
Oleh Horyachyy, Leonid Moroz, Viktor Otenko / International Journal of Computing, 18(4) 2019, 461-470

 461

SIMPLE EFFECTIVE FAST INVERSE SQUARE ROOT ALGORITHM WITH
TWO MAGIC CONSTANTS

Oleh Horyachyy, Leonid Moroz, Viktor Otenko

Lviv Polytechnic National University, 12 Bandera str., 79013 Lviv, Ukraine,

oleh.y.horiachyi@lpnu.ua, moroz_lv@lp.edu.ua, viotenko@gmail.com, http://lpnu.ua

Paper history:
Received 09 January 2019
Received in revised form 04 June 2019
Accepted 25 October 2019
Available online 31 December 2019

Keywords:
inverse square root;
FISR algorithm;
initial approximation;
magic constant;
IEEE 754 standard;
floating-point arithmetic;
FMA function;
maximum relative error;
Newton-Raphson;
Householder.

Abstract: The purpose of this paper is to introduce a modification of Fast
Inverse Square Root (FISR) approximation algorithm with reduced relative
errors. The original algorithm uses a magic constant trick with input floating-
point number to obtain a clever initial approximation and then utilizes the
classical iterative Newton-Raphson formula. It was first used in the computer
game Quake III Arena, causing widespread discussion among scientists and
programmers, and now it can be frequently found in many scientific applications,
although it has some drawbacks. The proposed algorithm has such parameters of
the modified inverse square root algorithm that minimize the relative error and
includes two magic constants in order to avoid one floating-point multiplication.
In addition, we use the fused multiply-add function and iterative methods of
higher order in the second iteration to improve the accuracy. Such algorithms do
not require storage of large tables for initial approximation and can be effectively
used on field-programmable gate arrays (FPGAs) and other platforms without
hardware support for this function.

Copyright © Research Institute for Intelligent Computer Systems, 2019.
All rights reserved.

1. INTRODUCTION

When solving many important problems in the
field of digital signal processing, computer 3D
graphics, scientific computing, etc., it is necessary to
use floating-point arithmetic [1-7] as the most
accurate and common way of representing real
numbers in computers. In particular, a common
practical task that arises when working with
floating-point numbers is the calculation of
elementary functions, including the inverse square
root:

x
y

1
 . (1)

The algorithms implementing the inverse square

root calculation are widely described in scientific
literature [1, 6, 8-14]. Most of them are iterative and
require the formation of an initial approximation.
Moreover, the more precise the initial
approximation, the fewer iterations are needed to
calculate a function with the required accuracy. As a

rule, the initial approximation is formed using a
lookup table (LUT – lookup table) [1-2]. However, a
group of iterative algorithms is also known that do
not use LUT [6, 8-15]. Here, the initial
approximation is formed using integer arithmetic in
the form of so-called magic constant, and upon
transition from integer arithmetic to floating-point
arithmetic, the resulting approximation is fed into an
iterative process using corresponding Newton-
Raphson formulae.

In this article, we consider algorithms for
calculating the inverse square root using magic
constants, which offers reduced relative errors and
applies to floating-point numbers represented in the
IEEE 754 standard format. In addition, an important
advantage of the proposed algorithms is a reduction
(by one) in the number of multiplication operations.

The best-known version of this algorithm called
Fast Inverse Square Root (FISR) [8, 15-18], which
was used in the computer game Quake III Arena [7],
is given below:

1. float InvSqrt1 (float x){

computing@computingonline.net
www.computingonline.net

Print ISSN 1727-6209
On-line ISSN 2312-5381

International Journal of Computing

Oleh Horyachyy, Leonid Moroz, Viktor Otenko / International Journal of Computing, 18(4) 2019, 461-470

 462

2. float half = 0.5f * x;
3. int i = *(int*)&x;
4. i = 0x5F3759DF - (i>>1);
5. x = *(float*)&i;
6. x = x*(1.5f - half*x*x);
7. x = x*(1.5f - half*x*x);
8. return x;
9. }

This InvSqrt1 code, written in the C/C++

language, implements a fast algorithm for inverse
square root calculation. In line 3, we represent the
bits of the input variable x (float) as the variable i
(int). Lines 4 and 5 determine the initial

approximation 0y of the inverse square root. Note

that the InvSqrt1 algorithm reuses the variable x for
this purpose. It then becomes a part of the iterative
process. Here in line 4, R = 0x5f3759df is a “magic
constant”. In line 5, we represent the bits of the
variable i (int) back into the variable x (float).
Note that henceforth in the code, the variable x acts
as a new approximation to y . Lines 6 and 7 contain

two classic successive Newton-Raphson iterations to
refine the results. If the maximum relative error of
calculations after the second iteration is denoted by

max2 , then the accuracy of this algorithm is only

max2 = 4.73∙10–6, or)(log max22  =17.69 (2)

correct bits. These results are obtained by practical
calculations on the Intel Core i7-7700HQ platform
using the method that will be discussed in more
detail in Section 3.

