F p x x x


 . Any k  code word 

positions can be selected as information. Therefore, 
it is always possible to choose a set of verification 
(and information) positions for which the matrix 

  
1

0 1 1
,

, ,...,j i u
r r

F p x x x


  is the most convenient 

for calculations.  
Thus, to form the code word of the algebraic 

geometric code given through the verification 
matrix, it is sufficient to store the elements of 

matrixes   0 1 1
,

, ,...,j i u
k r

F p x x x  and 

  
1

0 1 1
,

, ,...,j i u
r r

F p x x x


  or alternately, calculate 

the values   0 1 1
,

, ,...,j i u
k r

F p x x x  as the values 

of generator functions at the points of the spatial 
curve. 
 

3.3. DECODING OF ALGEBRAIC 
GEOMETRIC CODES 

Consider a code word of an algebraic geometric 

 , ,n k d  code over ( )GF q  constructed from 

algebraic curves in 
uP . Suppose that an algebraic 

geometric code is given by a check matrix: 
 

  
  

  

0,0,...,0 0 1 1

1,0,...,0 0 1 1

0,0,...,deg 0 1 1

, ,...,

, ,...,

, ,...,

j u

j u

F j u

F p x x x

F p x x x
H

F p x x x







 
 
 
  
 
 
 
 

, 

 

where 
0 1 1, ,..., ui i iF


 is a monomial of degree 

0 1 1... degui i i F    , i.e. 

 
0 11

0 1 1, ,..., 0 1 1... u

u

i ii
i i i uF x x x 

     , 0,..., 1i M  , 

deg 1u
u FM C   . 

 
The equality holds: 
 

0TС H  , 
 
which implies the equality: 
 

  
0 1 1

1

, ,..., 0 1 1
0

, ,..., 0
u

n

j i i i j u
j

С F p x x x







  , 

 

for all 0,..., 1i M  . 

Suppose that when transmitting via a channel 
with errors the codeword is distorted, then the error 
vector will be denoted by 

 

 0 1 1, , , ne e e e   , 

 
and the perceived word with mistakes will be 
denoted by 
 

 * * * *
0 1 1

0 0 1 1 1 1

,  ,  ,  

=( , ,  ,   )

n

n n

C C C C C e

C e C e C e



 

    

   
. 

 
Define the syndrome sequence as a vector 
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 0,0,...,0 1,0,...,0 0,0,...,deg, ,..., Fs s s s , 

 
calculated according to the rule: 
 

  
0 1 1 0 1 1

1

, ,..., , ,..., 0 1 1
0

, ,...,
u u

n

i i i j i i i j u
j

s e F p x x x
 






  , 

0,..., 1i M  . 

 
By definition, the value of the syndrome 

sequence s  depends only on the error vector e  and 
does not depend on the code word C . Indeed, we 
calculate the multiplication  

 
* 0ТС H  , 

 
we obtain 
 

( ) Т Т Т ТС e H С H e H e H        , 

 

which implies the validity (for all 0,..., 1i M  ) of 

the equalities: 
 

  

  

0 1 1

0 1 1 0 1 1

1

, ,..., 0 1 1
0

1

, ,..., 0 1 1 , ,...,
0

( ) , ,...,

, ,..., .

u

u u

n

j j i i i j u
j

n

j i i i j u i i i
j

c e F p x x x

e F p x x x s



 











  

  





 (8) 
 
The problem of algebraic decoding is to find the 

vector 
 

 0 1 1, , , ne e e e    

 
with aid of a well-known syndrome sequence 
 

 0,0,...,0 1,0,...,0 0,0,...,deg, ,..., Fs s s s . 

 

In its turn,  found in this way vector e  makes it 
possible to restore the code word C  in a known 

sequence 
*C : 

 
* * * *

0 0 1 1 1 1( , ,..., )n nС С e С e С e С e       . 

