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Abstract: In mission critical systems a single failure might cause catastrophic 
consequences. This sets high expectations to timely detection of design faults 
and runtime failures. By traditional software testing methods the detection of 
deeply nested faults that occur sporadically is almost impossible. The discovery 
of such bugs can be facilitated by generating well-targeted test cases where the 
test scenario is explicitly specified. On the other hand, the excess of 
implementation details in manually crafted test scripts makes it hard to 
understand and to interpret the test results. This paper defines high-level test 
scenario specification language TDLTP for specifying complex test scenarios that 
are relevant for model-based testing of mission critical systems. The syntax and 
semantics of TDLTP operators are defined and the transformation rules that map 
its declarative expressions to executable Uppaal Timed Automata test models are 
specified. The scalability of the method is demonstrated on the TUT100 satellite 
software integration testing case study. 
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1. INTRODUCTION 

In model-based testing (MBT), the requirements 
model of System Under Test (SUT) describes the 
expected correct behavior of the system under 
possible inputs from its environment. The model, 
represented in a suitable machine interpretable 
formalism, can be used to automatically generate the 
test cases either offline or online, and be used as the 
oracle that checks if the SUT behavior conforms to 
this model. Offline test generation means that tests 
are generated before test execution and executed 
when needed. In online test generation the model is 
executed in lock step with the SUT. The test model 
communicates with SUT via controllable inputs and 
observable outputs of the SUT. 

Test description in MBT typically relies on two 
formal representations, SUT modelling language and 
the test purpose specification language. An extensive 
survey on modelling formalisms used in MBT can 
be found in [20]. 

The requirements to the test purpose specification 
languages for MBT can be summarized as 

following: 
1. intuitive and user-friendly specification 

process; 
2. expressiveness to capture the features and 

behaviours under test in a compact and 
unambiguous form; 

3. formal semantics to make the test purpose 
specifications verifiable and pertinent for 
automated test generation; 

4. decidability to make the test generation from 
test purpose specification algorithmically 
feasible. 

The first two criteria have been capitalized in 
earlier attempts of designing test purpose 
specification languages. Check Case Definition 
Language (CCDL) [1] provides a high-level 
approach for requirements-based black-box system 
level testing. Test simulations and expected results 
specified in human readable form in CCDL can be 
compiled into executable test scripts. However, due 
to the lack of standardization, high-level tests in 
CCDL are heavily tool-dependent and can be used 
only in tool specific testing processes. 
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High-level keyword-based test languages, such as 
the Robot Framework [2], have also been integrated 
with MBT [3]. In domains such as avionics [4] and 
automotive industry the efforts have been made to 
address the standardization of testing methods and 
languages, e.g. creating a meta-model for testing 
avionics systems [4], and the Automotive TestML 
[5]. Similarly, the Open Test Sequence Exchange 
Format (OTX) [6] standardized by ISO provides 
tool-independent XML-based data exchange format 
[7] for description and documentation of executable 
test sequences. These efforts have focused primarily 
on enabling the exchange of test specifications 
between involved stakeholders and tools. Due to 
their domain and purpose specialization the 
applicability of these languages in other domains is 
limited. 

The Message Sequence Chart (MSC) [8] 
standardized by International Telecommunication 
Union was one of the first scenario specification 
languages though it was not only focusing on 
testing. The semantics of MSC is specified in [9]. 
Some of the features of MSC are adopted in UML, 
e.g. in Sequence Diagrams. Still, loose semantics 
limits its use as a consistent test description 
language [10]. 

Precise UML [11] introduces a subset of UML 
and OCL for MBT. The attempt to unify the 
semantics of different diagrams was motivated by 
the need for behavioral specifications of SUT which 
are well suited for generating test cases out of SUT 
models. 

Concrete test scripting languages, such as TTCN-
3, regardless their strict semantics are not well suited 
for high-level description of test scenarios. They 
rather follow the style of syntax typical to 
imperative programming languages [12]. 

Thus, most of the test purpose specification 
languages referred above suffer from some of the 
disadvantages, either they have imprecise or 
informal semantics, lack of standardization, lack of 
comprehensive tool support, or poor interoperability 
with other development and testing tools. 

European Telecommunications Standards 
Institute (ETSI) intended to address these 
shortcomings and developed a new specification 
language standard by introducing Test Purpose 
Language (TPLan) that supports the high-level 
expression of test purposes in prose [13]. Though 
TPLan provides notation for the standardized 
specification of test purposes, it leaves a gap 
between the declarative test purpose and its 
imperative implementation in test. Without formal 
semantics the development of test descriptions by 
means of different notations and dialects led to 
overhead and inconsistencies that need to be 
checked and fixed manually. As a consequence, 

ETSI started a new initiative by developing the Test 
Description Language TDL [12]. It is intended to 
bridge the gap between declarative test purposes and 
imperative test cases by offering a standardized 
approach for the specification of test descriptions. 
The main benefits of ETSI TDL outlined in [12] are 
higher quality tests through better design, easier 
layout to review by non-testing experts, better and 
faster test development, and seamless integration of 
methodology and tools. 

The development of ETSI TDL was driven by 
industry where it is used primarily, but not 
exclusively, for functional testing. To enable the 
application of TDL in UML based working 
environments, a UML Profile for TDL (UP4TDL) 
[10] was developed. Domain-specific concepts are 
represented in UP4TDL by means of stereotypes.   

Though TDL features one of the most advanced 
test purpose description language it has room for 
improvements. In the first place, automatic mapping 
of ETSI TDL to TTCN-3 is not fully implemented 
yet. The mapping is needed for generating 
executable tests from TDL descriptions and re-using 
the existing TTCN-3 tools and frameworks for test 
execution. 