Compared to this algorithm, the following
algorithm with a magic constant from [12] has better
accuracy, namely 20.37 correct bits:

1. float InvSqrt2 (float x){
2. float half = 0.5f * x;
3. int i = *(int*)&x;
4. i = 0x5F376908 - (i>>1);
5. x = *(float*)&i;
6. x = x*(1.5008789f - half*x*x);
7. x = x*(1.5000006f - half*x*x);
8. return x;
9. }

It has different magic constant and two modified

Newton-Raphson iterations. The maximum relative
error of the algorithm is approximately

max2 = 7.37∙10–7, (3)

which is slightly worse than declared by the authors,
even when using the fused multiply-add (FMA)
function to increase the accuracy of calculations.

Lemaitre et al. [6] suggest using for type float
Householder’s method of order 4 with fused
operations. For initial approximation they consider
magic constant R = 0x5f375a86 [8]. Thus, their
proposed algorithm has the form:

1. float InvSqrt3 (float x){
2. int i = *(int*)&x;
3. i = 0x5F375A86 - (i>>1);
4. float y = *(float*)&i;
5. float a = x*y*y;
6. float t = fmaf(0.2734375f, a, -1.40625f);
7. t = fmaf(a, t, 2.953125f);
8. t = fmaf(a, t, -3.28125f);
9. y = y*fmaf(a, t, 2.4609375f);
10. return y;
11. }

It has maximum relative error

max1
 = 6.58∙10–7, (4)

or 20.54 (out of 24 possible) bits of accuracy.

Consequently, there is still a need to develop
algorithms of higher accuracy, also for IEEE 754
numbers of higher precision, such as double and
quadruple, without forgetting about the speed of
computations.

The remainder of this paper is organized as
follows. Section 2 further gives a theoretical
description of the aforementioned algorithms with
magic constant. In Sections 3 and 4, we elucidate the
proposed algorithms and give their implementations
in C++. Section 5 contains simulation results.
Conclusions are given in Section 6.

2. ANALYTICAL DESCRIPTION OF
KNOWN ALGORITHMS

In this section, we briefly present the main results
of [11-12] to explain how InvSqrt1, InvSqrt2, and
InvSqrt3 work. Assume that we have a positive
floating-point number

xE
xmx 2)1( , (5)

where

)1,0[xm (6)

 ))((log)(log 22 xfloorxEx  . (7)

Oleh Horyachyy, Leonid Moroz, Viktor Otenko / International Journal of Computing, 18(4) 2019, 461-470

 463

In the IEEE 754 standard, the floating-point
number x is encoded by 32, 64, or 128 bits for three
basic binary floating-point formats. In this paper, we
will mostly consider single precision (float type)
numbers (as in the above algorithms), which have 32
bits, but all considerations can also be generalized
for other data types, as it will be shown later in
Section 4. The first bit corresponds to a sign (sign
field). In our case, this bit is equal to zero. The next

eight bits correspond to a biased exponent xE

(exponent field), and the last 23 bits encode a

fractional part of the mantissa xm (mantissa field).

The integer encoded by these 32 bits, xI , is given by

mxxx NmEbiasI)( , (8)

where 232mN and 127bias for float. Line 4 of

the code InvSqrt1 or InvSqrt2 and line 3 of InvSqrt3
can be written as:

 2/
0 xy IRI  . (9)

The result of subtracting the integer  2/xI from

the magic constant R is the integer number
0yI ,

which is being represented as a float (lines 5 and 4
respectively) and gives the initial (zeroth) piecewise

linear approximation 0y of the function x/1 .

