
Evelin Halling, Jüri Vain, Artem Boyarchuk, Oleg Illiashenko / International Journal of Computing, 18(4) 2019, 408-421

 408

TEST SCENARIO SPECIFICATION LANGUAGE
FOR MODEL-BASED TESTING

Evelin Halling 1), Jüri Vain 1), Artem Boyarchuk 2), Oleg Illiashenko 2)

1) Tallinn University of Technology, Akadeemia tee 15A, Tallinn, Estonia

evelin.halling@taltech.ee, juri.vain@ttu.ee, http://www.taltech.ee
2) Department of Computer Systems and Networks, National Aerospace University KhAI, Chkalova str., 17, 61070,

Kharkov, Ukraine, boyarchuk@csn.khai.edu, o.illiashenko@khai.edu, http://csn.khai.edu

Paper history:
Received 08 April 2019
Received in revised form 10 October 2019
Accepted 02 December 2019
Available online 31 December 2019

Keywords:
Model-based testing;
Test scenario description language;
Timed automata;
Verification by model checking;
Conformance testing.

Abstract: In mission critical systems a single failure might cause catastrophic
consequences. This sets high expectations to timely detection of design faults
and runtime failures. By traditional software testing methods the detection of
deeply nested faults that occur sporadically is almost impossible. The discovery
of such bugs can be facilitated by generating well-targeted test cases where the
test scenario is explicitly specified. On the other hand, the excess of
implementation details in manually crafted test scripts makes it hard to
understand and to interpret the test results. This paper defines high-level test
scenario specification language TDLTP for specifying complex test scenarios that
are relevant for model-based testing of mission critical systems. The syntax and
semantics of TDLTP operators are defined and the transformation rules that map
its declarative expressions to executable Uppaal Timed Automata test models are
specified. The scalability of the method is demonstrated on the TUT100 satellite
software integration testing case study.

Copyright © Research Institute for Intelligent Computer Systems, 2019.
All rights reserved.

1. INTRODUCTION

In model-based testing (MBT), the requirements
model of System Under Test (SUT) describes the
expected correct behavior of the system under
possible inputs from its environment. The model,
represented in a suitable machine interpretable
formalism, can be used to automatically generate the
test cases either offline or online, and be used as the
oracle that checks if the SUT behavior conforms to
this model. Offline test generation means that tests
are generated before test execution and executed
when needed. In online test generation the model is
executed in lock step with the SUT. The test model
communicates with SUT via controllable inputs and
observable outputs of the SUT.

Test description in MBT typically relies on two
formal representations, SUT modelling language and
the test purpose specification language. An extensive
survey on modelling formalisms used in MBT can
be found in [20].

The requirements to the test purpose specification
languages for MBT can be summarized as

following:
1. intuitive and user-friendly specification

process;
2. expressiveness to capture the features and

behaviours under test in a compact and
unambiguous form;

3. formal semantics to make the test purpose
specifications verifiable and pertinent for
automated test generation;

4. decidability to make the test generation from
test purpose specification algorithmically
feasible.

The first two criteria have been capitalized in
earlier attempts of designing test purpose
specification languages. Check Case Definition
Language (CCDL) [1] provides a high-level
approach for requirements-based black-box system
level testing. Test simulations and expected results
specified in human readable form in CCDL can be
compiled into executable test scripts. However, due
to the lack of standardization, high-level tests in
CCDL are heavily tool-dependent and can be used
only in tool specific testing processes.

computing@computingonline.net
www.computingonline.net

Print ISSN 1727-6209
On-line ISSN 2312-5381

International Journal of Computing

Evelin Halling, Jüri Vain, Artem Boyarchuk, Oleg Illiashenko / International Journal of Computing, 18(4) 2019, 408-421

 409

High-level keyword-based test languages, such as
the Robot Framework [2], have also been integrated
with MBT [3]. In domains such as avionics [4] and
automotive industry the efforts have been made to
address the standardization of testing methods and
languages, e.g. creating a meta-model for testing
avionics systems [4], and the Automotive TestML
[5]. Similarly, the Open Test Sequence Exchange
Format (OTX) [6] standardized by ISO provides
tool-independent XML-based data exchange format
[7] for description and documentation of executable
test sequences. These efforts have focused primarily
on enabling the exchange of test specifications
between involved stakeholders and tools. Due to
their domain and purpose specialization the
applicability of these languages in other domains is
limited.

The Message Sequence Chart (MSC) [8]
standardized by International Telecommunication
Union was one of the first scenario specification
languages though it was not only focusing on
testing. The semantics of MSC is specified in [9].
Some of the features of MSC are adopted in UML,
e.g. in Sequence Diagrams. Still, loose semantics
limits its use as a consistent test description
language [10].

Precise UML [11] introduces a subset of UML
and OCL for MBT. The attempt to unify the
semantics of different diagrams was motivated by
the need for behavioral specifications of SUT which
are well suited for generating test cases out of SUT
models.

Concrete test scripting languages, such as TTCN-
3, regardless their strict semantics are not well suited
for high-level description of test scenarios. They
rather follow the style of syntax typical to
imperative programming languages [12].

Thus, most of the test purpose specification
languages referred above suffer from some of the
disadvantages, either they have imprecise or
informal semantics, lack of standardization, lack of
comprehensive tool support, or poor interoperability
with other development and testing tools.

European Telecommunications Standards
Institute (ETSI) intended to address these
shortcomings and developed a new specification
language standard by introducing Test Purpose
Language (TPLan) that supports the high-level
expression of test purposes in prose [13]. Though
TPLan provides notation for the standardized
specification of test purposes, it leaves a gap
between the declarative test purpose and its
imperative implementation in test. Without formal
semantics the development of test descriptions by
means of different notations and dialects led to
overhead and inconsistencies that need to be
checked and fixed manually. As a consequence,

ETSI started a new initiative by developing the Test
Description Language TDL [12]. It is intended to
bridge the gap between declarative test purposes and
imperative test cases by offering a standardized
approach for the specification of test descriptions.
The main benefits of ETSI TDL outlined in [12] are
higher quality tests through better design, easier
layout to review by non-testing experts, better and
faster test development, and seamless integration of
methodology and tools.

The development of ETSI TDL was driven by
industry where it is used primarily, but not
exclusively, for functional testing. To enable the
application of TDL in UML based working
environments, a UML Profile for TDL (UP4TDL)
[10] was developed. Domain-specific concepts are
represented in UP4TDL by means of stereotypes.

Though TDL features one of the most advanced
test purpose description language it has room for
improvements. In the first place, automatic mapping
of ETSI TDL to TTCN-3 is not fully implemented
yet. The mapping is needed for generating
executable tests from TDL descriptions and re-using
the existing TTCN-3 tools and frameworks for test
execution.