Second limitation of TDL is restricted timing 
semantics. The Time package in TDL contains 
concepts for the specification of time operations, 
time constraints, and timers. Since time in TDL is 
global and progresses monotonically in discrete 
quantities there is no way of expressing 
synchronization conditions between local time 
events of parallel processes and detecting possible 
Zeno computations that can be analyzed in 
continuous time models. Similarly, timelock-
freedom and bifurcation analysis [22] cannot be 
performed in this setting. 

One step further towards automatic test 
generation was timed games based synthesis of test 
strategies introduced in [14] and implemented in the 
Uppaal Tiga tool. Timed Computation Tree Logic 
(TCTL) used for specifying test purpose in this 
approach has high expressive power and formal 
semantics relevant for expressing quantitative time 
properties combined with CTL operators such as 
‘always’, ‘inevitable’, ‘potentially always’, 
‘possible’, and ‘leads-to’ [15]. 

Due to the complexity of model checking [21], 
the TCTL syntax in Uppaal tool is limited with un-
nested operators making the TCTL expressions flat 
with respect to the temporal operators. On the other 
hand, to specify the properties of timed reachability 
the flat TCTL expressions are not sufficient for 
specifying complex properties and so called 
auxiliary property recognizing automata, e.g. 
‘stopwatch’ automata are needed. Modifying the test 
model structure by adding property automata is not 
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trivial for non-experts and may be an error prone 
process leading to the unintended changes of 
semantics of tests. 

The aim of this work is to build an extra language 
layer (Test Scenario Definition Language - TDLTP) 
for test scenario specification that is expressive, free 
from the limitations of ‘flat’ TCTL, interpretable in 
Uppaal TA, and suited for test generation. 

 In our approach, Uppaal Timed Automata (TA) 
[16] serve as a SUT specification language. Uppaal 
TA have been chosen because they are designed to 
express the timed behavior of state transition 
systems and there exists a mature set of tools that 
supports model construction, verification and online 
model-based testing [17].  

For the test purpose specification to be concise 
and still expressive its specification language must 
be more abstract than SUT modeling language and 
not necessarily self-contained in the sense that its 
expressions are interpreted in the context of SUT 
model only. It means that the terms of test purpose 
specification refer to the SUT model structural 
elements of interest, they are called test coverage 
items (TCIs). The test purpose specification 
language TDLTP proposed in our approach allows 
expressing multiple coverage criteria in terms of 
TCIs, including test scenario constraints such as 
iteration, next, leads to, and structural coverage 
criteria such as selected states, selected transitions, 
transition pairs, and timing constraints, e.g. time 
bounded leads to. 

Generating the test model based on the SUT 
model and TDLTP coverage expression includes two 
phases. 

In the first phase, the TCIs have to be labelled in 
the SUT model with Boolean variables called traps. 
The traps are needed to make TCIs referable in the 
TDLTP expressions. In case of non-deterministic 
SUT model the coverage of those elementary TCIs 
is ensured by reactive planning tester (RPT) 
automata, one automaton for each conjunctive set of 
TCIs (see [19] for further details of RPT generation).  

In the second phase of generation, a test 
supervisor model MSVR is constructed from the 
TDLTP expression to trigger the RPT automata 
according to the test scenario so that the temporal 
and logical coverage constraints stated in TDLTP 
specification would be satisfied. Since non-
deterministic SUT models based tests are partially 
controllable only pseudo optimal traces can be 
generated by this method.  

Alternatively, in case of deterministic SUT 
models, the RPT automata generation phase can be 
discarded since Uppaal model checker generates 
optimal witness traces from the parallel composition 
of SUT and tester models.  

The rest of this paper is organized as follows. In 
Section 2 Uppaal Timed Automata formalism is 
introduced, Sections 3 and 4 define the TDLTP 
language syntax and semantics respectively, Section 
5 defines the map from TDLTP to Uppaal TA that 
controls if the test scenario execution satisfies its 
declarative expression. In Section 6 the reduction 
rules of TDLTP expressions are presented. Section 7 
describes how the whole test model is composed by 
introducing test supervisor automaton. Section 8 
explains how the test verdict and test diagnosis 
capability are encoded in the tester model, and 
finally the conclusions are drawn. 
 
2. UPPAAL TIMED AUTOMATA 

Uppaal Timed Automata [16] (TA) used for 
modelling SUT is defined as a closed network of 
extended timed automata that are called processes. 
The processes are gathered into a single system by 
parallel composition known from the process 
algebra CCS. An example of a system comprising 
two automata is given in Fig. 1. 

The nodes of the automata are called locations 
and the directed edges transitions. The state of an 
automaton consists of its current location and 
assignments to all variables, including clocks. The 
initial locations of the automata are graphically 
denoted by double circle inside the location. 

 
Process_i:         

                         
 

Process_j: 

Figure 1 – A sample model: synchronous composition 
of two Uppaal automata Process_i and Process_j 

Synchronous communication between the 
processes is by hand-shake synchronization links 
that are called channels. A channel relates a pair of 
edges labeled with symbols for input actions denoted 
by e.g. chA? and chB? in Fig. 1, and output actions 
denoted by chA! and chB!, where chA and chB are 
the names of the channels. 

In Fig. 1, there is an example of a model that 
represents a synchronous remote procedure call. The 
calling process Process_i and the callee process 
Process_j both include three locations and two 
synchronized transitions. Process_i, initially at 
location Start_i, initiates the call by executing the 
send action chA! that is synchronized with the 
receive action chA? in Process_j. The location 
Operation denotes the situation where Process_j 
computes the value to output variable y. Once done, 
the control is returned to Process_i by the action 
chB!. 