Further on, this approximation is refined (lines 6-7
and 5-9). The InvSqrt1 and InvSqrt2 algorithms use
two classical (in the case of the InvSqrt1 algorithm)

)**3(*2/1 0001 yyxyy  (10)

)**3(*2/1 1112 yyxyy  (11)

or modified (for the InvSqrt2 algorithm)

)**(*2/1 00201 yyxkyy  , (12)

)**(*2/1 11412 yyxkyy  . (13)

Newton-Raphson iterations, which provide

quadratic convergence of the iterative process. In the

last formulas, 2k and 4k are constants (see

InvSqrt2). Householder’s formula in the InvSqrt3
algorithm

00 ** yyxa  (14)

))))*((((5432101 tttttaaaayy  , (15)

has a rate of convergence equal to 5. Here in (15),
the values of the constants are as follows:

,
64

189
,

32

45
,

128

35
321  ttt

.
128

315
,

32

105
54  tt

(16)

As proven in [11-12], in order to know the

behaviour of the relative error for 0y in the whole

range of normalized floating-point numbers, it
suffices to consider the range)4,1[x . In this range,

a piecewise linear analytical approximation 0y of

the function consists of three separate parts:

txy
8

1

4

3

4

1
01  ,)2,1[x (17)

txy
8

1

2

1

8

1
02  ,),2[tx (18)

txy
16

1

2

1

16

1
03  ,)4,[tx , (19)

where

mR Nmt /242  (20)

and the fractional part of the mantissa of the magic
constant R is determined by the formula

 mmR NRNRm //  . (21)

In this case, the maximum relative error of such
piecewise linear approximations does not exceed the

value)2/(1 mN . Moreover, if we denote the magic

constant R by

mRm NmNQR  , (22)

where

 mNRQ / , (23)

then under condition 2/1Rm , the equality

190Q will be satisfied for Eq. (17)-(19). This

condition is true for the magic constants of all

considered algorithms. However, in general, Rm can

take any values from the range)1,0[Rm . We will

investigate this case in the next section.

3. DESCRIPTION OF THE PROPOSED
ALGORITHM

Consider the case when 190Q and

12/1  Rm . Then, according to the theory, the

Eq. (17)-(19) will have the form (24)-(26).

Oleh Horyachyy, Leonid Moroz, Viktor Otenko / International Journal of Computing, 18(4) 2019, 461-470

 464

txy
2

1
1

2

1
01  ,),1[tx (24)

txy
4

1
1

4

1
02  ,)2,[tx (25)

txy
4

1

4

3

8

1
03  ,)4,2[x . (26)

Here

mR Nmt /12  . (27)

In order to minimize the relative error, we must

set out the requirement to align all the maxima of the
relative error for the first iteration in

the 01y and 03y segments of the initial

approximation. For this, the first iteration will be
performed according to the formula

)(002011 yxykyky  . (28)

Note that this iteration requires four

multiplication operations. Then, taking into account
formulas (24)-(26), we write (28) in the form of
three corresponding iterative equations

)(002011 iiii yxykyky  , 3,1i . (29)

Let us try to reduce the number of multiplications

in the first iteration to three. Such algorithms with a
reduced number of floating-point multiplications
will be especially useful when implementing on
FPGA [13-14]. To do this, we set the condition

4/11 k . Then the multiplication by this value in

software or hardware implementation can be
replaced by the integer subtraction. The basic idea is
to subtract two from the exponent of a number
represented in the IEEE 754 format.

Next, we need to find the best values of the

coefficient 2k and parameter t , which will

determine the magic constant R . To do this, we
write the relative errors of the first iteration based on

the initial approximations 01y , 02y , and 03y :

1)()(25.0 00201  xsqrtyxyky iiii ,

.3,1i
(30)

Here we use the formula

1)(11  xsqrty (31)

to determine the relative error of the approximation

1y for the inverse square root function. Note also

that to calculate the maximum relative errors after
the first iteration, we use the formula

1)(max 1
)4,1[

max1 


xsqrty
x

 . (32)

Denote the corresponding upper and lower

bounds of the relative errors by

max1 and


max1 .

Errors (30) have local maxima, in particular, at
points

,3/)2(max11 tx  (33)

.3/)26(max13 tx  (34)

For the second component 02y , one should also

take into account the point t , where the relative

error 12 (as well as 11) has the negative maximum

t12 (see Fig. 1). Now substituting (33), (34), and

(27) in (30), we obtain expressions for max11 ,

max13 , and t12 . Based on them, we construct a

system of two equations:









0

0

max11max13

12max11



 t
, (35)

which will ensure the fulfillment of the above
condition and the requirement to minimize the
relative error. The solution of this system will be the

following expressions for t and 2k :

621926122,91311740241.49553573t (36)

360194544.18683660974.764267012 k (37)

Given (27), we can determine that for numbers of

type float

20338061.9609422369.7477678090Rm (38)

Experimental results have shown that in practice

for single-precision floating-point numbers (float)
the best values of these parameters are

 2k 4.764266968f and the corresponding magic

constant R = 0x5F5FB6D3. Similarly, for double-

precision numbers: 2k 4.7642670066528519 and

R = 0x5FEBF6DB526DE7D9.
In the next section, we will look at the

implementation of the proposed algorithms in C++

Oleh Horyachyy, Leonid Moroz, Viktor Otenko / International Journal of Computing, 18(4) 2019, 461-470

 465

for type float and consider the peculiarities for
numbers of higher precision.