 
The solution of this problem is connected with 

finding n  unknowns from the system of M  linear 
equations, and M n . Strictly speaking, when 
solving the problem by the methods of linear 
algebra, in general, one can find a set of solutions of 
the indicated system of equations. At the same time, 
it should be noted that only 

( 1)

2

d
v t

 
    

 

 

values of sequence  0 1 1, , , ne e e e    are not 

equal to zero; i.e., almost all 0je   except for a 

certain (finite) number of them ( v ). With this 
restriction, there is one (unique) solution of the set 
of equations (8). 

We denote the set 0je   by the symbol E . To 

find the single-valued error vector, let us use an 
artificial technique related to the management of the 
polynomial of error locators: 

 
1

0 1 1 0 ,1,...,0 0 1

1,0,...,0 0 0,1,...,0 1 0,0,...,1 1 0,0,...,0

( , ,..., ) ...

... ,

v u v u
u v u

u

x x x x a x x

a x a x a x a

  
 



      

       

 (9) 
 
solutions of which are the locators. (Locators are 

such sets 0 1 1( , ,..., )
j j juX X X   that nullify the 

polynomial (9) with the corresponding elements of 

the error vector e E  .) 

Polynomial (9) uniquely determines the location 

of the errors in the vector  0 1 1, , , ne e e e   , since 

it uniquely points to its nonzero components. In 

other words, finding the coefficients 
0 1 1, ,..., ui i ia


 of the 

error locator polynomial 0 1 1( , ,..., )ux x x   allows 

one to uniquely indicate the location of the errors 
that occurred during the transmission of the code 
word (but not their values, the true values of nonzero 

entries je ), for example, by alternately substituting 

all sets  
 

 0 1 1 0 1 1, ,..., ( , ,..., )
j j jj u up x x x X X X   

 

into the polynomial 0 1 1( , ,..., )ux x x   and verifying 

that it equals zero. 

We multiply polynomial (9) by je  and compute 

its value at the point 0 1 1( , ,..., )
j j juX X X  , i.e., we 

obtain: 
 

1
0 ,1,...,0 0 1

1,0,...,0 0 0,1,...,0 1

0,0,...,1 1 0,0,...,0

...

...

.

j j j

j j

j

v u v u
j v u j

j j

j u j

e X a e X X

a e X a e X

a e X a e

  




      

       

    

 (10) 

 
Let’s analyze the expression obtained. 



A. Kuznetsov, Ie. Kolovanova, O. Smirnov, T. Kuznetsova / International Journal of Computing, 18(4) 2019, 393-407 

 

 401

If je E , i.e., 0je   , then all the terms of the 

resulting polynomial are zero; we have the whole 
expression (10) equal to zero. 

If je E , i.e. 0je   , then the corresponding 

sets 0 1 1( , ,..., )
j j juX X X   vanish polynomial (9) and 

hence polynomial (10) drops to zero. 

Thus, for any value of je  , expression (10) is 

zero. 

We sum over all 0, , 1j n  , and obtain: 

 
1 1

1
0 ,1,...,0 0 1

0 0

...
j j j

n n
v u v u

j v u j
j j

e X a e X X
 

  


 

         

1 1

1,0,...,0 0 0,1,...,0 1
0 0

1 1

0,0,...,1 1 0,0,...,0
0 0

...

.

j j

j

n n

j j
j j

n n

j u j
j j

a e X a e X

a e X a e

 

 

 


 

       

    

 

 
 (11) 

 
Let’s analyze the obtained expression. Values 

0 1 1, ,..., ui i ia


do not depend on j , hence we can take 

them out beyond the summation sign. Taking into 
account the notation introduced above, the value of 
the monomial  

 
0 11

0 1 1, ,..., 0 1 1... u

u

i ii
i i i uF x x x 

      

 

at the point 0 1 1( , ,..., )
j j juX X X   has the form 

 
0 11

0 1 1, ,..., 0 1 1 0 1 1( , ,..., ) ... u

u j j j j j j

i ii
i i i u uF X X X X X X 

      . 