The duration of executing the result is specified 
by the interval [lb, ub] where the upper bound ub is 
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given by the invariant cl<=ub of location 
Operation, and the lower bound lb by the guard 
condition cl>=lb of the transition Operation ⟶ 
Stop_j. The assignment cl=0 on the transition Start_j 
⟶ Operation ensures that the clock cl is reset when 
the control reaches the location Operation. The 
global variables x and y model the input and output 
arguments of the remote procedure call, and the 
computation itself is modelled by the function f(x) 
defined in the declarations block. 

While the synchronous communication between 
processes is modeled using channels, asynchronous 
communication between processes is modeled using 
global variables accessible to all processes. 

Formally, the Uppaal TA are defined as follows: 
Let ∑ denote a finite alphabet of actions a, b, … 

and C a finite set of real-valued variables p, q, r, 
denoting clocks. A guard is a conjunctive formula of 
atomic constraints of the form p ~ n for p ∈ C, ~ ∈
{≤, ≥, =, <, >} and n ∈ N+. We use G(C) to denote 
the set of clock guards. A timed automaton A is a 
tuple N, l0, E, I where N is a finite set of locations 
(graphically denoted by nodes), l0 ∈ N is the initial 
location, E ∈ N × G(C) × ∑ × 2C × N is the set of 
edges (an edge is denoted by an arc) and I : N ⟶ 
G(C) assigns invariants to locations (here we restrict 
to constraints in the form: p ≤ n or p < n, n ∈ N+. 

Without the loss of generality we assume that 
guard conditions are in conjunctive form with 
conjuncts including besides clock constraints also 
constraints on integer variables. Similarly to clock 
conditions, the propositions on integer variables k 
are of the form k ~ n for n ∈ N, and ~ ∈
{≤, ≥, =, <, >}. For the formal definition of Uppaal 
TA semantics we refer the reader to [18] and [16]. 
 

3. TDLTP SYNTAX 

The ground terms in TDLTP are sets (denoted TS) 
of assignments to auxiliary variables called trap 
variables or simply traps added to the SUT model 
for test purpose specification. A trap is updated by 
Boolean variable assignment that labels a TCI. In 
case of Uppaal TA, the TCIs are edges of the SUT 
model MSUT. The value of all traps is initially set to 
false. When the edge of MSUT labelled with a trap is 
visited during test execution the trap update function 
is executed and the trap value is set to true. We say 
that a trap tr is elementary trap if its update function 
is unconditional, i.e. of shape tr := true. 

Generally we assume that the trap names are 
unique, trap update functions are non-recursive and 
their arguments have definite values whenever the 
edge labelled with that trap is executed. The trap tr 
update condition, if conditional trap, is a Boolean 
expression (we call it also update constraint) the 
arguments of which range over the sets of variables 

and constants of MSUT and over the auxiliary 
constants and variables occurring in the test purpose 
specification in TDLTP, e.g. references to other traps, 
event counters and the time bounds of model clocks. 

Although we deal with finite sets of traps and 
their value domains the quantifiers are introduced in 
TDLTP for notational convenience. To refer to the 
situations where many traps have to be true or false 
at once, we group these traps to sets called trapsets 
denoted by TS and prefix them with trapset 
quantifiers - A for universal and E for existential 
quantification. A(TS) means that all traps and E(TS) 
means that at least one trap of the set TS has to be 
true. To represent a trapset in Uppaal TA syntax we 
encode them as one-dimensional trap arrays and 
refer to individual traps in the array by array index 
value, e.g. i-th trap in TS is referred to as TS[i]. 

In the following we give the syntax of TDLTP 
expressions in BNF: 
Expression ::=  

 ’(’ Expression ’)’ 
|’A’ TrapsetExpression  
| ’E’ TrapsetExpression   
| UnaryOp Expression 
| Expression BinaryOp Expression 
| Expression ~> Expression 
| Expression ~>’[’RelOpNUM’]’ 
Expression 
| ’#’ Expression RelOp NUM 

 
TrapsetExpression ::= 

’(’  TrapsetExpression’)’ 
| ’!’ ID 
|  ID ’ \’  ID 
|  ID ’ ;’  ID 

 
UnaryOp  ::=  ’not’  
BinaryOp ::=  ’&’ | ’or’ | ’=>’ |’<=>’ 
RelOp       ::=  ’<’ | ’=’ | ’>’ | ’<=’ | ’>=’ 
ID          ::=  (’TR’) NUM 
NUM        ::=  (’0’..’9’)+ 

 

4. TDLTP SEMANTICS 

To define the semantics of TDLTP we assume 
there are given: 
- an Uppaal TA model M; 

- Trapset TS which is possibly a union of 
member trapsets �� = ⋃ ������,� , where the 

cardinality of each TSi is ni; 
- �: �� ⟶ �(�), the labelling function that 

maps the traps in TS to edges in E(M), where 
E(M) denotes the set of edges of the model M. 
We assume the uniqueness of the labeling 
within a trapset, i.e. there is at most one edge 
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labelled with a trap from the given trapset but 
an edge can be labelled with many traps if each 
of them is from different trapset.  

 
4.1 ATOMIC LABELLING FUNCTION 

Atomic labelling function is non-surjective and 
injective-only mapping between TS and �(�), i.e. 
each element of TS is mapped to a unique edge in 
�(�): 

 
L: TS ⟶ E(M), s.t. e E(M):  

 TSk[i] L(e)  TSl[j] L(e)  kl. 
(1) 

 
4.2 DERIVED LABELLING OPERATIONS 
(TRAPSET OPERATIONS) 

The formulas with a trapset operation symbol and 
trapset(s) identifiers being its argument(s) are called 
TDLTP trapset formulas. 

Relative complement of trapsets (���\���). 
Only those edges labelled with traps of ��� and not 
with traps of ��� are in the relative complement 
trapset ���\���: 

 
⟦���\���⟧ iff  

∀�[0, ��], �[0, ��], ∃��(�): 
���[�] ∈ �(�) ∧ ���[�] ∉ �(�). 