4. IMPLEMENTATION OF THE
PROPOSED ALGORITHMS

4.1 SINGLE PRECISION

The final C++ code of the proposed InvSqrt41
algorithm with a single modified Newton-Raphson
iteration for type float has the form:

1. float InvSqrt41 (float x){
2. int i = *(int*)&x;
3. i = i>>1;
4. int ii = 0x5E5FB6D3 - i;
5. i = 0x5F5FB6D3 - i;
6. float y = *(float*)&i;
7. float yy = *(float*)ⅈ
8. y = yy*(4.764266968f - x*y*y);
9. return y;
10. }

The maximum values of the relative error in this

case are:

,10502572.6 4
max1

 

.10502245.6 4
max1

 
(39)

These error values correspond to 10.59 exact bits

of the result. Fig. 1 below shows a graph of the
relative errors of the InvSqrt41 algorithm.

Figure 1 – The graph of the relative errors of the
InvSqrt41 algorithm on the interval)4,1[x

Thus, the above algorithm contains only three
floating-point multiplication operations, and the
maximum error is reduced compared to the InvSqrt2
algorithm (after the first iteration) by 26%.

If we add the second Newton-Raphson iteration
using the FMA function, then we can achieve much
smaller maximum errors. The accuracy of the
algorithm can be also improved using the method of
practical optimization of the algorithm constants, as

we did for InvSqrt41. See the InvSqrt42 algorithm.
The FMA function is used here to reduce the
rounding error of the corresponding floating-point
operations, which become noticeable at the last
iteration of the algorithm (lines 9-11).

1. float InvSqrt42 (float x){
2. int i = *(int*)&x;
3. i = i>>1;
4. int ii = 0x5E5FB432 - i;
5. i = 0x5F5FB432 - i;
6. float y = *(float*)&i;
7. float yy = *(float*)ⅈ
8. y = yy*(4.76405191f - x*y*y);
9. float c = x*y;
10. c = fmaf(y, c, -1.0000006f);
11. y = fmaf(-0.500097573f*y, c, y);
12. return y;
13. }

The maximum relative errors of this algorithm

are:

,10756709.3 7
max2

 

,10973408.3 7
max2

 
(40)

which correspond to 21.26 correct bits of the result.
This algorithm has seven floating-point
multiplication operations, including FMAs.
Compared to the InvSqrt2 and InvSqrt3 algorithms,
which also have seven multiplications, the errors of
the proposed algorithm are almost 46% and 40%
less, respectively.

The following modification of the algorithm is a
compromise between accuracy and speed.

1. float InvSqrt43 (float x){
2. int i = *(int*)&x;
3. int ix = i - 0x80800000;
4. i = i>>1;
5. int ii = 0x5E5FB3E2 - i;
6. i = 0x5F5FB3E2 - i;
7. float y = *(float*)&i;
8. float yy = *(float*)ⅈ
9. y = yy*(4.76424932f - x*y*y);
10. float mhalf = *(float*)&ix;
11. float t = fmaf(mhalf, y*y, 0.500000298f);
12. y = fmaf(y, t, y);
13. return y;
14. }

This algorithm has six multiplication operations,
performing one multiplication of the number x by

2/1 in integer representation (line 3). The
accuracy of the InvSqrt43 algorithm is 21.21 correct
bits.

Oleh Horyachyy, Leonid Moroz, Viktor Otenko / International Journal of Computing, 18(4) 2019, 461-470

 466

The accuracy could be further improved by using
the Householder’s formula of order 2 in the second
iteration [6]:

11 ** yyxa  (41)

),)*((32112 tttaayy  (42)

where

.
8

15
,

4

5
,

8

3
321  ttt (43)

As a result, we get the following modified

algorithm with optimized constants:

1. float InvSqrt44 (float x){
2. int i = *(int*)&x;
3. i = i>>1;
4. int ii = 0x5E5FB414 - i;
5. i = 0x5F5FB414 - i;
6. float y = *(float*)&i;
7. float yy = *(float*)ⅈ
8. y = yy*(4.76410007f - x*y*y);
9. float c = x*y;
10. float r = fmaf(y, c, -1.0f);
11. c = fmaf(0.374000013f, r, -0.5f);
12. y = fmaf(r*y, c, y);
13. return y;
14. }

This algorithm has eight floating-point

multiplications. The maximum values of the relative
errors of the algorithm are:

,10604127.8 8
max2

 

,10176169.8 8
max2

 
(44)

or 23.47 correct bits of the result out of 24 possible.
Compared to the Householder’s method of
order 5 [6], which has the same number of
multiplications, the error of the InvSqrt44 algorithm
is reduced by 6 times.