Second limitation of TDL is restricted timing
semantics. The Time package in TDL contains
concepts for the specification of time operations,
time constraints, and timers. Since time in TDL is
global and progresses monotonically in discrete
quantities there is no way of expressing
synchronization conditions between local time
events of parallel processes and detecting possible
Zeno computations that can be analyzed in
continuous time models. Similarly, timelock-
freedom and bifurcation analysis [22] cannot be
performed in this setting.

One step further towards automatic test
generation was timed games based synthesis of test
strategies introduced in [14] and implemented in the
Uppaal Tiga tool. Timed Computation Tree Logic
(TCTL) used for specifying test purpose in this
approach has high expressive power and formal
semantics relevant for expressing quantitative time
properties combined with CTL operators such as
‘always’, ‘inevitable’, ‘potentially always’,
‘possible’, and ‘leads-to’ [15].

Due to the complexity of model checking [21],
the TCTL syntax in Uppaal tool is limited with un-
nested operators making the TCTL expressions flat
with respect to the temporal operators. On the other
hand, to specify the properties of timed reachability
the flat TCTL expressions are not sufficient for
specifying complex properties and so called
auxiliary property recognizing automata, e.g.
‘stopwatch’ automata are needed. Modifying the test
model structure by adding property automata is not

Evelin Halling, Jüri Vain, Artem Boyarchuk, Oleg Illiashenko / International Journal of Computing, 18(4) 2019, 408-421

 410

trivial for non-experts and may be an error prone
process leading to the unintended changes of
semantics of tests.

The aim of this work is to build an extra language
layer (Test Scenario Definition Language - TDLTP)
for test scenario specification that is expressive, free
from the limitations of ‘flat’ TCTL, interpretable in
Uppaal TA, and suited for test generation.

 In our approach, Uppaal Timed Automata (TA)
[16] serve as a SUT specification language. Uppaal
TA have been chosen because they are designed to
express the timed behavior of state transition
systems and there exists a mature set of tools that
supports model construction, verification and online
model-based testing [17].

For the test purpose specification to be concise
and still expressive its specification language must
be more abstract than SUT modeling language and
not necessarily self-contained in the sense that its
expressions are interpreted in the context of SUT
model only. It means that the terms of test purpose
specification refer to the SUT model structural
elements of interest, they are called test coverage
items (TCIs). The test purpose specification
language TDLTP proposed in our approach allows
expressing multiple coverage criteria in terms of
TCIs, including test scenario constraints such as
iteration, next, leads to, and structural coverage
criteria such as selected states, selected transitions,
transition pairs, and timing constraints, e.g. time
bounded leads to.

Generating the test model based on the SUT
model and TDLTP coverage expression includes two
phases.

In the first phase, the TCIs have to be labelled in
the SUT model with Boolean variables called traps.
The traps are needed to make TCIs referable in the
TDLTP expressions. In case of non-deterministic
SUT model the coverage of those elementary TCIs
is ensured by reactive planning tester (RPT)
automata, one automaton for each conjunctive set of
TCIs (see [19] for further details of RPT generation).

In the second phase of generation, a test
supervisor model MSVR is constructed from the
TDLTP expression to trigger the RPT automata
according to the test scenario so that the temporal
and logical coverage constraints stated in TDLTP
specification would be satisfied. Since non-
deterministic SUT models based tests are partially
controllable only pseudo optimal traces can be
generated by this method.

Alternatively, in case of deterministic SUT
models, the RPT automata generation phase can be
discarded since Uppaal model checker generates
optimal witness traces from the parallel composition
of SUT and tester models.

The rest of this paper is organized as follows. In
Section 2 Uppaal Timed Automata formalism is
introduced, Sections 3 and 4 define the TDLTP
language syntax and semantics respectively, Section
5 defines the map from TDLTP to Uppaal TA that
controls if the test scenario execution satisfies its
declarative expression. In Section 6 the reduction
rules of TDLTP expressions are presented. Section 7
describes how the whole test model is composed by
introducing test supervisor automaton. Section 8
explains how the test verdict and test diagnosis
capability are encoded in the tester model, and
finally the conclusions are drawn.

2. UPPAAL TIMED AUTOMATA

Uppaal Timed Automata [16] (TA) used for
modelling SUT is defined as a closed network of
extended timed automata that are called processes.
The processes are gathered into a single system by
parallel composition known from the process
algebra CCS. An example of a system comprising
two automata is given in Fig. 1.

The nodes of the automata are called locations
and the directed edges transitions. The state of an
automaton consists of its current location and
assignments to all variables, including clocks. The
initial locations of the automata are graphically
denoted by double circle inside the location.

Process_i:

Process_j:

Figure 1 – A sample model: synchronous composition
of two Uppaal automata Process_i and Process_j

Synchronous communication between the
processes is by hand-shake synchronization links
that are called channels. A channel relates a pair of
edges labeled with symbols for input actions denoted
by e.g. chA? and chB? in Fig. 1, and output actions
denoted by chA! and chB!, where chA and chB are
the names of the channels.

In Fig. 1, there is an example of a model that
represents a synchronous remote procedure call. The
calling process Process_i and the callee process
Process_j both include three locations and two
synchronized transitions. Process_i, initially at
location Start_i, initiates the call by executing the
send action chA! that is synchronized with the
receive action chA? in Process_j. The location
Operation denotes the situation where Process_j
computes the value to output variable y. Once done,
the control is returned to Process_i by the action
chB!.

The duration of executing the result is specified
by the interval [lb, ub] where the upper bound ub is

Evelin Halling, Jüri Vain, Artem Boyarchuk, Oleg Illiashenko / International Journal of Computing, 18(4) 2019, 408-421

 411

given by the invariant cl<=ub of location
Operation, and the lower bound lb by the guard
condition cl>=lb of the transition Operation ⟶
Stop_j. The assignment cl=0 on the transition Start_j
⟶ Operation ensures that the clock cl is reset when
the control reaches the location Operation. The
global variables x and y model the input and output
arguments of the remote procedure call, and the
computation itself is modelled by the function f(x)
defined in the declarations block.

While the synchronous communication between
processes is modeled using channels, asynchronous
communication between processes is modeled using
global variables accessible to all processes.

Formally, the Uppaal TA are defined as follows:
Let ∑ denote a finite alphabet of actions a, b, …

and C a finite set of real-valued variables p, q, r,
denoting clocks. A guard is a conjunctive formula of
atomic constraints of the form p ~ n for p ∈ C, ~ ∈
{≤, ≥, =, <, >} and n ∈ N+. We use G(C) to denote
the set of clock guards. A timed automaton A is a
tuple N, l0, E, I where N is a finite set of locations
(graphically denoted by nodes), l0 ∈ N is the initial
location, E ∈ N × G(C) × ∑ × 2C × N is the set of
edges (an edge is denoted by an arc) and I : N ⟶
G(C) assigns invariants to locations (here we restrict
to constraints in the form: p ≤ n or p < n, n ∈ N+.