 

(2) 

Absolute complement of a trapset (! ��). All 
edges that are not labelled with traps of TS are in the 
absolute complement trapset ! ��: 
 

⟦! ��⟧ iff ∀�[0, �], ∃��(�): ��[�] ∉ �(�). (3) 
 

Linked pairs of trapsets (���;  ���). Two 
trapsets ��� ��� ��� are linked via operator next 
(denoted ‘;’) if and only if there exists a pair of 
edges in M which are labelled with traps of 
��� and  ��� respectively and which are connected 
through a location so that if any of traps in  ��� is 
updated to true on the k-th transition of model M 
execution trace � then some trap of ��� is updated 
to true in the (k+1)-th transition of that trace: 
 

⟦���;  ��� ⟧  iff  ∀� ∈ [0, ��], ∃� ∈
[0, ��], �, �: ⟦���[�]⟧�� ⟹ ⟦���[�]⟧����, 

 
(4) 

where ⟦��⟧� denotes the interpretation of the trapset 
TS on the trace � and �� denotes the l-th suffix of 
the trace �, i.e. the suffix which starts from l-th 
location of �;  �� and �� denote cardinalities of 
trapsets ��� and  ��� respectively. Note that 
operator ‘;’ enables expressing one of the “classical” 
structural coverage criteria ‘selected transition 
pairs’. 

 
4.3 INTERPRETATION OF TDL 
EXPRESSIONS 

Quantifiers of trapsets. Given the definitions 1 - 
4 of trapset operations we define the semantics of 
bounded universal quantifier A and bounded 
existential quantifier E of a trapset TS as follows: 

 
        ⟦� (��)⟧ iff  ∀� ∈ [0, �]: ��[�],  (5) 

⟦� (��)⟧ iff  ∃� ∈ [0, �]: ��[�], (6)  
 

where n denotes the cardinality of the trapset TS. 
Note that quantification is defined on the trapsets 

only and not on higher level operators. 
Logic connectives. Since recursive nesting of 

TDLTP logic and temporal operators is allowed for 
better expressiveness we define the semantics of 
these higher level operators where the argument 
terms are not trapset formulas but derived from them 
using recursive nesting of logic and temporal 

operator symbols. Let SE, ��1  and ��2denote such 
argument sub-formulas, then 

 
⟦��� & ��� ⟧       iff   ⟦���⟧ ��� ⟦���⟧ (7) 
⟦��� �� ��� ⟧     iff   ⟦���⟧  ��   ⟦���⟧ (8) 

  
��� => ��� ≡ ���(���) ∨  ��� (9) 

  
��� <=> ��� ≡ (��� ⟹ ���) ∧

 (��� ⟹ ���). 
(10) 

 
Temporal operators 
Leads to’ operator ′��� ↝  ���′ in TDLTP is 

inspired by Computation Tree Logic CTL ‘always 
leads to’ operator, denoted by  ′� − −> �′ in 
Uppaal, which is equivalent to CTL formula 
��(� ⟹ �а�). Leads to expresses that after 
reaching the state which satisfies � in the 
computation all possible continuations of this 
computation reach the state in which � is satisfied. 
For clarity we substitute the meta-symbols � and � 
with non-terminals ���and ���  of TDLTP. 
 

⟦��� ~ >  ��� ⟧   iff 
 ∀�, ∃�, �, � ≤ �: ⟦���⟧�� ⟹ ⟦���⟧��, 

 
(11) 

where �� denotes the k-th suffix of the trace �, i.e. 
the suffix which starts from k-th location of �, and 
⟦��⟧�� denotes the interpretation of TS on the k-th 

suffix of trace �. 
‘Time bounded leads to’ means that TS2 must 

occur after TS1 and the time instance of TS2 

occurrence (measured relative to ��1 occurrence 
satisfies constraint ⊛ �, where  ⊛ {<, =, >, ≤, } 
and n ∈ N: 
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����~ >[⊛�]  ����   iff   
∀�, ∃�, �, � ≤ �: ⟦���⟧�� ⟹ ⟦���⟧��. 

 

(12) 

‘Conditional repetition’. Let k enumerate the 
occurrences of ⟦��⟧, then 

 
⟦#�� ⊛ � ⟧  iff ↝ ⋯ ↝  ⟦��⟧� ��� � ⊛ �,  (13) 

 
where index variable k satisfies constraint ⊛ �,  ⊛ 
{<, =, >, ≤, } and n ∈ N. 

 
The application of logic not to non-ground level 

TDLTP terms has following interpretation: 
 

 ����� (��)� ���      ∃�: ⟦��[�]⟧ = ����� (14) 

����� (��)� ���      ∀�: ⟦��[�]⟧ = ����� (15) 

��� (��� ∧ ���) ≡ ��� (���) ∨  ��� (���) (16) 
��� (��� ∨ ���) ≡ ��� (���) ∧  ��� (���) (17) 

��� (��� ⟹ ���) ≡ ���  ∧  ��� (���) (18) 
��� (��� ⟺ ���

≡ ��� (��� ⟹ ���) 
∨  ��� (��� ⟹ ���) 

(19) 

⟦���(��� ↝  ���)⟧ iff 
⟦��� (���)⟧  ��  ∀�, �, �
≤ �: ⟦���⟧�� ���  ���⟦���⟧�� 

(20) 

��� (��� ↝⊛�   ���) ≡  ������� ↝

 ���) ∨ ∀�: (��� ↝�  ��� � ⇒ (� ⇒

���(⊛ �)), 

(21) 

��� (#�� ⊛ �) ≡ ∀�: (#�� �) ⇒ (� ⇒
���(⊛ �) ), 

(22) 

 
where � denotes the time bound constraint that 
yields the negation of constraint  ⊛ �. 