4.2 DOUBLE PRECISION

The same algorithms can be also implemented in

double. In this case, in (8) 522mN and

1023bias for 64-bit IEEE 754 numbers. Also,

1534Q in the magic constant (22).

For example, an analogue of the InvSqrt41
algorithm for double will be:

1. double InvSqrt45_d (double x){
2. long long i = *(long long*) &x;

3. i = i>>1;
4. long long ii = 0x5FCBF6DB526DE7D9 - i;
5. i = 0x5FEBF6DB526DE7D9 - i;
6. double y = *(double*)&i;
7. double yy = *(double*)ⅈ
8. y = yy*(4.7642670066528519 - x*y*y);
9. return y;
10. }

This algorithm has almost the same accuracy,

namely

,10501427.6 4
max1

 

,10501427.6 4
max1

 
(45)

but the use of a double-precision data type will give
a tangible improvement after two or three iterations.
To illustrate this, the double version of InvSqrt43
algorithm will have an accuracy of 21.59 bits, and it
will be 30.44 bits for the InvSqrt44 algorithm.

A modification of the InvSqrt43 algorithm with
three Newton-Raphson iterations, optimized for
speed, will look like:

1. double InvSqrt46_d (double x){
2. long long i = *(long long*) &x;
3. long long ix = i - 0x8010000000000000;
4. i = i>>1;
5. long long ii = 0x5FCBF6D99EF4C0F4 - i;
6. i = 0x5FEBF6D99EF4C0F4 - i;
7. double y = *(double*)&i;
8. double yy = *(double*)ⅈ
9. y = yy*(4.7642669737958503 - x*y*y);
10. double mhalf = *(double*)&ix;
11. double t = fma(mhalf, y*y,
 0.50000031699508796);
12. y = fma(y, t, y);
13. t = fma(mhalf, y*y, 0.50000000000007538);
14. y = fma(y, t, y);
15. return y;
16. }

This algorithm has nine multiplications and

provides 43.59 correct bits. For comparison, the
corresponding FISR [6, 8] and Walczyk [12]
algorithms have 10 multiplications and an accuracy
of 34.88 and 41.85 bits.

To further improve the accuracy of the algorithm
in type double, you need to perform an additional
iteration of the quadratic convergence in the
algorithm based on InvSqrt44 or replace the last
iteration in the previous algorithm (lines 13-14) with
the Householder’s formula of order 2 (lines 13-16 of
the InvSqrt47_d algorithm). Both algorithms will
have similar accuracy for type double, but the
second option should be faster:

Oleh Horyachyy, Leonid Moroz, Viktor Otenko / International Journal of Computing, 18(4) 2019, 461-470

 467

1. double InvSqrt47_d (double x){
2. long long i = *(long long*) &x;
3. long long ix = i - 0x8010000000000000;
4. i = i>>1;
5. long long ii = 0x5FCBF6D9DB9A45CD - i;
6. i = 0x5FEBF6D9DB9A45CD - i;
7. double y = *(double*)&i;
8. double yy = *(double*)ⅈ
9. y = yy*(4.7642670025852993 - x*y*y);
10. double mhalf = *(double*)&ix;
11. double t = fma(mhalf, y*y,
 0.50000031697852854);
12. y = fma(y, t, y);
13. double c = x*y;
14. double r = fma(y, c, -1.0);
15. c = fma(0.375, r, -0.5);
16. y = fma(r*y, c, y);
17. return y;
18. }

The maximum relative errors of this algorithm

are:

,10387779.1 16
max3

 

.10387779.1 16
max3

 
(46)

As you can see, the algorithm provides an

accuracy of 52.68 bits out of 53 possible for double
and it has eleven multiplications. Comparing with
the algorithm suggested by Lemaitre et al. [6] for
double precision numbers, which includes two
iterations of the order 3 Householder’s method using
FMA and contains 12 multiplication operations, the
errors of our algorithm are reduced by 3.5 times.

4.3 HIGHER PRECISION

In general, for numbers of any precision, the
value of Q in the magic constant R is obtained by

the formula

 2/biasbiasQ  . (47)

Then the theoretical value of the basic magic

constant R for the proposed method is determined

by (22), where the value of the mantissa Rm is equal

to (38) and the parameters bias and mN are

determined by the data type that is applied. The
second magic constant 2R is obtained from R
using the following expression:

.22 mNRR  (48)

The value of the constant 2k in the first iteration

is (37).
Table 1 summarizes the process of determining

the theoretical values of the magic constants R and
2R for the three basic data types of the IEEE 754

standard (float, double, and __float128 respectively).