Without the loss of generality we assume that
guard conditions are in conjunctive form with
conjuncts including besides clock constraints also
constraints on integer variables. Similarly to clock
conditions, the propositions on integer variables k
are of the form k ~ n for n ∈ N, and ~ ∈
{≤, ≥, =, <, >}. For the formal definition of Uppaal
TA semantics we refer the reader to [18] and [16].

3. TDLTP SYNTAX

The ground terms in TDLTP are sets (denoted TS)
of assignments to auxiliary variables called trap
variables or simply traps added to the SUT model
for test purpose specification. A trap is updated by
Boolean variable assignment that labels a TCI. In
case of Uppaal TA, the TCIs are edges of the SUT
model MSUT. The value of all traps is initially set to
false. When the edge of MSUT labelled with a trap is
visited during test execution the trap update function
is executed and the trap value is set to true. We say
that a trap tr is elementary trap if its update function
is unconditional, i.e. of shape tr := true.

Generally we assume that the trap names are
unique, trap update functions are non-recursive and
their arguments have definite values whenever the
edge labelled with that trap is executed. The trap tr
update condition, if conditional trap, is a Boolean
expression (we call it also update constraint) the
arguments of which range over the sets of variables

and constants of MSUT and over the auxiliary
constants and variables occurring in the test purpose
specification in TDLTP, e.g. references to other traps,
event counters and the time bounds of model clocks.

Although we deal with finite sets of traps and
their value domains the quantifiers are introduced in
TDLTP for notational convenience. To refer to the
situations where many traps have to be true or false
at once, we group these traps to sets called trapsets
denoted by TS and prefix them with trapset
quantifiers - A for universal and E for existential
quantification. A(TS) means that all traps and E(TS)
means that at least one trap of the set TS has to be
true. To represent a trapset in Uppaal TA syntax we
encode them as one-dimensional trap arrays and
refer to individual traps in the array by array index
value, e.g. i-th trap in TS is referred to as TS[i].

In the following we give the syntax of TDLTP
expressions in BNF:
Expression ::=

 ’(’ Expression ’)’
|’A’ TrapsetExpression
| ’E’ TrapsetExpression
| UnaryOp Expression
| Expression BinaryOp Expression
| Expression ~> Expression
| Expression ~>’[’RelOpNUM’]’
Expression
| ’#’ Expression RelOp NUM

TrapsetExpression ::=

’(’  TrapsetExpression’)’
| ’!’ ID
| ID ’ \’ ID
| ID ’ ;’ ID

UnaryOp ::= ’not’
BinaryOp ::= ’&’ | ’or’ | ’=>’ |’<=>’
RelOp ::= ’<’ | ’=’ | ’>’ | ’<=’ | ’>=’
ID ::= (’TR’) NUM
NUM ::= (’0’..’9’)+

4. TDLTP SEMANTICS

To define the semantics of TDLTP we assume
there are given:
- an Uppaal TA model M;

- Trapset TS which is possibly a union of
member trapsets �� = ⋃ ������,� , where the

cardinality of each TSi is ni;
- �: �� ⟶ �(�), the labelling function that

maps the traps in TS to edges in E(M), where
E(M) denotes the set of edges of the model M.
We assume the uniqueness of the labeling
within a trapset, i.e. there is at most one edge

Evelin Halling, Jüri Vain, Artem Boyarchuk, Oleg Illiashenko / International Journal of Computing, 18(4) 2019, 408-421

 412

labelled with a trap from the given trapset but
an edge can be labelled with many traps if each
of them is from different trapset.

4.1 ATOMIC LABELLING FUNCTION

Atomic labelling function is non-surjective and
injective-only mapping between TS and �(�), i.e.
each element of TS is mapped to a unique edge in
�(�):

L: TS ⟶ E(M), s.t. e E(M):

 TSk[i] L(e)  TSl[j] L(e)  kl.
(1)

4.2 DERIVED LABELLING OPERATIONS
(TRAPSET OPERATIONS)

The formulas with a trapset operation symbol and
trapset(s) identifiers being its argument(s) are called
TDLTP trapset formulas.

Relative complement of trapsets (���\���).
Only those edges labelled with traps of ��� and not
with traps of ��� are in the relative complement
trapset ���\���:

⟦���\���⟧ iff

∀�[0, ��], �[0, ��], ∃��(�):
���[�] ∈ �(�) ∧ ���[�] ∉ �(�).

(2)

Absolute complement of a trapset (! ��). All
edges that are not labelled with traps of TS are in the
absolute complement trapset ! ��:

⟦! ��⟧ iff ∀�[0, �], ∃��(�): ��[�] ∉ �(�). (3)

Linked pairs of trapsets (���; ���). Two
trapsets ��� ��� ��� are linked via operator next
(denoted ‘;’) if and only if there exists a pair of
edges in M which are labelled with traps of
��� and ��� respectively and which are connected
through a location so that if any of traps in ��� is
updated to true on the k-th transition of model M
execution trace � then some trap of ��� is updated
to true in the (k+1)-th transition of that trace:

⟦���; ��� ⟧ iff ∀� ∈ [0, ��], ∃� ∈
[0, ��], �, �: ⟦���[�]⟧�� ⟹ ⟦���[�]⟧����,

(4)

where ⟦��⟧� denotes the interpretation of the trapset
TS on the trace � and �� denotes the l-th suffix of
the trace �, i.e. the suffix which starts from l-th
location of �; �� and �� denote cardinalities of
trapsets ��� and ��� respectively. Note that
operator ‘;’ enables expressing one of the “classical”
structural coverage criteria ‘selected transition
pairs’.