 
Taking the latter into account, formula (11) can 

be rewritten as: 
 

1

1,0,...,0 0 1 1
0

1

,1,...,0 ,1,...,0 0 1 1
0

( , ,..., )

( , ,..., ) ...

j j j

j j j

n

j v u u
j

n

v u j v u u
j

e F X X X

a e F X X X



  




  


 

    




 

1

1,0,...,0 1,0,...,0 0 1 1
0

1

0,1,...,0 0,1,...,0 0 1 1
0

( , ,..., )

( , ,..., ) ...

j j j

j j j

n

j u
j

n

j u
j

a e F X X X

a e F X X X











   

    




 

1

0,0,...,1 0,0,...,1 0 1 1
0

1

1,0,...,0
0

( , ,..., )

0.

j j j

n

j u
j

n

j
j

a e F X X X

a e










   

  




 

 
But by the above definition 
 

  
0 1 1 0 1 1

1

, ,..., , ,..., 0 1 1
0

, ,...,
u u

n

i i i j i i i j u
j

s e F p x x x
 






  . 

 
Therefore, we have: 
 

1,0,...,0 ,1,...,0 ,1,...,0

1,0,...,0 1,0,...,0 0,1,...,0 0,1,...,0

0,0,...,1 0,0,...,1 0,0,...,0 0,0,...,0

...

...

0.

v u v u v us a s

a s a s

a s a s

      

     

    

 

 
We now return to the consideration of 

polynomial (9). We multiply it by an arbitrary 

monomial 0 11

0 1 1... ui ii
ux x x 

    and carry out analogous 

arguments. By analogy with (10), the equality 

vanishes for any value of je . After summing over all 

0, , 1j n   and performing the obvious 

substitutions, we obtain the recurrence formula: 
 

0 1 1 0 1 1

0 1 1 0 1 1

0 1 1 0 1 1

1, ,..., ,1,...,0 , 1,...,

1,0,...,0 1, ,..., 0,1,...,0 , 1,...,

0,0,...,1 , ,..., 1 0,0,...,0 , ,...,

...

...

0.

u u

u u

u u

i v u i i v u i v u i i

i i i i i i

i i i i i i

s a s

a s a s

a s a s

 

 

 

      

 



   

     

    

 

 
Performing the appropriate transformations for 

all 0,..., 1i M   we obtain a system of linear 

equations: 
 

1,0,...,0 ,1,...,0 ,1,...,0

1,0,...,0 1,0,...,0 0,1,...,0 0,1,...,0

0,0,...,1 0,0,...,1 0,0,...,0 0,0,...,0

2,0,...,0 ,1,...,0 1,1,...,0

1,0,...,0

...

...

0;

...

v u v u v u

v u v u v u

s a s

a s a s

a s a s

s a s

a

   

    

   

     

    

   

  2,0,...,0 0,1,...,0 1,1,...,0

0,0,...,1 1,0,...,1 0,0,...,0 1,0,...,0

2 2 2,0,...,0 ,1,...,0 2 2 1,1,...,0

1,0,...,0 2,0,...,0 0,1,...,0 1,1,...,0

0,0

...

0;

...

...

...

v u v u v u

v u v u

s a s

a s a s

s a s

a s a s

a

    

   

   

    

   

     

 ,...,1 1,0,...,1 0,0,...,0 1,0,...,0 0.v u v us a s   
















    

(12) 

 
If the number of unknowns z  in the polynomial 

of error locators is less than the number of elements 
of the syndrome sequence, the system of linear 
equations (12) is solvable. The complexity of its 
solution, for example, by the Gaussian method is 

equal to 
2z . 
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The solutions of system (12) give the values of 
the unknown coefficients of the polynomial (9) of 

the error locators 0 1 1( , ,..., )ux x x  , which in turn 

uniquely determines the values of the locators, such 

sets 0 1 1( , ,..., )
j j juX X X   that vanish the polynomial 

(9), with the corresponding elements ie E . 

The search for 0 1 1( , ,..., )
j j juX X X   can be 

performed, for example, by alternately substituting 

all 0 1 1( , ,..., )
j j juX X X  , 0, , 1j n   into the 

polynomial 0 1 1( , ,..., )ux x x   and checking for its 

equality to zero. 