Table 1. Theoretical values of the magic constants

Constant
IEEE 754 binary floating-point format

single
(32 bits)

double
(64 bits)

quadruple
(128 bits)

bias 127 1023 16383

mN 232 522 1122
Q 190 1534 24574

R 5F5FB6DB 5FEBF6DB
610C8A67

5FFEBF6D
B610C8A6
75345B2E4
EFA8BA0

2R 5E5FB6DB 5FCBF6DB
610C8A67

5FFCBF6D
B610C8A6
75345B2E4
EFA8BA0

Please note that in practice, the theoretical values

of the magic constants indicated in the table may not
be optimal due to the rounding of arithmetic
operations.

5. EXPERIMENTAL RESULTS AND
DISCUSSION

We have also tested the proposed algorithms on
the ESP-WROOM-32 microcontroller [19]. In
Table 2 you can find the results of measuring the
latency and accuracy of the algorithms for single and
double precision numbers.

5.1 SINGLE PRECISION

After analyzing the results for single precision
numbers, we can say that the InvSqrt1, InvSqrt2, and
InvSqrt43 algorithms have the highest performance,
but our algorithm (InvSqrt43) provides the best
accuracy among them. InvSqrt44 has the highest
accuracy among all the considered algorithms,
namely 23.47 bits, and its speed is the same as in the
Householder’s algorithm of order 5. As you can see,
all FISR-based algorithms on this platform are
superior in speed to using the sqrtf function from the
cmath library. However, only this mathematical
function supports subnormal numbers.

Please note that relative errors may differ slightly
on different platforms depending on the compiler
and the implementation of arithmetic operations, in
particular, the InvSqrt2 algorithm has higher
accuracy on ESP-32 than on Intel. The reason is that
this microcontroller has fast hardware FMA
instructions for type float [20], which are

Oleh Horyachyy, Leonid Moroz, Viktor Otenko / International Journal of Computing, 18(4) 2019, 461-470

 468

automatically used by the compiler to perform all
arithmetic operations. Here we use the following
compiler options (for GCC 5.2.0): -std=gnu++11
-Os -ffp-contract=fast.

Table 2. Evaluation of the algorithms on ESP-32

Algorithm
Accuracy,

bits
Latency,

ns
float

1.0f/sqrtf(x) 23.42 801.5
FISR [7] (InvSqrt1) 17.69 281.2
Walczyk [12] (InvSqrt2) 20.40 281.2
Householder (order 4) [6]
(InvSqrt3)

20.54 323.1

Householder (order 5) [6] 20.87 348.3
InvSqrt42 21.26 306.4
InvSqrt43 21.21 281.2
InvSqrt44 23.47 348.3

double
1.0/sqrt(x) 52.42 6893.5
FISR [6, 8] (3 iter.) 34.88 5373.9
FISR [6, 8] (4 iter.) 51.68 6849.9
Walczyk [12] (3 iter.) 41.85 5471.4
Walczyk [12] (4 iter.) 51.69 6982.3
Householder (order 3) [6]
(2 iter.)

50.86 8010.5

Householder (order 3) [6]
(2 iter.) (*)

50.71 7548.1

Householder (order 3) [6]
(2 iter.) (**)

50.62 7455.6

InvSqrt46_d 43.59 6106.0
InvSqrt46_d (**) 43.59 5258.7
InvSqrt47_d 52.68 7286.9
InvSqrt47_d (*) 52.68 6777.1

5.2 DOUBLE PRECISION

Regarding numbers of type double on the
microcontroller, first of all, it should be said that
ESP-32 does not have the hardware to support
them [20], so all the corresponding operations are
emulated by software, in particular, multiplication,
addition, and FMA. That is why, all the considered
algorithms are inefficient in terms of speed, and
using the FMA function on this platform is
especially costly. Therefore, to increase the
performance of the approximation algorithms, the
sign “*” in Table 2 indicates the implementation of
the algorithms using only one FMA function, which
is applied at the last iteration. For example, for the
InvSqrt47_d (*) algorithm, this is FMA in line 14.
Accordingly, “**” indicates the absence of FMA. It
should be said that this step may cause a decrease in
accuracy.

Based on Table 2 ??? , it can be said that our
InvSqrt47_d (*) algorithm provides both the best
accuracy and latency when compared to the sqrt
function and corresponding FISR and Walczyk
algorithms. Regarding the InvSqrt46_d (**)

algorithm, it is also more accurate than the Walczyk
algorithm for three iterations and has better
performance on ESP-32.