4.3 INTERPRETATION OF TDL
EXPRESSIONS

Quantifiers of trapsets. Given the definitions 1 -
4 of trapset operations we define the semantics of
bounded universal quantifier A and bounded
existential quantifier E of a trapset TS as follows:

 ⟦� (��)⟧ iff ∀� ∈ [0, �]: ��[�], (5)

⟦� (��)⟧ iff ∃� ∈ [0, �]: ��[�], (6)

where n denotes the cardinality of the trapset TS.
Note that quantification is defined on the trapsets

only and not on higher level operators.
Logic connectives. Since recursive nesting of

TDLTP logic and temporal operators is allowed for
better expressiveness we define the semantics of
these higher level operators where the argument
terms are not trapset formulas but derived from them
using recursive nesting of logic and temporal

operator symbols. Let SE, ��1 and ��2denote such
argument sub-formulas, then

⟦��� & ��� ⟧ iff ⟦���⟧ ��� ⟦���⟧ (7)
⟦��� �� ��� ⟧ iff ⟦���⟧ �� ⟦���⟧ (8)

��� => ��� ≡ ���(���) ∨ ��� (9)

��� <=> ��� ≡ (��� ⟹ ���) ∧

 (��� ⟹ ���).
(10)

Temporal operators
Leads to’ operator ′��� ↝ ���′ in TDLTP is

inspired by Computation Tree Logic CTL ‘always
leads to’ operator, denoted by ′� − −> �′ in
Uppaal, which is equivalent to CTL formula
��(� ⟹ �а�). Leads to expresses that after
reaching the state which satisfies � in the
computation all possible continuations of this
computation reach the state in which � is satisfied.
For clarity we substitute the meta-symbols � and �
with non-terminals ���and ��� of TDLTP.

⟦��� ~ > ��� ⟧ iff
 ∀�, ∃�, �, � ≤ �: ⟦���⟧�� ⟹ ⟦���⟧��,

(11)

where �� denotes the k-th suffix of the trace �, i.e.
the suffix which starts from k-th location of �, and
⟦��⟧�� denotes the interpretation of TS on the k-th

suffix of trace �.
‘Time bounded leads to’ means that TS2 must

occur after TS1 and the time instance of TS2

occurrence (measured relative to ��1 occurrence
satisfies constraint ⊛ �, where ⊛ {<, =, >, ≤, }
and n ∈ N:

Evelin Halling, Jüri Vain, Artem Boyarchuk, Oleg Illiashenko / International Journal of Computing, 18(4) 2019, 408-421

 413

����~ >[⊛�] ���� iff
∀�, ∃�, �, � ≤ �: ⟦���⟧�� ⟹ ⟦���⟧��.

(12)

‘Conditional repetition’. Let k enumerate the
occurrences of ⟦��⟧, then

⟦#�� ⊛ � ⟧ iff ↝ ⋯ ↝ ⟦��⟧� ��� � ⊛ �, (13)

where index variable k satisfies constraint ⊛ �, ⊛
{<, =, >, ≤, } and n ∈ N.

The application of logic not to non-ground level

TDLTP terms has following interpretation:

 ����� (��)� ��� ∃�: ⟦��[�]⟧ = ����� (14)

����� (��)� ��� ∀�: ⟦��[�]⟧ = ����� (15)

��� (��� ∧ ���) ≡ ��� (���) ∨ ��� (���) (16)
��� (��� ∨ ���) ≡ ��� (���) ∧ ��� (���) (17)

��� (��� ⟹ ���) ≡ ��� ∧ ��� (���) (18)
��� (��� ⟺ ���

≡ ��� (��� ⟹ ���)
∨ ��� (��� ⟹ ���)

(19)

⟦���(��� ↝ ���)⟧ iff
⟦��� (���)⟧ �� ∀�, �, �
≤ �: ⟦���⟧�� ��� ���⟦���⟧��

(20)

��� (��� ↝⊛� ���) ≡ ������� ↝

 ���) ∨ ∀�: (��� ↝� ��� � ⇒ (� ⇒

���(⊛ �)),

(21)

��� (#�� ⊛ �) ≡ ∀�: (#�� �) ⇒ (� ⇒
���(⊛ �)),

(22)

where � denotes the time bound constraint that
yields the negation of constraint ⊛ �.

5. MAPPING TDLTP EXPRESSIONS TO
BEHAVIOR RECOGNIZING AUTOMATA

When mapping the TDLTP formulae to test
supervisor component automata we implement the
mappings starting from ground level terms and move
towards the root term by following the structure of
the TDLTP formula parse tree. The terminal nodes of
any TDLTP formula parse tree are trapset identifiers.
The next above the terminal layer of the parse tree
constitute the trapset operation symbols. The trapset
operation symbols, in turn, are the arguments of
logic and temporal operators. The ground level
trapsets and the trapsets which are the results of
trapset operations are mapped to the labelling of
SUT model MSUT. In the following the mappings are
specified for TDLTP trapset operations, logic
operators and temporal operators in separate
subsections.

5.1 MAPPING TDLTP TRAPSET
EXPRESSIONS TO SUT MODEL MSUT
LABELLING

Mapping M1: Relative complement of trapsets
��1\��

2
: The ��1\��2 – mapping adds the traps of

the trapset ��1\��2 only to these edges of MSUT

which are labelled with traps of ��1 and not with

traps of ��2. An example of such mapping is
depicted in Fig. 2.

↓L(��1\��2)

Figure 2 – Mapping TDLTP expression ���\��� to
the SUT model labelling

Mapping M2: Absolute complement of a trapset
!TS: The mapping of !TS to SUT model labelling
provides the labelling with !TS traps all such edges
of SUT model MSUT which are not labelled with
traps of TS. Example of this mapping is depicted in
Fig. 3.

↓L(! ��)

Figure 3 – Mapping TDLTP expression ! �� to the
SUT model labelling

Mapping M3: Linked pairs of trapsets ���; ���:

Evelin Halling, Jüri Vain, Artem Boyarchuk, Oleg Illiashenko / International Journal of Computing, 18(4) 2019, 408-421

 414

The mapping of terms ��1; ��2 to labelling is
implemented by the labelling algorithm Algorithm 1
(�(���; ���))

↓L(��1; ��2)

Figure 4 – Example of the application of

ALGORITHM 1 (�(���; ���))

The example of Algorithm 1 application is
demonstrated in Fig. 4. Notice that the labelling
concerns not only the edges that are labelled with
traps of TS1 and TS2 but also those which depart
from the same location as the edge with TS2
labelling. This is necessary for resetting the variable
flag which indicates the executing a trapset TS1
labelled edge in the previous step of the
computation.
������
 ��, ���, �, �: ���(���) = ����(��) ⋀ ���[�] ∈ �(��)
 �� ���[�] ∈ �(���)

 ����
���(��) ← ���(��), ����(���; ���)

= ����,
���(���) ← ���(���), ��(��1; ��2)[�]
= (����(���; ���)? ����: �����),

 ��
 ���(���) ← ���(���), ����(���; ���) = �����
��� ������

5.2 MAPPING TDLTP LOGIC OPERATORS
TO RECOGNIZING AUTOMATA

The indexing of trapset array elements, universal
and existential quantifiers in Uppaal modelling
language support direct mapping of trapset
quantifiers to forall and exists expressions of Uppaal
TA as shown in Fig. 5 and 6.

