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Abstract: The purpose of this paper is to introduce a modification of Fast 
Inverse Square Root (FISR) approximation algorithm with reduced relative 
errors. The original algorithm uses a magic constant trick with input floating-
point number to obtain a clever initial approximation and then utilizes the 
classical iterative Newton-Raphson formula. It was first used in the computer 
game Quake III Arena, causing widespread discussion among scientists and 
programmers, and now it can be frequently found in many scientific applications, 
although it has some drawbacks. The proposed algorithm has such parameters of 
the modified inverse square root algorithm that minimize the relative error and 
includes two magic constants in order to avoid one floating-point multiplication. 
In addition, we use the fused multiply-add function and iterative methods of 
higher order in the second iteration to improve the accuracy. Such algorithms do 
not require storage of large tables for initial approximation and can be effectively 
used on field-programmable gate arrays (FPGAs) and other platforms without 
hardware support for this function. 
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1. INTRODUCTION 

When solving many important problems in the 
field of digital signal processing, computer 3D 
graphics, scientific computing, etc., it is necessary to 
use floating-point arithmetic [1-7] as the most 
accurate and common way of representing real 
numbers in computers. In particular, a common 
practical task that arises when working with 
floating-point numbers is the calculation of 
elementary functions, including the inverse square 
root: 
 

x
y

1
 . (1) 

 
The algorithms implementing the inverse square 

root calculation are widely described in scientific 
literature [1, 6, 8-14]. Most of them are iterative and 
require the formation of an initial approximation. 
Moreover, the more precise the initial 
approximation, the fewer iterations are needed to 
calculate a function with the required accuracy. As a 

rule, the initial approximation is formed using a 
lookup table (LUT – lookup table) [1-2]. However, a 
group of iterative algorithms is also known that do 
not use LUT [6, 8-15]. Here, the initial 
approximation is formed using integer arithmetic in 
the form of so-called magic constant, and upon 
transition from integer arithmetic to floating-point 
arithmetic, the resulting approximation is fed into an 
iterative process using corresponding Newton-
Raphson formulae. 

In this article, we consider algorithms for 
calculating the inverse square root using magic 
constants, which offers reduced relative errors and 
applies to floating-point numbers represented in the 
IEEE 754 standard format. In addition, an important 
advantage of the proposed algorithms is a reduction 
(by one) in the number of multiplication operations. 

The best-known version of this algorithm called 
Fast Inverse Square Root (FISR) [8, 15-18], which 
was used in the computer game Quake III Arena [7], 
is given below: 

 
1. float InvSqrt1 (float x){ 
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2.   float half = 0.5f * x; 
3.   int i = *(int*)&x; 
4.   i = 0x5F3759DF - (i>>1); 
5.   x = *(float*)&i; 
6.   x = x*(1.5f - half*x*x); 
7.   x = x*(1.5f - half*x*x); 
8.   return x; 
9. } 

 
This InvSqrt1 code, written in the C/C++ 

language, implements a fast algorithm for inverse 
square root calculation. In line 3, we represent the 
bits of the input variable x  (float) as the variable i  
(int). Lines 4 and 5 determine the initial 

approximation 0y  of the inverse square root. Note 

that the InvSqrt1 algorithm reuses the variable x  for 
this purpose. It then becomes a part of the iterative 
process. Here in line 4, R = 0x5f3759df is a “magic 
constant”. In line 5, we represent the bits of the 
variable i  (int) back into the variable x  (float). 
Note that henceforth in the code, the variable x  acts 
as a new approximation to y . Lines 6 and 7 contain 

two classic successive Newton-Raphson iterations to 
refine the results. If the maximum relative error of 
calculations after the second iteration is denoted by 

max2 , then the accuracy of this algorithm is only 

 

max2 = 4.73∙10–6, or )(log max22  =17.69 (2) 

 
correct bits. These results are obtained by practical 
calculations on the Intel Core i7-7700HQ platform 
using the method that will be discussed in more 
detail in Section 3. 

Compared to this algorithm, the following 
algorithm with a magic constant from [12] has better 
accuracy, namely 20.37 correct bits: 
 

1. float InvSqrt2 (float x){ 
2.   float half = 0.5f * x; 
3.   int i = *(int*)&x; 
4.   i = 0x5F376908 - (i>>1); 
5.  x = *(float*)&i; 
6.   x = x*(1.5008789f - half*x*x); 
7.   x = x*(1.5000006f - half*x*x); 
8.  return x; 
9. } 

 
It has different magic constant and two modified 

Newton-Raphson iterations. The maximum relative 
error of the algorithm is approximately 
 

max2 = 7.37∙10–7, (3) 

 

which is slightly worse than declared by the authors, 
even when using the fused multiply-add (FMA) 
function to increase the accuracy of calculations. 