Thus, based on the obtained results, we can
conclude that for the effective implementation of the
proposed algorithms with two magic constants, it is
important to have fast hardware multiplication and
FMA operations of the corresponding floating-point
data type.

6. CONCLUSIONS

We have proposed the FISR-based inverse square
root calculation algorithms that contain one less
floating-point multiplication by introducing an
additional magic constant. The advantage of the
considered algorithms is that they do not use lookup
tables to form an initial approximation and offer
increased calculation accuracy by minimizing the
maximum relative error and using FMA.

The practical value of the results lies in the fact
that the proposed algorithms can easily replace the
basic FISR method in many applications, which
increases the accuracy of calculations and reduces
the latency on some platforms. In particular, the
FISR algorithm with the magic constant
R = 0x5f3759df is widely used to implement the
approximation of the reciprocal square root function
in computer vision and object detection
tasks [14, 21-24] when it is necessary to improve the
performance of the software and/or hardware
application, especially in the case of real-time
computing.

These algorithms can be effectively used in
microcontrollers that support floating-point
calculations, but do not have an FPU (floating-point
unit) to calculate the inverse square root, such as, for
example, ESP-WROOM-32 [19-20]. They can also
be effective in hardware implementation on FPGA
platforms that have pipelining and cheap integer
operations. An example of such a platform is Intel
Cyclone, which has fast single-precision floating-
point blocks [25].

It should also be noted that only normalized
floating-point numbers of single and double
precision were discussed in the article. As was
shown, these algorithms can be easily generalized to
other data formats of the IEEE 754 standard, namely
for quadruple and octuple precision.

7. REFERENCES

[1] B. Parhami, Computer Arithmetic: Algorithms
and Hardware Designs, second ed., Oxford
Univ. Press, New York, 2010, 641 p.

[2] N.H.F. Beebe, The Mathematical-Function
Computation Handbook: Programming Using

Oleh Horyachyy, Leonid Moroz, Viktor Otenko / International Journal of Computing, 18(4) 2019, 461-470

 469

the MathCW Portable Software Library,
Springer, 2017, 1115 p.

[3] M.D. Ercegovac, T. Lang, Division and Square
Root: Digit Recurrence Algorithms and
Implementations, Boston: Kluwer Academic
Publishers, 1994, 230 p.

[4] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-
P. Jeannerod, V. Lefevre, G. Melquiond, N.
Revol, D. Stehle, S. Torres, Handbook of
Floating-Point Arithmetic, Springer, 2010,
572 p.

[5] J.-M. Muller, N. Brunie, F. de Dinechin, C.-P.
Jeannerod, M. Joldes, V. Lefevre, G.
Melquiond, N. Revol, S. Torres, “Software
implementation of floating-point arithmetic,”
in: Handbook of Floating-Point Arithmetic,
Birkhäuser, Cham, 2018, pp. 321-374.

[6] F. Lemaitre, B. Couturier, L. Lacassagne,
“Cholesky factorization on SIMD multi-core
architectures,” Journal of Systems Architecture,
vol. 79, pp. 1-15, 2017.

[7] Id Software, Quake III Arena, quake3-1.32b
code, [Online]. Available: https://github.com/
id-Software/Quake-III-Arena/blob/master/code/
game/q_math.c

[8] C. Lomont, Fast Inverse Square Root, Purdue
University, Tech. Rep., 2003, [Online].
Available at: http://www.lomont.org/Math/
Papers/2003/InvSqrt.pdf

[9] P. Martin, “Eight rooty pieces,” Overload
Journal, vol. 24, issue 135, pp. 8-12, 2016.

[10] D.H. Eberly, GPGPU Programming for Games
and Science, CRC Press, 2014, 469 p.

[11] L. Moroz, C.J. Walczyk, A. Hrynchyshyn, V.
Holimath, J.L. Cieśliński, “Fast calculation of
inverse square root with the use of magic
constant – analytical approach,” Applied
Mathematics and Computation, vol. 316,
issue C, pp. 245-255, 2018.

[12] C.J. Walczyk, L.V. Moroz, J.L. Cieśliński,
“Improving the accuracy of the fast inverse
square root algorithm,” ArXiv Preprint,
arXiv:1802.06302, 2018.

[13] A. Hasnat, T. Bhattacharyya, A. Dey, S. Halder
and D. Bhattacharjee, “A fast FPGA based
architecture for computation of square root and
inverse square root,” Proceedings of the
International Conference on Devices for
Integrated Circuit (DevIC), Kalyani, India,
2017, pp. 383-387.