Mapping M4: Universal quantifier of the trapset

Figure 5 – An automaton that recognizes

universally quantified trapset expressions
Mapping M5: Existential quantifier of the trapset

Figure 6 – The automaton that recognizes existentially
quantified trapset expressions

Negation not
Since logic negation not can be pushed to ground

level trapset terms by applying equivalences (14 –
22) and the direct mappings of not formulas are not
considered in this work.

Mapping M6: Conjunction of sub-formulas
The conjunction SE1 & SE2 is mapped to the

automata fragment as shown in Fig. 7. In the
conjunction and disjunction automata depicted in the
Fig. 7 and 8 the guard conditions P and Q encode
the argument terms SE1 and SE2 respectively. In
conjunction automaton the End location is reachable
from the initial location Idle if both P and Q
evaluate to true in any order.

Figure 7 – The automaton that recognizes the
conjunction of TDLTP formulas P and Q

Mapping M7: Disjunction of sub-formulas
In the disjunction automaton the End location is

reachable from the initial location Idle if either P
and Q are true.

Figure 8 – Automaton that recognizes the

disjunction of TDLTP formulas P and Q

The implication of TDLTP formulas can be
defined using disjunction and negation as shown in
formula (9) and their transformation to property
automata are implemented through these mappings.

Similarly, the equivalence of TDLTP formulas can
be expressed via conjunction and implication by
using equivalence in formula (10).

5.3 MAPPING TDLTP TEMPORAL
OPERATORS TO RECOGNIZING
AUTOMATA

Mapping M8: ‘Leads to’ � ↝q
Mapping the leads to operator to Uppaal TA

produces the model fragment depicted in Fig. 9.

Figure 9 – ‘Leads to’ formula � ↝q recognizing

automaton

Evelin Halling, Jüri Vain, Artem Boyarchuk, Oleg Illiashenko / International Journal of Computing, 18(4) 2019, 408-421

 415

Mapping M9: Timed leads to p ↝⊛��� �
Mapping ‘timed leads to’ to a Uppaal TA

fragment is depicted in Fig. 10. It presumes an
additional clock cl which is reset to 0 at the time
instant when formula P become true. The condition
‘cl<=d’ in Fig. 10 a) sets the upper time bound d to
the event when formula Q has to becomes true after
P, i.e. after the clock cl reset.

a)

b)

Figure 10 – ‘Timed leads to’ formula P ↝⊛� �
recognizing automata a) with condition cl≤d;

b) with condition cl>d

The mapping to property automaton depends on
the time condition of leads to. For instance if the
conditions is ‘cl>d’ the mapping results in
automaton shown in Fig. 10 b).

Mapping M10: Conditional repetition #�� ⊛ �:
The Uppaal TA fragment generated by the

mapping of #�� ⊛ � (Fig. 11) includes a counter
variable i to enumerate the events when the SE
formula P becomes true. If the loop exit condition,
e.g., ‘i >=n’, is satisfied then the transition to
location End is fired without delay (the middle
location is of type committed).

Figure 11 – Uppaal TA that implements
conditional repetition

6. REDUCTION OF THE SUPERVISOR
AUTOMATA AND THE LABELLING OF

SUT

The TDLTP expressions with many nested
operators may become large and involve some
overhead. Removal of this overhead in the formulas
provides reduction in the state space needed for their
model checking and improves the readability and
comprehension of this formula.

The simplifications are formulated in terms of the
parse tree of the TDLTP formula and standard logic
simplifications. Due to the nesting of operations in
the TDLTP formula the root operation can be any
operator listed in the BNF grammar of TDLTP but the
terminals of the parse tree are always trapsets.

a)

b)

c)

Figure 12 – Simplification of ���\ ��� trapsets

labelling: a) the parse tree of ���\���; b) labelling of
the SUT model with ���, ��� ��� ���\ ���
c) reduced labelling of the SUT model MSUT

TDLTP formulas consist of a static component (a
trapset or a trapset expression) and optionally the
logic and/or temporal component. The static
component includes all sub-formulas of the parse
tree branches from terminals to the lowest temporal
expression, all sub-formulas above it are temporal
and/or logic formulas (possibly mixed).

The trapset formulas are implemented by
labelling operations such as relative and absolute
complement. Only trapset formulas can be
universally and existentially quantification. No
nesting of quantifiers is allowed. Since the validity
of root formula can be calculated only using the
truth value of the highest trapset expression in the
parse tree, all the trapsets being closer to the ground
level trapset along the parse tree sub branch can be
removed from the labelling of the SUT model. This
reduction can be done after labelling the SUT model
and applying all the trapset operations. An example
of such reduction is demonstrated for relative
complement operation ���\��� in Fig. 12.

Logic simplification follows after the trapset
expression simplification is completed. Here
standard logic simplifications are applicable:

� ∧ � ≡ �
� ∧ ��� � ≡ �����,
� ∧ ����� ≡ �����,
� ∧ ���� ≡ �,
� ∨ � ≡ �,
� ∨ ��� � ≡ ����,
� ∨ ����� ≡ �,
� ∨ ���� ≡ ����,

(23)

Evelin Halling, Jüri Vain, Artem Boyarchuk, Oleg Illiashenko / International Journal of Computing, 18(4) 2019, 408-421

 416

We will introduce also a set of simplifications for
TDLTP temporal operators which follow from their
semantics and the properties of integer arithmetic:

�� ≡ ����� �� �� = ∅
� ↝ ����� ≡ �����
����� ↝ � ≡ �����
���� ↝ � ≡ �
� ↝ ���� ≡ ����
#� = 1 ≡ �
#� ⊛ �� ⋀#� ⊛ ��

≡ #� ⊛ ���(��, ��) ��
⊛∈ {≥, >}

#� ⊛ �� ∨ #� ⊛ ��
≡ #� ⊛ ���(��, ��) �� ⊛
∈ {≥, >, =}

#� ⊛ �� ⋀#� ⊛ �� ≡ ����� �� ⊛
∈ {=} ��� �� ≠ ��

#� ⊛ �� ↝ #� ⊛ ��

≡ #� ⊛ (�� + ��) �� ⊛
∈ {≥, >, =}

#� ⊛ �� ↝ #� ⊛ ��

≡ #� ⊛ ���(��, ��) �� ⊛
∈ {<}

#� ⊛ �� ∧ #� ⊛ ��

≡ #� ⊛ ���(��, ��) �� ⊛
∈ {<}

#� ⊛ �� ∨ #� ⊛ ��
≡ #� ⊛ ���(��, ��) �� ⊛
∈ {<}

� ↝��
� ∧ � ↝��

� ≡

� ↝��� (��,��) � �� ⊛∈ {≤, <}

� ↝��
� ∧ � ↝��

�

≡ � ↝��� (��,��) � �� ⊛

∈ {>}

(24)