 

5. MAPPING TDLTP EXPRESSIONS TO 
BEHAVIOR RECOGNIZING AUTOMATA 

When mapping the TDLTP formulae to test 
supervisor component automata we implement the 
mappings starting from ground level terms and move 
towards the root term by following the structure of 
the TDLTP formula parse tree. The terminal nodes of 
any TDLTP formula parse tree are trapset identifiers. 
The next above the terminal layer of the parse tree 
constitute the trapset operation symbols. The trapset 
operation symbols, in turn, are the arguments of 
logic and temporal operators. The ground level 
trapsets and the trapsets which are the results of 
trapset operations are mapped to the labelling of 
SUT model MSUT. In the following the mappings are 
specified for TDLTP trapset operations, logic 
operators and temporal operators in separate 
subsections. 

 

5.1 MAPPING TDLTP TRAPSET 
EXPRESSIONS TO SUT MODEL MSUT 
LABELLING 

Mapping M1: Relative complement of trapsets 
��1\��

2
: The ��1\��2 – mapping adds the traps of 

the trapset ��1\��2  only to these edges of MSUT 

which are labelled with traps of ��1 and not with 

traps of ��2. An example of such mapping is 
depicted in Fig. 2. 

 
↓L(��1\��2) 

 

Figure 2 – Mapping TDLTP expression ���\��� to 
the SUT model labelling 

 

Mapping M2: Absolute complement of a trapset 
!TS: The mapping of !TS to SUT model labelling 
provides the labelling with !TS  traps all such edges 
of SUT model MSUT which are not labelled with 
traps of TS. Example of this mapping is depicted in 
Fig. 3. 

 

 
 

↓L(! ��) 
 

 

Figure 3 – Mapping TDLTP expression  ! �� to the 
SUT model labelling 

 
Mapping M3: Linked pairs of trapsets ���; ���: 
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The mapping of terms ��1; ��2 to labelling is 
implemented by the labelling algorithm Algorithm 1 
(�(���; ���)) 
 

 
 

↓L(��1; ��2) 
 

 

 
Figure 4 – Example of the application of 

ALGORITHM 1 (�(���; ���)) 

 

The example of Algorithm 1 application is 
demonstrated in Fig. 4. Notice that the labelling 
concerns not only the edges that are labelled with 
traps of TS1 and TS2 but also those which depart 
from the same location as the edge with TS2 
labelling. This is necessary for resetting the variable 
flag which indicates the executing a trapset TS1 
labelled edge in the previous step of the 
computation. 
������  
    ��, ���, �, �: ���(���) = ����(��) ⋀ ���[�] ∈ �(��)  
    ��  ���[�] ∈ �(���)  

  ����  
���(��) ←  ���(��), ����(���; ���)

= ����,  
���(���) ←  ���(���), ��(��1; ��2)[�]
= (����(���; ���)? ����: �����), 

    �� 
    ���(���) ←  ���(���), ����(���; ���) = ����� 
��� ������ 
 

5.2 MAPPING TDLTP LOGIC OPERATORS 
TO RECOGNIZING AUTOMATA 

The indexing of trapset array elements, universal 
and existential quantifiers in Uppaal modelling 
language support direct mapping of trapset 
quantifiers to forall and exists expressions of Uppaal 
TA as shown in Fig. 5 and 6. 

 

Mapping M4: Universal quantifier of the trapset 
 

 
Figure 5 – An automaton that recognizes 

universally quantified trapset expressions 
Mapping M5: Existential quantifier of the trapset 

 

 
 

Figure 6 – The automaton that recognizes existentially 
quantified trapset expressions 

 

Negation not 
Since logic negation not can be pushed to ground 

level trapset terms by applying equivalences (14 – 
22) and the direct mappings of not formulas are not 
considered in this work. 

 

Mapping M6: Conjunction of sub-formulas 
The conjunction SE1 & SE2 is mapped to the 

automata fragment as shown in Fig. 7. In the 
conjunction and disjunction automata depicted in the 
Fig. 7 and 8 the guard conditions P and Q encode 
the argument terms SE1 and SE2 respectively. In 
conjunction automaton the End location is reachable 
from the initial location Idle if both P and Q 
evaluate to true in any order. 

 

 
 

Figure 7 – The automaton that recognizes the 
conjunction of TDLTP formulas P and Q 

 

Mapping M7: Disjunction of sub-formulas 
In the disjunction automaton the End location is 

reachable from the initial location Idle if either P 
and Q are true. 

 

 
Figure 8 – Automaton that recognizes the 

disjunction of TDLTP formulas P and Q 
 

The implication of TDLTP formulas can be 
defined using disjunction and negation as shown in 
formula (9) and their transformation to property 
automata are implemented through these mappings. 

Similarly, the equivalence of TDLTP formulas can 
be expressed via conjunction and implication by 
using equivalence in formula (10). 

 

5.3 MAPPING TDLTP TEMPORAL 
OPERATORS TO RECOGNIZING 
AUTOMATA 

Mapping M8: ‘Leads to’ � ↝q 
Mapping the leads to operator to Uppaal TA 

produces the model fragment depicted in Fig. 9. 
 

 
Figure 9 – ‘Leads to’ formula � ↝q recognizing 

automaton 
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Mapping M9: Timed leads to p ↝⊛��� � 
Mapping ‘timed leads to’ to a Uppaal TA 

fragment is depicted in Fig. 10. It presumes an 
additional clock cl which is reset to 0 at the time 
instant when formula P become true. The condition 
‘cl<=d’ in Fig. 10 a) sets the upper time bound d to 
the event when formula Q has to becomes true after 
P, i.e. after the clock cl reset.  

a) 

 
 
b) 

 
Figure 10 – ‘Timed leads to’ formula P ↝⊛� � 
recognizing automata a) with condition cl≤d;  

b) with condition cl>d 
 

The mapping to property automaton depends on 
the time condition of leads to. For instance if the 
conditions is ‘cl>d’ the mapping results in 
automaton shown in Fig. 10 b). 