[14] C.J. Hsu, J.L. Chen and L.G. Chen, “An
efficient hardware implementation of HON4D
feature extraction for real-time action
recognition,” Proceedings of the 2015 IEEE
International Symposium on Consumer
Electronics (ISCE), 2015, pp. 1-2.

[15] Z. Li, Y. Chen and X. Zeng, “OFDM
synchronization implementation based on
Chisel platform for 5G research,” Proceedings
of the 2015 IEEE 11th International
Conference on ASIC (ASICON), 2015, pp. 1-4.

[16] S. Zafar and R. Adapa, “Hardware architecture
design and mapping of fast inverse square
root’s algorithm,” Proceedings of the
International Conference on Advances in
Electrical Engineering (ICAEE), 2014, pp. 1-4.

[17] C.A. Navarro, M. Vernier, N. Hitschfeld, B.
Bustos, “Competitiveness of a non-linear
block-space GPU thread map for simplex
domains,” IEEE Transactions on Parallel and
Distributed Systems, vol. 29, issue 12,
pp. 2728-2741, 2018.

[18] A. Gazneli et al. Adaptive Nonlinear System
Control using Robust and Low-complexity
Coefficient Estimation, U.S. Patent No 15/648,
205, 2018.

[19] Espressif Systems, ESP32-WROOM-32 (ESP-
WROOM-32) datasheet. Version 2.4, 2018.

[20] Tensilica Inc., Xtensa Instruction Set
Architecture (ISA), Reference Manual, 2018.

[21] S. Xiao, T. Isshiki, D. Li, H. Kunieda, “HOG-
based object detection processor design using
ASIP methodology,” IEICE Transactions on
Fundamentals of Electronics, Communications
and Computer Sciences, vol. 100, issue 12,
pp. 2972-2984, 2017.

[22] M. Ramirez-Martinez, F. Sanchez-Fernandez,
P. Brunet, S. M. Senouci and El-Bay
Bourennane, “Dynamic management of a
partial reconfigurable hardware architecture for
pedestrian detection in regions of interest,”
Proceedings of the 2017 International
Conference on ReConFigurable Computing
and FPGAs (ReConFig), 2017, pp. 1-7.

[23] J. Lv, F. Wang and Z. Ma, “Peach fruit
recognition method under natural
environment,” Proceedings of the Eighth
International Conference on Digital Image
Processing (ICDIP’2016), Chengu, China,
August 29, 2016, vol. 10033, paper 1003317.

[24] B.K. Anirudh, V. Venkatraman, A. R. Kumar
and S. D. Sumam, “Accelerating real-time
computer vision applications using HW/SW co-
design,” Proceedings of the 2017 International
Conference on Computer, Communications and
Electronics (Comptelix), Jaipur, India, July 1-2,
2017, pp. 458-463.

[25] Intel Corporation, Intel® Cyclone® 10 GX
device overview. C10GX51001, 2018.

Oleh Horyachyy, Leonid Moroz, Viktor Otenko / International Journal of Computing, 18(4) 2019, 461-470

 470

Oleh Horyachyy received his
MSc degrees in Applied Com-
puter Science from Ivan Franko
National University of Lviv in
2013 and in Information and
Communication Systems Secu-
rity from Lviv Polytechnic
National University in 2017.
Currently, he is a PhD student at
the Institute of Computer Tech-

nologies, Automation, and Metrology at Lviv
Polytechnic National University, Ukraine and an
engineer at the Department of Information
Technologies Security. His research interests
include iterative methods, secure multiparty
computations, biometric identification, security of
communication technologies, cryptography, and
public key infrastructure.

Leonid Moroz received his MSc
and PhD degrees from Lviv
Polytechnic National University,
Ukraine in 1978 and 1985,
respectively. He defen-ded his
DSc degree in Computer
Systems and Components in
2013. Currently, he works as a
Professor at the Department of

Information Technologies Security of the Institute of
Computer Technologies, Automation, and Metrology
at Lviv Polytechnic National University. His research
interests include computer arithmetic, numerical
methods, and digital signal processing.

Viktor Otenko graduated from
Lviv Polytechnic National
University, Ukraine and received
his MSc degree in Automation
and Telemecha-nics in 1979. In
1986, he was awarded the title
“Best young inventor of
Ukraine”. He received a PhD
degree in Elements and Appli-

ances of Computer Technology and Control
Systems in 1998 from the same university. He has
been working at the Department of Information
Security of the Institute of Computer Technologies,
Automation, and Metrology at Lviv Polytechnic
National University as an Assoc. Professor since
2006. His research interests are software
engineering, program security, and pulse-numerical
functional transformation.