7. COMPOSING THE TEST SUPERVISOR
MODEL

The test supervisor model MSVR is constructed as
a parallel composition of single TDLTP property
recognizing automata each of which is produced by
parsing the TDLTP formula and mapping
corresponding sub-formulae to the automaton
template as defined in Section 5. To interrelate these
sub-formula automata, two phases have to be
completed:

1) Each trap labelled transition e of MSUT (here
we consider the traps which are left after
labels reduction as described in Section 6) has
to be split in two edges e’ and e” connected
via an auxiliary committed location lc. The
edge e’ will inherit the labelling of e while e”
will be labelled with an auxiliary broadcast
channel that signals the trap update
occurrence to the upper neighbor sub-formula

automaton. We use the channel naming
convention, where a channel name has a
prefix ch_ followed by the trapset identifier,
e.g. for an edge e labelled with the trap TS[i],
the broadcast channel label ch_TS! is added to
the edge e” (an example is shown in Fig. 13
a)).

2) Each non-trapset formula automaton will be
extended with a wrapping construct shown in
Fig. 13 b). The wrapper has one or two,
channel labels, depending if the sub-formula
operation is unary or binary, to synchronize its
state transition with those of its child
expression(s). We call them downwards
channels denoted by Activate_subOP1,
Activate_subOP2 and used to activate the
recognizing mode in the first and second sub-
formula automata. Similarly, two broadcast
channels are introduced to synchronize the
state transition of sub-formula automata with
their upper operation automaton. We call
them upwards channels, denoted by
Activate_OPi and Done OPi in Fig. 13 b). The
root node is an exception because it has
upwards channel only with the test Stopwatch
automaton (the Stopwatch automaton will be
explained in Section 8). If the sub-formulas of
given property automaton are mapped to
trapset expressions then the back edge
EndIdle to the initial state is labelled also
with trapset reset function with TS being the
argument trapset identifier. The TDLTP
operator automata extensions with wrapper
constructs for implementing their composition
in test supervisor model MSVR are shown in
Fig. 14.

a)

b)

Figure 13 – a) Extending the trap labelled edges with

synchronization conditions for composing the test
supervisor; b) the wrapper pattern for composing

operation recognizing automata

Evelin Halling, Jüri Vain, Artem Boyarchuk, Oleg Illiashenko / International Journal of Computing, 18(4) 2019, 408-421

 417

a)

↓

b)

↓

c)

↓

d)

↓

e)

↓

f)

↓

Figure 14 – Extending sub-formula automata
templates with wrapping for test Supervisor

composition a) And; b) Or; c) Leads to; d) Timed
leads to with condition cl≤d; e) Timed leads to with

condition cl>d; f) Conditional repetition

Note that the TDLTP sub-formula meta symbols P
and Q in the original templates are replaced with
channels which signal when the sub-formulas
interpretation automata reach their local End
locations.

8. ENCODING THE TEST VERDICT AND
TEST DIAGNOSTICS IN THE TESTER

MODEL

The test verdict is yielded by the test StopWatch
automaton either when the automaton reaches its end
state End within time bound TO. Otherwise, the
timeout event Swatch==TO triggers the transition to
the terminal location Failed. Specifically, Passed in
the StopWatch automaton is reached simultaneously
with executing the test purpose formula TP
automaton transition to its End location. For
example, in Fig. 15, the automaton that implements
root formula P, synchronizes its transition to the
location End with StopWatch transition to the
location Passed via upwards channel Done_P.

Figure 15 – Test Stopwatch automaton.

Another extension to the supervisor model is the
capability of recording the test diagnostic
information. For that each sub-formula of the test
purpose specification formula TP is indexed
according to its position in the parsing tree of TP. A
diagnostic array D of type Boolean and of the size
equal to the number of sub-formulas in TP is
defined in the model. The initial valuation of D sets
all its elements to false. Whenever a model fragment
that corresponds to a sub-formula reaches its end
state (that is sub-formula satisfaction state), the
element in D that corresponds to that sub-formula is
set to true. It means that if the test passes, all
elements of D are updated to true. Otherwise, in case

Evelin Halling, Jüri Vain, Artem Boyarchuk, Oleg Illiashenko / International Journal of Computing, 18(4) 2019, 408-421

 418

the test fails, those elements of D remain false which
correspond to the sub-formula automata which
conditions were not satisfied or reached by the test
model run. The updates D[i]:= true of array D
elements, where i is the index of the sup-formula
automaton Mop

i, are shown on the edges that enter
their End locations. The expression automata Mop

i
and their mapping to composition wrapping are
shown in Fig. 14.

The test model construction steps can be
summarized now as follows:

1. the test purpose is specified as a TDLTP
expression TP;

2. trapsets TS1,…, TSn are extracted from TP and
the ground level TCIs are labelled with
elements of non-intersecting trapsets;

3. the parse tree of the TDLTP expression TP is
analysed and each of its sub-formula operator
opi is mapped using the mappings M1 to M10 to
the automaton template Mop

i that corresponds to
the sub-formula operation;

4. the labelling of MSUT with traps is simplified by
applying rules in Section 4.6, and MSUT linked
with sub-formula automata Mop

i via wrapping
construct that provides channels for signalling
about reaching the state, where sub-formula are
satisfied;

5. finally, the extension for collecting diagnostics
is added to automata Mop

i and the root formula
automaton is composed with Stopwatch
automaton MSW which decides on the test pass
or fail.

The total test model is synchronous parallel
composition of component models MSUT|| MSW ||i

Mop
i.

9. CASE STUDY

To demonstrate the usability of TDLTP the
TTU100 satellite testing case study has been chosen.
The objective of the TTU100 project is to build a
space system consisting of a 1U (10 cm x 10 cm x
10 cm) nanosatellite and a ground station, where
mission planning and mission control software for
scientific experiments is installed. The TTU100
system consists of a Ground Segment and a Space
Segment. The Ground Segment communicates,
stores and processes data aquired from satellite. The
Space Segment is nanosatellite on Earth’s Sun
Synchronous Orbit (650km altitude). The satellite
onboard system consists of smart electrical power
supply (EPS), attitude determination and control
system (ADCS), on-board computer (OBC),
communication system (UHF band, Ku-band) and
camera and optics payload.

For TDLTP usability demonstration smart EPS
subsystem is selected as a SUT. The test purpose is

specified for a test case which demonstrates the
TDLTP capability to express combinations of
multiple coverage criteria in a single test case. From
TDLTP expressions the test models are constructed
and the test sequences generated using Uppaal
model checker. The section is concluding with
comparison of the tests generated with the methods
presented in the paper and with those available using
ordinary TCTL model checking.