The found 0 1 1( , ,..., )
j j juX X X   localize an error 

in the code word, i.e., equate to zero the n v  
unknowns in system (8). Because the number of 
remaining unknowns satisfies v M  , the system 
(8) is solvable. The complexity of its solution, for 

example, by the Gauss method, does not exceed 
2v . 

The solution of system (8) gives the unknown 
(nonzero) values of the error vector 

0 1 1( , ,..., )ne e e e   i.e., the decoding problem is 

solved. 
 

4. ENERGY EFFICIENCY OF ALGEBRAIC 
GEOMETRIC CODING 

To estimate the energy efficiency of the algebraic 
geometric coding, consider the option of 
transmitting discrete messages by M -th orthogonal 
signals. 

With uncoded message transmission, the 
probability of erroneous reception of M -th symbols 
in the case of coherent reception of orthogonal 
signals is determined by the expression [4-6]: 

 
2 2

1
2

2 2
1 1

1
2 2

M
uu z

cP e e dz du


 




 

 

 
   

  
  , 

(13) 
 
where   is the signal-to-noise ratio for the M -th 

symbol, 2mM  , 2  is the normalized signal-to-

noise ratio per binary unit, 2 m  . 

Fig. 3 shows the dependence of the probability of 
erroneous reception of the M -th symbol in the 
coherent reception of orthogonal signals. 

The transmission of M  orthogonal signals 
makes it possible to obtain a significant gain of noise 
immunity for a fixed signal-to-noise ratio, or a 
significant energy gain with a fixed error probability 

(for each symbol). As the power of the ensemble of 
signals increases, this gain goes up, too. 

 

Figure 3 - Dependencies of the probability of mistaken 

reception of M -th symbols from the normalized 
signal-to-noise ratio per one bit 

 

Let the code be  , ,n k d . We assume that the 

errors in consecutively transmitted code symbols 

occur independently with probability oP . Then the 

probability of a multiplicity error on the block length 
n  will be equal to 

 

 1
n ii i

i n o oP C P P


  .  (14) 

 

If the decoder corrects ( 1) 2t d   errors, then 

the probability of erroneous decoding of the block is  
 

 
1 1

1
n n

n ii i
бл i n o o

i t i t

P P C P P


   

    . (15) 

 
If we accept the assumption of a random 

occurrence of 2 1t   and more errors as a result of 
erroneous decoding of the code word, then the 
mathematical expectation of the number of 
erroneous information symbols at the decoder output 
is determined by the expression [4-6] 

 

1 1

( )n t n

ош i i
i t i n t

i t k
m P k P

n



    


   , (16) 

 
and the probability of erroneous decoding of the 
information symbol is 
 

од ош блР m P .   (17) 
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The use of codes that detect and correct errors 

leads to an increase in the redundancy of the 
transmitted data. If we fix the energy of the message 
transmitted to the channel, then the energy per one 
symbol will decrease proportionally to the 
redundancy introduced. To calculate the 
dependencies of the error probability on the symbol 
at the output of the decoder (14-17), taking into 
account the redundancy introduced, the signal-to-
noise ratio   in expression (13) is reduced by 

R k n  times. 

Let's consider a variant of transferring discrete 
messages by 4 orthogonal signals. The transmitted 
messages are encoded by an algebraic geometric 
code constructed above the field GF(4) (the selected 
code parameters are highlighted in color in Table 4). 
Figure 4 shows the dependencies of the error 
probability of the 4-th symbol on the normalized 
signal-to-noise ratio when four orthogonal signals 
are coherently received using noise-immune algebra-
geometric codes.  

 

 

Figure 4 - Energy efficiency of algebraic geometric 
codes with coherent reception of 4th orthogonal 

signals 

 
A relationship marked as “M=4” corresponds to 

an uncoded transmission. The dependence marked as 
(5,3,3) corresponds to an algebraic geometric code 

along a curve of genus 0g   whose code 

characteristics lie on the Singleton boundary. This 
code with the maximum distance separable codes 
(MDS code) is the extended Reed-Solomon code. 
The greatest energy gain in algebraic geometric 
codes (including MDS codes) is given at the speed 

2 / 3R  . The dependencies presented in Figure 4 
show the advantages of using algebraic geometric 
codes for noise-immune message transmission. 
Thus, with the error probability per symbol 

510cP  , the application of the code (9,6,3) gives 

an energy gain of 0,6dB compared to the uncoded 
message transmission and 0,2dB in comparison 
with the MDS code.  