Mapping M10: Conditional repetition #�� ⊛ �: 
The Uppaal TA fragment generated by the 

mapping of  #�� ⊛ � (Fig. 11) includes a counter 
variable i to enumerate the events when the SE 
formula P becomes true. If the loop exit condition, 
e.g., ‘i >=n’, is satisfied then the transition to 
location End is fired without delay (the middle 
location is of type committed). 

 
 

Figure 11 – Uppaal TA that implements 
conditional repetition 

 
6. REDUCTION OF THE SUPERVISOR 
AUTOMATA AND THE LABELLING OF 

SUT 

The TDLTP expressions with many nested 
operators may become large and involve some 
overhead.  Removal of this overhead in the formulas 
provides reduction in the state space needed for their 
model checking and improves the readability and 
comprehension of this formula.  

The simplifications are formulated in terms of the 
parse tree of the TDLTP formula and standard logic 
simplifications. Due to the nesting of operations in 
the TDLTP formula the root operation can be any 
operator listed in the BNF grammar of TDLTP but the 
terminals of the parse tree are always trapsets. 

 

a) 

 
b) 

 
c) 

 
Figure 12 – Simplification of ���\ ��� trapsets 

labelling: a) the parse tree of ���\���; b) labelling of 
the SUT model with  ���, ��� ��� ���\ ���   
c) reduced labelling of the SUT model MSUT 

 

TDLTP formulas consist of a static component (a 
trapset or a trapset expression) and optionally the 
logic and/or temporal component. The static 
component includes all sub-formulas of the parse 
tree branches from terminals to the lowest temporal 
expression, all sub-formulas above it are temporal 
and/or logic formulas (possibly mixed). 

The trapset formulas are implemented by 
labelling operations such as relative and absolute 
complement. Only trapset formulas can be 
universally and existentially quantification. No 
nesting of quantifiers is allowed. Since the validity 
of root formula can be calculated only using the 
truth value of the highest trapset expression in the 
parse tree, all the trapsets being closer to the ground 
level trapset along the parse tree sub branch can be 
removed from the labelling of the SUT model. This 
reduction can be done after labelling the SUT model 
and applying all the trapset operations. An example 
of such reduction is demonstrated for relative 
complement operation ���\��� in Fig. 12. 

Logic simplification follows after the trapset 
expression simplification is completed. Here 
standard logic simplifications are applicable: 

� ∧ � ≡ � 
� ∧ ��� � ≡ �����,  
� ∧ ����� ≡ �����, 
� ∧ ���� ≡ �, 
� ∨ � ≡ �, 
� ∨ ��� � ≡ ����, 
� ∨ ����� ≡ �, 
� ∨ ���� ≡ ����, 

(23) 
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We will introduce also a set of simplifications for 
TDLTP temporal operators which follow from their 
semantics and the properties of integer arithmetic: 

 
�� ≡ ����� �� �� = ∅  
� ↝ ����� ≡ �����  
����� ↝  � ≡ �����  
���� ↝ � ≡ �   
� ↝ ���� ≡ ����  
#� = 1 ≡ �   
#� ⊛ �� ⋀#� ⊛ ��      

≡ #� ⊛ ���(��, ��)  �� 
⊛∈ {≥, >}  

#� ⊛ �� ∨ #� ⊛ ��     
≡ #� ⊛ ���(��, ��)  �� ⊛
∈ {≥, >, =}  

#� ⊛ �� ⋀#� ⊛ �� ≡ ����� �� ⊛
∈ {=} ��� �� ≠  �� 

#� ⊛ ��  ↝  #� ⊛ ��

≡ #� ⊛ (�� + ��)      �� ⊛
∈ {≥, >, =}  

#� ⊛ ��  ↝  #� ⊛ ��

≡ #� ⊛ ���(��, ��)  �� ⊛
∈ {<}  

#� ⊛ ��  ∧ #� ⊛ ��

≡ #� ⊛ ���(��, ��)  �� ⊛
∈ {<}  

#� ⊛ ��  ∨ #� ⊛ ��    
≡ #� ⊛ ���(��, ��) �� ⊛
∈ {<}  

� ↝��
� ∧  � ↝��

� ≡

� ↝��� (��,��) �     �� ⊛∈ {≤, <}  

� ↝��
� ∧  � ↝��

�

≡ � ↝��� (��,��) �     �� ⊛

∈ {>} 
 

(24) 

7. COMPOSING THE TEST SUPERVISOR 
MODEL 

The test supervisor model MSVR is constructed as 
a parallel composition of single TDLTP property 
recognizing automata each of which is produced by 
parsing the TDLTP formula and mapping 
corresponding sub-formulae to the automaton 
template as defined in Section 5. To interrelate these 
sub-formula automata, two phases have to be 
completed: 

1) Each trap labelled transition e of MSUT (here 
we consider the traps which are left after 
labels reduction as described in Section 6) has 
to be split in two edges e’ and e” connected 
via an auxiliary committed location lc. The 
edge e’ will inherit the labelling of e while e” 
will be labelled with an auxiliary broadcast 
channel that signals the trap update 
occurrence to the upper neighbor sub-formula 

automaton. We use the channel naming 
convention, where a channel name has a 
prefix ch_ followed by the trapset identifier, 
e.g. for an edge e labelled with the trap TS[i], 
the broadcast channel label ch_TS! is added to 
the edge e” (an example is shown in Fig. 13 
a)). 