9.1 SYSTEM UNDER TEST MODELLING

EPS receives commands from other system
components to change its operation mode and
respond with its status information. In the
integration level test model we abstract from the
concrete content of the commands and responses and
describe its interface behavior in response to input
commands.

EPS is sampling its input periodically with period
20 time units. EPS wakeup time when detecting a
new input command can vary within interval [15,
20] time units after previous sampling. After wakeup
it is ready to receive incoming commands. Due to
internal maintenance procedures of EPS some of the
commands when sent during self-maintenance can
be ignored, and need to be repeated later. The
command processing after its successful receive
takes at most 20 time units. Thereafter, the validity
of the command is checked using CRC error-
detecting code. If the error is detected the error
report will be sent back to EPS output port in
o_response message. If the received command data
is correct, the command is processed and its results
returned in the outgoing o_message. Since EPS
internal processing time is negligible compared to
that of input sampling period and wakeup time, all
the other locations except start and
commandCreated are modelled as committed
locations. The model MSUT of the EPS is depicted in
Fig. 16.

Figure 16 – The model MSUT of the Electrical Power
Supply subsystem.

9.2 TEST PURPOSE SPECIFICATION

The goal of test case is to show that after invalid
command has been received the valid command can
be received correctly and responded with
acknowledgement. We specify the test purpose in
TDLTP as formula

Evelin Halling, Jüri Vain, Artem Boyarchuk, Oleg Illiashenko / International Journal of Computing, 18(4) 2019, 408-421

 419

�(��2; ��4) ∼> �(��2; ��3), (25)

which expresses that all transition pairs labelled with
traps of TS2 and TS4 must lead to some pair of
transitions labelled with traps of trapsets TS2 and
TS3.

9.3 LABELLING OF MSUT

The labelling of MSUT starts from the ground
level trapsets TS2, TS3 and TS4 of the formula (25).
These traps guide branching conditions to be
satisfied in the test scenario. The labelling is shown
in Fig. 16.

Second level labelling results in applying trapset
operation next ‘;’ for pairs TS2;TS3 and TS2;TS4
which presumes introducing auxiliary variables fl23
and fl24 to identify occurrence of traps of TS3 and
TS4 right after traps of TS2. Since TS2;TS3 and
TS2;TS4 are arguments of the upper ‘forall’ and
‘exists’ formula their occurrence should be signaled
respectively to ‘forall’ and ‘exists’ automata. For
this purpose additional committed locations and
edges with upwards channels ch_TS23 and ch_TS24
are introduced in Fig. 17.

Figure 17 – Marking TS2;TS3 and TS2;TS4 trapsets

9.3 TEST MODEL CONSTRUCTION

When moving upwards in the parse tree of
formula (25) the next operators that have TS2;TS4
and TS2;TS3 in arguments are forall A(TS2;TS4) and
exists E(TS2;TS3) which automata are depicted in
Fig. 18.

Figure 18 – a) automation that recognizes

A(TS2;TS4); b) automation that recognizes
E(TS2;TS3) respectively

The root operator in the formula (25) is ‘leads to’
the arguments of which are A(TS2;TS4) and
E(TS2;TS3). The automaton that recognizes

A(TS2;TS4) ∼> E(TS2;TS3) is depicted in Fig. 19.
The full test model for generating test sequences

of test scenario A(TS2;TS4) ∼> E(TS2;TS3) is
composed of automations shown in Fig. 17, Fig. 18,
Fig.19 and Fig. 20.

Figure 19 – Recognizing automaton of

A(TS2;TS4) ∼> E(TS2;TS3)

Figure 20 – Automaton for Environment and
StopWatch of Test model for implementing test

scenario A(TS2;TS4) ∼> E(TS2;TS3)

9.4 GENERATING TEST SEQUENCES

The test sequences of the SUT model MSUT
shown in Fig. 16 and of the scenario A(TS2;TS4) ∼>
E(TS2;TS3) are generated by running the model
checking query E<> StopWatch.Pass. There are
three options of selecting the trace for test - shortest,
fastest, or some. The trace generated with model
checking option shortest is shown in the Fig.21.

Evelin Halling, Jüri Vain, Artem Boyarchuk, Oleg Illiashenko / International Journal of Computing, 18(4) 2019, 408-421

 420

Figure 21 – Test Case test sequence

The lenght of the trace generated by using TDLTP

is 22 transitions and the average lenght generated
using ordinary TCTL model checking is 50
transitions.

9. CONCLUSION

In this paper high level test purpose specification
language TDLTP, its syntax and semantics have been
defined for model-based testing of time critical
systems. Based on the semantics proposed in this
work a mapping from TDLTP to Uppaal TA
formalism has been defined. The mapping is used
for automatic construction of test models that are
composition of a SUT model and the tester model
derived from the test purpose specification in
TDLTP. Practical side effect of this is the diagnosis
capability enabling tracing back the specification
sub-formulae which violation by SUT behavior
causes test fail. The application of TDLTP based test
generation approach on the TTU100 satellite power
supply system case study confirmed our
expectations that complex multi-purpose test goals
can be specified in compact and comprehensible
way saving from time consuming and error prone
manual test scripting. Future study is needed to
evaluate the capability of TDLTP to specify and
provide efficient online interpretation algorithms of
non-linear dynamics phenomena such as bifurcation
and chaotic behavior of complex systems.

ACKNOWLEDGEMENT

This research was partially supported by the
Estonian Ministry of Education and Research
institutional research grant no IUT33-13.

10. REFERENCES

[1] Object Management Group (OMG): CCDL
whitepaper, Razorcat Technical Report,
January 2014. [Online]. Available:
http://www.razorcat.eu/PDF/Razorcat_Technic
al_Report_CCDL_Whitepaper_02.pdf.

[2] Robot Framework. [Online]. Available at:
https://robotframework.org.

[3] T. Pajunen, T. Takala, and M. Katara, “Model-
based testing with a general purpose keyword-
driven test automation framework,”
Proceedings of the 4th IEEE Int. Conf. on
Software Testing, Verification and Validation,
ICST 2012, 2011, pp. 242–251.

[4] A. Guduvan, H. Waeselynck, V. Wiels, G.
Durrieu, Y. Fusero, and M. Schieber, “A meta-
model for tests of avionics embedded systems,”
Proceedings of the 1st Int. Conf. on Model-
Driven Engineering and Software Development
MODELSWARD 2013, SciTePress, 2013, pp.
5–13.

[5] J. Grossmann and W. Müller, “A formal
behavioral semantics for testml,” Proceedings
of the 2nd Int. Symposium on Leveraging
Applications of Formal Methods, Verification
and Validation, ISoLA’2006, 2006, pp. 441–
448.