Let's consider a variant of transferring discrete 
messages by 8 orthogonal signals. The transmitted 
messages are encoded by an algebraic geometric 
code constructed over the field GF(8). The 
constructive code characteristics of the selected 
codes are highlighted in color in Table 5. Figure 5 
shows the dependence of the error probability of the 
8th symbol on the normalized signal-to-noise ratio 
when coherently receiving 8 orthogonal signals 
using noise-immune algebra-geometric codes. The 
relationship marked as “M=8” corresponds to the 
uncoded transmission. With the error probability per 

symbol is 610cP  , the use of the code (23,14,7) 

gives an energy gain of 2dB in comparison with the 

non-coded message transmission and 0,8dB in 
comparison with the MDS code. 

 

 

Figure 5 - Energy efficiency of algebraic geometric 
codes with coherent reception of 8th orthogonal 

signals 

 
Let's consider a variant of transferring discrete 

messages by 16 orthogonal signals. The transmitted 
messages are encoded by an algebraic geometric 
code constructed over the field GF(16). The 
constructive code characteristics of the codes 
selected for the evaluation are outlined in Table 6. 
Figure 6 shows the dependencies of the error 
probability of the 16th character on the normalized 
signal-to-noise ratio when the coherent reception of 
16 orthogonal signals using noise-immune algebra-
geometric codes. The relationship marked as 
“M=16” corresponds to the uncoded transmission. 

With the error probability per symbol 610cP  , the 

application of the code (65,45,15) gives an energy 
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gain of 3dB in comparison with non-coded 

message transmission and 1dB  in comparison with 
the MDS code. 

 

Figure 6 - Energy efficiency of algebraic geometric 
codes with coherent reception of 16th orthogonal 

signals 

 
Let's consider the transfer variant of discrete 

messages by 32 orthogonal signals. The transmitted 
messages are encoded by an algebraic geometric 
code constructed over the field GF(32). The selected 
code characteristics are outlined in Table 7. Figure 7 
shows the dependence of the error probability of the 
32nd symbol on the normalized signal-to-noise ratio 
when the coherent reception of 32 orthogonal signals 
using noise-immune algebraic geometric codes. The 
relationship marked “M=32” corresponds to the 
uncoded transmission. With the error probability per 

symbol 910cP  , the use of the code (99,65,29) 

gives an energy gain of 4,5dB in comparison with 
the non-coded message transmission and 1dB  in 
comparison with the MDS code. 

Let's consider the transfer variant of discrete 
messages by 64 orthogonal signals. The transmitted 
messages are encoded by an algebraic geometric 
code constructed over a field GF(64) with the 
parameters highlighted in Table 8. Figure 8 shows 
the dependencies of the error probability of the 64th 
symbol on the normalized signal-to-noise ratio when 
coherently receiving 64 orthogonal signals using 
noise-immune algebraic geometry codes. A 
relationship marked as “M=64” corresponds to an 
uncoded transmission. With the error probability per 
symbol, the application of the code (164,110,49) 
gives an energy gain of 6dB as compared to non-
coded message transmission and 0,8dB in 
comparison with the MDS code. 

As follows from the dependencies presented in 
Figures 4-8, the use of algebraic geometric codes for 
increasing the noise immunity of message 
transmission in discrete channels without memory 

leads to a significant energy gain. Their use also 
makes it possible to significantly reduce the 
probability of error per symbol with a fixed signal-
to-noise ratio per one transmitted bit. The energy 
gain increases with the transition to codes 
constructed from curves with a large number of 
points relative to the genus of the curve. 