2) Each non-trapset formula automaton will be 
extended with a wrapping construct shown in 
Fig. 13 b). The wrapper has one or two, 
channel labels, depending if the sub-formula 
operation is unary or binary, to synchronize its 
state transition with those of its child 
expression(s). We call them downwards 
channels denoted by Activate_subOP1, 
Activate_subOP2 and used to activate the 
recognizing mode in the first and second sub-
formula automata. Similarly, two broadcast 
channels are introduced to synchronize the 
state transition of sub-formula automata with 
their upper operation automaton. We call 
them upwards channels, denoted by 
Activate_OPi and Done OPi in Fig. 13 b). The 
root node is an exception because it has 
upwards channel only with the test Stopwatch 
automaton (the Stopwatch automaton will be 
explained in Section 8). If the sub-formulas of 
given property automaton are mapped to 
trapset expressions then the back edge 
EndIdle to the initial state is labelled also 
with trapset reset function with TS being the 
argument trapset identifier. The TDLTP 
operator automata extensions with wrapper 
constructs for implementing their composition 
in test supervisor model MSVR are shown in 
Fig. 14. 

 
a) 

 
 

b) 

 
 
Figure 13 – a) Extending the trap labelled edges with 

synchronization conditions for composing the test 
supervisor; b) the wrapper pattern for composing 

operation recognizing automata 
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a) 

 
 
↓ 

 

 
 
b) 

 
 
↓ 
 

 
 
c) 

 
 

↓ 
 

 
d) 

 
 

↓ 
 

 
e) 

 
 
↓ 

 
 
f) 

 

 
↓ 
 

 

Figure 14 – Extending sub-formula automata 
templates with wrapping for test Supervisor 

composition a) And; b) Or; c) Leads to; d) Timed 
leads to with condition cl≤d; e) Timed leads to with 

condition cl>d;  f) Conditional repetition 

 

Note that the TDLTP sub-formula meta symbols P 
and Q in the original templates are replaced with 
channels which signal when the sub-formulas 
interpretation automata reach their local End 
locations. 
 

8. ENCODING THE TEST VERDICT AND 
TEST DIAGNOSTICS IN THE TESTER 

MODEL 

The test verdict is yielded by the test StopWatch 
automaton either when the automaton reaches its end 
state End within time bound TO. Otherwise, the 
timeout event Swatch==TO triggers the transition to 
the terminal location Failed. Specifically, Passed in 
the StopWatch automaton is reached simultaneously 
with executing the test purpose formula TP 
automaton transition to its End location. For 
example, in Fig. 15, the automaton that implements 
root formula P, synchronizes its transition to the 
location End with StopWatch transition to the 
location Passed via  upwards channel Done_P. 

 

 
Figure 15 – Test Stopwatch automaton. 

 

Another extension to the supervisor model is the 
capability of recording the test diagnostic 
information. For that each sub-formula of the test 
purpose specification formula TP is indexed 
according to its position in the parsing tree of TP. A 
diagnostic array D of type Boolean and of the size 
equal to the number of sub-formulas in TP is 
defined in the model. The initial valuation of D sets 
all its elements to false. Whenever a model fragment 
that corresponds to a sub-formula reaches its end 
state (that is sub-formula satisfaction state), the 
element in D that corresponds to that sub-formula is 
set to true. It means that if the test passes, all 
elements of D are updated to true. Otherwise, in case 
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the test fails, those elements of D remain false which 
correspond to the sub-formula automata which 
conditions were not satisfied or reached by the test 
model run. The updates D[i]:= true of array D 
elements, where i is the index of the sup-formula 
automaton Mop

i, are shown on the edges that enter 
their End locations. The expression automata Mop

i 
and their mapping to composition wrapping are 
shown in Fig. 14. 

The test model construction steps can be 
summarized now as follows: 

1. the test purpose is specified as a TDLTP 
expression TP; 

2. trapsets TS1,…, TSn are extracted from TP and 
the ground level TCIs are labelled with 
elements of non-intersecting trapsets; 

3. the parse tree of the TDLTP expression TP is 
analysed and each of its sub-formula operator 
opi is mapped using the mappings M1 to M10 to 
the automaton template Mop

i that corresponds to 
the sub-formula operation; 

4. the labelling of MSUT with traps is simplified by 
applying rules in Section 4.6, and MSUT linked 
with sub-formula automata Mop

i via wrapping 
construct that provides channels for signalling 
about reaching the state, where sub-formula are 
satisfied; 

5. finally, the extension for collecting diagnostics 
is added to automata Mop

i and the root formula 
automaton is composed with Stopwatch 
automaton MSW which decides on the test pass 
or fail. 

The total test model is synchronous parallel 
composition of component models MSUT|| MSW ||i 

Mop
i. 

 

9. CASE STUDY 

To demonstrate the usability of TDLTP the 
TTU100 satellite testing case study has been chosen. 
The objective of the TTU100 project is to build a 
space system consisting of a 1U (10 cm x 10 cm x 
10 cm) nanosatellite and a ground station, where 
mission planning and mission control software for 
scientific experiments is installed. The TTU100 
system consists of a Ground Segment and a Space 
Segment. The Ground Segment communicates, 
stores and processes data aquired from satellite. The 
Space Segment is nanosatellite on Earth’s Sun 
Synchronous Orbit (650km altitude). The satellite 
onboard system consists of smart electrical power 
supply (EPS), attitude determination and control 
system (ADCS), on-board computer (OBC), 
communication system (UHF band, Ku-band) and 
camera and optics payload. 