[6] ISO: Road Vehicles – Open Test Sequence
Exchange Format, Part 3: Standard Extensions
and Requirements, International ISO Multipart
Standard No. 13209-3, 2017.

[7] ISO/IEC: Information Technology – Open
Systems Interconnection – Conformance
Testing Methodology and Framework, Part 1:
General Concepts, International ISO/IEC
Multipart Standard No. 9646, 1994/S1998.

[8] ITU Recommendation Z.120: Message
Sequence Chart (MSC), 02/11. [Online]
Available at: http:// www.itu.int/rec/T-REC-
Z.120-201102-I/en.

[9] ITU Recommendation Z.120: Annex B: Formal
Semantics of Message Sequence Chart (MSC),
04/98. [Online] Available at:
http://www.itu.int/rec/T-REC-Z.120-199804I!
AnnB/en.

[10] ETSI: TDL. [Online] Available at: http://
www.etsi.org/deliver/etsi_tr/103100_103199/1
03119/01.01.01_60/tr_103119v010101p.pdf.

[11] F. Bouquet, C. Grandpierre, B. Legeard,
F. Peureux, N. Vacelet, and M. Utting, “A
subset of precise UML for model-based
testing,” Proceedings of the 3rd ACM WS on
Advances in Model Based Testing, A-MOST
2007, co-located with the ISSTA 2007, 2007,
pp. 95–104.

[12] P. Makedonski et al., “Test descriptions with
ETSI TDL,” Software Quality Journal, vol. 27,
issue 2, pp. 885-917, June 2019. DOI:
https://doi.org/10.1007/s11219-018-9423-9.

[13] ETSI ES 202 553: Methods for testing and
specification (mts), TPLan: A notation for
expressing Test Purposes, v1.2.1. ETSI,
Sophia-Antipolis, France, June 2009.

Evelin Halling, Jüri Vain, Artem Boyarchuk, Oleg Illiashenko / International Journal of Computing, 18(4) 2019, 408-421

 421

[14] A. David, K. G. Larsen, S. Li, and B. Nielsen,
“A game-theoretic approach to real-time
system testing,” Proceedings of the ACM
International Conference on Design,
Automation and Test in Europe DATE’2008,
2008, pp. 486–491.

[15] A. David, K. G. Larsen, A. Legay, M.
Mikucionis, and D. B. Poulsen, “Uppaal SMC
tutorial,” STTT, vol 17, no 4, pp. 397–415,
2015.

[16] J. Bengtsson, W. Yi, “Timed automata:
Semantics, algorithms and tools,” in: Desel, J.,
Reisig, W., Rozenberg, G. (eds.) Lectures on
Concurrency and Petri Nets: Advances in Petri
Nets, Lecture Notes in Computer Science,
Springer, Heidelberg, 2004, vol. 3098, pp. 87–
124.

[17] A. Hessel, K. G. Larsen, M. Mikucionis, B.
Nielsen, P. Pettersson, A. Skou, “Testing real-
time systems using UPPAAL,” in: R. Hierons,
J. Bowen, M. Harman (Eds.) Lecture Notes in
Computer Science, Springer, Heidelberg
(2008), vol. 4949, pp. 77-117.

[18] G. Behrmann, A. David, K. G. Larsen, “A
tutorial on UPPAAL,” in: Bernardo, M.,
Corradini, F. (eds.) Formal Methods for the
Design of Real-Time Systems. Lecture Notes in
Computer Science, Springer, Heidelberg, 2004,
vol. 3185, pp. 200-236.

[19] J. Vain, M. Kääramees, M. Markvardt, “Online
testing of nondeterministic systems with
reactive planning tester,” in: Petre, L., Sere, K.,
Troubitsyna, E. (eds.) Dependability and
Computer Engineering: Concepts for Software-
Intensive Systems, IGI Global, Hershey, 2012,
pp. 113-150.

[20] C. Arilo, D. Neto, R. Subramanyan, M. Vieira,
and G. H. Travassos, “A survey on model-
based testing approaches: a systematic review,”
Proceedings of the 1st ACM International
Workshop on Empirical Assessment of Software
Engineering Languages and Technologies held
in conjunction with the 22nd IEEE/ACM
International Conference on Automated
Software Engineering ASE’2007
(WEASELTech’07), 2007, pp. 31-36.
http://dx.doi.org/10.1145/1353673.1353681

[21] C. Baier and J.-P. Katoen, Principles of Model
Checking, MIT Press, 2008.

[22] Yu. Kolokolov and A. Monovskaya, “A
practice-oriented bifurcation analysis for pulse
energy converters, Part 4: Emergency
forecasting,” int. journal of bifurcation and
chaos, vol. 28, no. 12, article 1850152, 2018.

MSc. Evelin Halling, has
received MSc degree in
Computer Science from Tallinn
University of Technology in
2011. Currently, PhD student at
the Dep. of Software Science,
Tallinn University of Technology.

Her research interests
include formal methods, soft-
ware testing, model-based tes-

ting, robotics and machine learning.

Dr. Jüri Vain, graduated in
System Engineering from
Tallinn Polytechnic Institute,
Estonia in 1979. He received
his PhD in Computer Science
from the Estonian Academy of
Sciences in 1987. Currently, he
is Prof. of Computer Science at
the Dep. of Software Science,
Tallinn University of Techno-

logy. His research interests include formal methods,
model-based testing, cyber physical systems,
human computer interaction, autonomous robotics,
and artificial intelligence.

Dr. Artem Boyarchuk is an
Associate Professor at the
Computer Systems, Networks
and Cybersecurity Department
of the National aerospace
university n. a. N. E. Zhukovsky
“Kharkiv Aerospace Institute”.
He has received M.S. degree

in Computer Engineering from the “Kharkiv Aviation
Institute” in 2005 and defended a PhD in 2012. His
expertise is in models and methods for availability
assessment of service-oriented infrastructures for
business-critical applications.

Dr. Oleg Illiashenko is a senior
lecturer at the Computer
Systems, Networks and Cyber-
security Department of the
National aerospace university n.
a. N. E. Zhukovsky “Kharkiv
Aerospace Institute”. He has
received M.S. degree in Com-

puter Engineering from the Kharkiv Aviation Institute
in 2012 and Sp.Ed. in Information and
communication systems security from the Kharkiv
National University of Radio Electronics, Ukraine in
2014 and defended a PhD in 2018. His expertise is
in models, methods and instrumentation tools for
information security and cyber security assessment,
evaluation and assurance of cyber security of
software and hardware, dependability and resilience
of embedded, web, cloud and IoT systems.