Lemaitre et al. [6] suggest using for type float 
Householder’s method of order 4 with fused 
operations. For initial approximation they consider 
magic constant R = 0x5f375a86 [8]. Thus, their 
proposed algorithm has the form: 
 

1. float InvSqrt3 (float x){ 
2.   int i = *(int*)&x; 
3.   i = 0x5F375A86 - (i>>1); 
4.  float y = *(float*)&i; 
5.  float a = x*y*y; 
6.  float t = fmaf(0.2734375f, a, -1.40625f); 
7.   t = fmaf(a, t, 2.953125f); 
8.   t = fmaf(a, t, -3.28125f); 
9.   y = y*fmaf(a, t, 2.4609375f); 
10.  return y; 
11. } 

 
It has maximum relative error 

 

max1
 = 6.58∙10–7, (4) 

 
or 20.54 (out of 24 possible) bits of accuracy. 

Consequently, there is still a need to develop 
algorithms of higher accuracy, also for IEEE 754 
numbers of higher precision, such as double and 
quadruple, without forgetting about the speed of 
computations. 

The remainder of this paper is organized as 
follows. Section 2 further gives a theoretical 
description of the aforementioned algorithms with 
magic constant. In Sections 3 and 4, we elucidate the 
proposed algorithms and give their implementations 
in C++. Section 5 contains simulation results. 
Conclusions are given in Section 6. 
 

2. ANALYTICAL DESCRIPTION OF 
KNOWN ALGORITHMS 

In this section, we briefly present the main results 
of [11-12] to explain how InvSqrt1, InvSqrt2, and 
InvSqrt3 work. Assume that we have a positive 
floating-point number 
 

xE
xmx 2)1(  , (5) 

 
where 
 

)1,0[xm  (6) 

  ))((log)(log 22 xfloorxEx  . (7) 
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In the IEEE 754 standard, the floating-point 
number x  is encoded by 32, 64, or 128 bits for three 
basic binary floating-point formats. In this paper, we 
will mostly consider single precision (float type) 
numbers (as in the above algorithms), which have 32 
bits, but all considerations can also be generalized 
for other data types, as it will be shown later in 
Section 4. The first bit corresponds to a sign (sign 
field). In our case, this bit is equal to zero. The next 

eight bits correspond to a biased exponent xE  

(exponent field), and the last 23 bits encode a 

fractional part of the mantissa xm  (mantissa field). 

The integer encoded by these 32 bits, xI , is given by 

 

mxxx NmEbiasI )(  , (8) 

 

where 232mN  and 127bias  for float. Line 4 of 

the code InvSqrt1 or InvSqrt2 and line 3 of InvSqrt3 
can be written as: 
 

 2/
0 xy IRI  . (9) 

 

The result of subtracting the integer  2/xI  from 

the magic constant R  is the integer number 
0yI , 

which is being represented as a float (lines 5 and 4 
respectively) and gives the initial (zeroth) piecewise 

linear approximation 0y  of the function x/1 . 

Further on, this approximation is refined (lines 6-7 
and 5-9). The InvSqrt1 and InvSqrt2 algorithms use 
two classical (in the case of the InvSqrt1 algorithm) 
 

)**3(*2/1 0001 yyxyy   (10) 

)**3(*2/1 1112 yyxyy   (11) 

 
or modified (for the InvSqrt2 algorithm) 
 

)**(*2/1 00201 yyxkyy  , (12) 

)**(*2/1 11412 yyxkyy  . (13) 

 
Newton-Raphson iterations, which provide 

quadratic convergence of the iterative process. In the 

last formulas, 2k  and 4k  are constants (see 

InvSqrt2). Householder’s formula in the InvSqrt3 
algorithm 
 

00 ** yyxa   (14) 

))))*(((( 5432101 tttttaaaayy  , (15) 

 
has a rate of convergence equal to 5. Here in (15), 
the values of the constants are as follows: 

,
64

189
,

32

45
,

128

35
321  ttt  

.
128

315
,

32

105
54  tt  

(16) 

 

As proven in [11-12], in order to know the 

behaviour of the relative error for 0y  in the whole 

range of normalized floating-point numbers, it 
suffices to consider the range )4,1[x . In this range, 

a piecewise linear analytical approximation 0y  of 

the function consists of three separate parts: 
 

txy
8

1

4

3

4

1
01  ,   )2,1[x  (17) 

txy
8

1

2

1

8

1
02  ,   ),2[ tx  (18) 

txy
16

1

2

1

16

1
03  ,   )4,[tx , (19) 