For TDLTP usability demonstration smart EPS 
subsystem is selected as a SUT. The test purpose is 

specified for a test case which demonstrates the 
TDLTP capability to express combinations of 
multiple coverage criteria in a single test case. From 
TDLTP expressions the test models are constructed 
and the test sequences generated using Uppaal 
model checker. The section is concluding with 
comparison of the tests generated with the methods 
presented in the paper and with those available using 
ordinary TCTL model checking. 
 

9.1 SYSTEM UNDER TEST MODELLING 

EPS receives commands from other system 
components to change its operation mode and 
respond with its status information. In the 
integration level test model we abstract from the 
concrete content of the commands and responses and 
describe its interface behavior in response to input 
commands.  

EPS is sampling its input periodically with period 
20 time units. EPS wakeup time when detecting a 
new input command can vary within interval [15, 
20] time units after previous sampling. After wakeup 
it is ready to receive incoming commands. Due to 
internal maintenance procedures of EPS some of the 
commands when sent during self-maintenance can 
be ignored, and need to be repeated later. The 
command processing after its successful receive 
takes at most 20 time units. Thereafter, the validity 
of the command is checked using CRC error-
detecting code. If the error is detected the error 
report will be sent back to EPS output port in 
o_response message. If the received command data 
is correct, the command is processed and its results 
returned in the outgoing o_message. Since EPS 
internal processing time is negligible compared to 
that of input sampling period and wakeup time, all 
the other locations except start and 
commandCreated are modelled as committed 
locations. The model MSUT of the EPS is depicted in 
Fig. 16. 

 

 
 

Figure 16 – The model MSUT of the Electrical Power 
Supply subsystem. 

 

9.2 TEST PURPOSE SPECIFICATION 

The goal of test case is to show that after invalid 
command has been received the valid command can 
be received correctly and responded with 
acknowledgement. We specify the test purpose in 
TDLTP as formula 
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�(��2; ��4)  ∼>  �(��2; ��3), (25) 
 

which expresses that all transition pairs labelled with 
traps of TS2 and TS4 must lead to some pair of 
transitions labelled with traps of trapsets TS2 and 
TS3. 
 

9.3 LABELLING OF MSUT 

The labelling of MSUT starts from the ground 
level trapsets TS2, TS3 and TS4 of the formula (25). 
These traps guide branching conditions to be 
satisfied in the test scenario. The labelling is shown 
in Fig. 16.  

Second level labelling results in applying trapset 
operation next ‘;’ for pairs TS2;TS3 and TS2;TS4 
which presumes introducing auxiliary variables fl23 
and fl24 to identify occurrence of traps of TS3 and 
TS4 right after traps of TS2. Since TS2;TS3 and 
TS2;TS4 are arguments of the upper ‘forall’ and 
‘exists’ formula their occurrence should be signaled 
respectively to ‘forall’ and ‘exists’ automata. For 
this purpose additional committed locations and 
edges with upwards channels ch_TS23 and ch_TS24 
are introduced in Fig. 17. 

 
 

Figure 17 – Marking TS2;TS3 and TS2;TS4 trapsets 
 

9.3 TEST MODEL CONSTRUCTION 

When moving upwards in the parse tree of 
formula (25) the next operators that have TS2;TS4 
and TS2;TS3 in arguments are forall A(TS2;TS4) and 
exists E(TS2;TS3) which automata are depicted in 
Fig. 18.  

 

 
 

 
Figure 18 – a) automation that recognizes 

A(TS2;TS4); b) automation that recognizes 
E(TS2;TS3) respectively 

 

The root operator in the formula (25) is ‘leads to’ 
the arguments of which are A(TS2;TS4) and 
E(TS2;TS3). The automaton that recognizes 

A(TS2;TS4) ∼> E(TS2;TS3) is depicted in Fig. 19. 
The full test model for generating test sequences 

of test scenario A(TS2;TS4) ∼> E(TS2;TS3) is 
composed of automations shown in Fig. 17, Fig. 18, 
Fig.19 and Fig. 20. 

 

 
Figure 19 – Recognizing automaton of  

A(TS2;TS4) ∼> E(TS2;TS3) 
 

                 
 

Figure 20 – Automaton for Environment and  
StopWatch of Test model for implementing test 

scenario A(TS2;TS4) ∼> E(TS2;TS3) 
 

9.4 GENERATING TEST SEQUENCES 

The test sequences of the SUT model MSUT 
shown in Fig. 16 and of the scenario A(TS2;TS4) ∼> 
E(TS2;TS3) are generated by running the model 
checking query E<> StopWatch.Pass. There are 
three options of selecting the trace for test - shortest, 
fastest, or some. The trace generated with model 
checking option shortest is shown in the Fig.21. 
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Figure 21 – Test Case test sequence 

 
The lenght of the trace generated by using TDLTP 

is 22 transitions and the average lenght generated 
using ordinary TCTL model checking is 50 
transitions. 

 
9. CONCLUSION 

In this paper high level test purpose specification 
language TDLTP, its syntax and semantics have been 
defined for model-based testing of time critical 
systems. Based on the semantics proposed in this 
work a mapping from TDLTP to Uppaal TA 
formalism has been defined. The mapping is used 
for automatic construction of test models that are 
composition of a SUT model and the tester model 
derived from the test purpose specification in 
TDLTP. Practical side effect of this is the diagnosis 
capability enabling tracing back the specification 
sub-formulae which violation by SUT behavior 
causes test fail. The application of TDLTP based test 
generation approach on the TTU100 satellite power 
supply system case study confirmed our 
expectations that complex multi-purpose test goals 
can be specified in compact and comprehensible 
way saving from time consuming and error prone 
manual test scripting. Future study is needed to 
evaluate the capability of TDLTP to specify and 
provide efficient online interpretation algorithms of 
non-linear dynamics phenomena such as bifurcation 
and chaotic behavior of complex systems. 
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