 

 

Figure 7 - Energy efficiency of algebraic geometric 
codes with coherent reception of 32nd orthogonal 

signals 

 

Figure 8 - Energy efficiency of algebraic geometric 
codes with coherent reception of 64th orthogonal 

signals 

 

5. COMPARATIVE EVALUATION OF THE 
IMPLEMENTATION COMPLEXITY OF 

CODING AND DECODING 

Let's make a comparative evaluation of the 
complexity of the implementation of the encoding-
decoding procedures for the considered codes in 
comparison with the known schemes. The 
complexity of the encoding-decoding procedures (as 
well as the estimation of the energy gain of algebraic 
geometric coding) is evaluated in comparison with 
the Reed-Solomon codes. 

If the code is given by the generator matrix G, the 
systematic encoding procedure is equivalent to 
multiplying the information word I by this matrix, 
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that is, c=IG, where c is the code word. In this sense, 
the complexity of algorithms for systematic coding 
of algebraic geometric codes and Reed-Solomon 
codes is practically equivalent. 

Reed-Solomon codes are a subclass of BCH 
codes, therefore, the same methods as for BCH 
codes are applied to their decoding. One of the most 
effective algorithms for algebraic decoding of BCH 
codes is the Berlekamp-Messi algorithm and its 
modifications (improvements). It is known [6] that 
the Berlekamp-Messi algorithm contains the number 
of multiplications, of order t2, or, formally, the 
complexity of the algorithm O(t2). For large t, we 
use the accelerated Berlekamp-Massey algorithm, 
which makes it possible to reduce the computational 
complexity of the algorithm. Even more effective, in 
terms of computational complexity, is the recurrent 
algorithm of Berlekamp-Messi. The asymptotic 
complexity of decoding the Reed-Solomon codes, in 
this case, does not exceed O(nlog2n), and is very 
close to the value of O(nlogn). 

Algorithms for decoding algebraic geometric 
codes were developed in [7-9]. So, in [7], a decoding 
algorithm is proposed, the complexity of which is 
determined by the value O(n3). Further development 
of the decoding procedure in [8] made it possible to 
reduce the computational complexity (shown by the 
example of Hermite curves) to O(n7/3). In [9], the 
algorithm of decoding, of complexity O(n2), which 
allows parallelization of computations (on n 
processors) is considered. Obviously, the existing 
algorithms for decoding algebraic geometric codes 
are comparable in computational complexity with 
the algorithms for decoding BCH codes. 

 
6. CONCLUSION 

A lot of studies have shown that algebraic 
geometric codes boast very constructive 
characteristics. In particular, the dependences given 
in Fig. 1 indicate that as the power of the alphabet 
increases, the code characteristics improve. With a 
large length, algebraic geometric codes lie above the 
Varshamov-Gilbert boundaries, which indicates high 
potential characteristics. We obtained code 
characteristics for various curves over finite fields 
GF(2m), m=2,…,6  (Tables 4-8). 

As the studies show, the practical implementation 
of the algorithms for encoding and decoding 
algebraic geometric codes is reduced to simple and 
computationally efficient operations on finite fields. 
We presented several options for constructing codes 
(in a systematic and non-systematic form), and the 
simple decoding algorithms. The implementation of 
these algorithms does not require significant 
computational costs: as shown by the performed 

analysis, the complexity of encoding and decoding is 
comparable to other known classes of codes. 

To evaluate the energy efficiency of algebraic 
geometric coding, we considered the option of 
discrete messages by M-orthogonal signals 
transmitting. As follows from the dependences 
shown in Figures 4-8, the use of algebraic geometric 
codes in discrete channels without memory leads to 
a significant energy gain. The energy gain increases 
with the transition to long codes constructed from 
curves with a large number of points relative to the 
genus of the curve.  

The high energy efficiency of algebraic 
geometric coding in combination with an acceptable 
complexity of practical implementation allows us to 
talk about the possibility of constructing effective 
noise-immune systems based on the use of such 
codes [13-15]. Development and implementation of 
practical recommendations on the direct use of 
algebraic geometric codes in modern 
telecommunication systems and networks is a 
promising direction for further work. In addition, a 
prospective direction of further research is the 
argumentation of practical recommendations 
concerning the implementation of the introduced 
method and the ways of its use in different 
mechanisms of information security of 
telecommunications networks and systems. 
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