 

where 
 

mR Nmt /242   (20) 

 

and the fractional part of the mantissa of the magic 
constant R  is determined by the formula 
 

 mmR NRNRm //  . (21) 
 

In this case, the maximum relative error of such 
piecewise linear approximations does not exceed the 

value )2/(1 mN . Moreover, if we denote the magic 

constant R  by 
 

mRm NmNQR  , (22) 
 

where 
 

 mNRQ / , (23) 
 

then under condition 2/1Rm , the equality 

190Q  will be satisfied for Eq. (17)-(19). This 

condition is true for the magic constants of all 

considered algorithms. However, in general, Rm  can 

take any values from the range )1,0[Rm . We will 

investigate this case in the next section. 
 

3. DESCRIPTION OF THE PROPOSED 
ALGORITHM 

Consider the case when 190Q  and 

12/1  Rm . Then, according to the theory, the 

Eq. (17)-(19) will have the form (24)-(26). 
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txy
2

1
1

2

1
01  ,   ),1[ tx  (24) 

txy
4

1
1

4

1
02  ,   )2,[tx  (25) 

txy
4

1

4

3

8

1
03  ,   )4,2[x . (26) 

 
Here 
 

mR Nmt /12  . (27) 

 
In order to minimize the relative error, we must 

set out the requirement to align all the maxima of the 
relative error for the first iteration in 

the 01y  and 03y  segments of the initial 

approximation. For this, the first iteration will be 
performed according to the formula 
 

)( 002011 yxykyky  . (28) 

 
Note that this iteration requires four 

multiplication operations. Then, taking into account 
formulas (24)-(26), we write (28) in the form of 
three corresponding iterative equations 
 

)( 002011 iiii yxykyky  ,   3,1i . (29) 

 
Let us try to reduce the number of multiplications 

in the first iteration to three. Such algorithms with a 
reduced number of floating-point multiplications 
will be especially useful when implementing on 
FPGA [13-14]. To do this, we set the condition 

4/11 k . Then the multiplication by this value in 

software or hardware implementation can be 
replaced by the integer subtraction. The basic idea is 
to subtract two from the exponent of a number 
represented in the IEEE 754 format. 

Next, we need to find the best values of the 

coefficient 2k  and parameter t , which will 

determine the magic constant R . To do this, we 
write the relative errors of the first iteration based on 

the initial approximations 01y , 02y , and 03y : 

 

1)()(25.0 00201  xsqrtyxyky iiii , 

.3,1i  
(30) 

 
Here we use the formula 

 

1)(11  xsqrty  (31) 

 

to determine the relative error of the approximation 

1y  for the inverse square root function. Note also 

that to calculate the maximum relative errors after 
the first iteration, we use the formula 
 

1)(max 1
)4,1[

max1 


xsqrty
x

 . (32) 

 
Denote the corresponding upper and lower 

bounds of the relative errors by 

max1  and 


max1 . 

Errors (30) have local maxima, in particular, at 
points 
 

,3/)2(max11 tx   (33) 

.3/)26(max13 tx   (34) 

 

For the second component 02y , one should also 

take into account the point t , where the relative 

error 12  (as well as 11 ) has the negative maximum 

t12  (see Fig. 1). Now substituting (33), (34), and 

(27) in (30), we obtain expressions for max11 , 

max13 , and t12 . Based on them, we construct a 

system of two equations: 
 









0

0

max11max13

12max11



 t
, (35) 

 
which will ensure the fulfillment of the above 
condition and the requirement to minimize the 
relative error. The solution of this system will be the 

following expressions for t  and 2k : 

 

621926122,91311740241.49553573t  (36) 

360194544.18683660974.764267012 k  (37) 

 
Given (27), we can determine that for numbers of 

type float 
 

20338061.9609422369.7477678090Rm  (38) 

 
Experimental results have shown that in practice 

for single-precision floating-point numbers (float) 
the best values of these parameters are 

 2k 4.764266968f and the corresponding magic 

constant R = 0x5F5FB6D3. Similarly, for double-

precision numbers:  2k 4.7642670066528519 and 

R = 0x5FEBF6DB526DE7D9. 
In the next section, we will look at the 

implementation of the proposed algorithms in C++ 
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for type float and consider the peculiarities for 
numbers of higher precision. 
 

4. IMPLEMENTATION OF THE 
PROPOSED ALGORITHMS 

4.1 SINGLE PRECISION 

The final C++ code of the proposed InvSqrt41 
algorithm with a single modified Newton-Raphson 
iteration for type float has the form: 
 

1. float InvSqrt41 (float x){ 
2.   int i = *(int*)&x; 
3.   i = i>>1; 
4.   int ii = 0x5E5FB6D3 - i; 
5.   i = 0x5F5FB6D3 - i; 
6.   float y = *(float*)&i; 
7.   float yy = *(float*)&ii; 
8.   y = yy*(4.764266968f - x*y*y); 
9.   return y; 
10. } 
 
The maximum values of the relative error in this 

case are: 
 

,10502572.6 4
max1

   

.10502245.6 4
max1

   
(39) 

 
These error values correspond to 10.59 exact bits 

of the result. Fig. 1 below shows a graph of the 
relative errors of the InvSqrt41 algorithm. 
 

 

Figure 1 – The graph of the relative errors of the 
InvSqrt41 algorithm on the interval )4,1[x  

Thus, the above algorithm contains only three 
floating-point multiplication operations, and the 
maximum error is reduced compared to the InvSqrt2 
algorithm (after the first iteration) by 26%. 

If we add the second Newton-Raphson iteration 
using the FMA function, then we can achieve much 
smaller maximum errors. The accuracy of the 
algorithm can be also improved using the method of 
practical optimization of the algorithm constants, as 

we did for InvSqrt41. See the InvSqrt42 algorithm. 
The FMA function is used here to reduce the 
rounding error of the corresponding floating-point 
operations, which become noticeable at the last 
iteration of the algorithm (lines 9-11). 
 

1. float InvSqrt42 (float x){ 
2.   int i = *(int*)&x; 
3.   i = i>>1; 
4.   int ii = 0x5E5FB432 - i; 
5.   i = 0x5F5FB432 - i; 
6.   float y = *(float*)&i; 
7.   float yy = *(float*)&ii; 
8.   y = yy*(4.76405191f - x*y*y); 
9.   float c = x*y; 
10.  c = fmaf(y, c, -1.0000006f); 
11.  y = fmaf(-0.500097573f*y, c, y); 
12.  return y; 
13. } 

 
The maximum relative errors of this algorithm 

are: 
 

,10756709.3 7
max2

   

,10973408.3 7
max2

   
(40) 

 

which correspond to 21.26 correct bits of the result. 
This algorithm has seven floating-point 
multiplication operations, including FMAs. 
Compared to the InvSqrt2 and InvSqrt3 algorithms, 
which also have seven multiplications, the errors of 
the proposed algorithm are almost 46% and 40% 
less, respectively. 

The following modification of the algorithm is a 
compromise between accuracy and speed. 
 

1. float InvSqrt43 (float x){ 
2.   int i = *(int*)&x; 
3.   int ix = i - 0x80800000; 
4.   i = i>>1; 
5.   int ii = 0x5E5FB3E2 - i; 
6.   i = 0x5F5FB3E2 - i; 
7.   float y = *(float*)&i; 
8.   float yy = *(float*)&ii; 
9.   y = yy*(4.76424932f - x*y*y); 
10.  float mhalf = *(float*)&ix; 
11.  float t = fmaf(mhalf, y*y, 0.500000298f); 
12.  y = fmaf(y, t, y); 
13.  return y; 
14. } 

 

This algorithm has six multiplication operations, 
performing one multiplication of the number x  by 

2/1  in integer representation (line 3). The 
accuracy of the InvSqrt43 algorithm is 21.21 correct 
bits. 
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The accuracy could be further improved by using 
the Householder’s formula of order 2 in the second 
iteration [6]: 

 

11 ** yyxa   (41) 

),)*(( 32112 tttaayy   (42) 

 
where 
 

.
8

15
,

4

5
,

8

3
321  ttt  (43) 

 
As a result, we get the following modified 

algorithm with optimized constants: 
 

1. float InvSqrt44 (float x){ 
2.  int i = *(int*)&x; 
3.  i = i>>1; 
4.  int ii = 0x5E5FB414 - i; 
5.  i = 0x5F5FB414 - i; 
6.  float y = *(float*)&i; 
7.  float yy = *(float*)&ii; 
8.  y = yy*(4.76410007f - x*y*y); 
9.  float c = x*y; 
10.  float r = fmaf(y, c, -1.0f); 
11. c = fmaf(0.374000013f, r, -0.5f); 
12.  y = fmaf(r*y, c, y); 
13.  return y; 
14. } 
 
This algorithm has eight floating-point 

multiplications. The maximum values of the relative 
errors of the algorithm are: 
 

,10604127.8 8
max2

   

,10176169.8 8
max2

   
(44) 

 
or 23.47 correct bits of the result out of 24 possible. 
Compared to the Householder’s method of 
order 5 [6], which has the same number of 
multiplications, the error of the InvSqrt44 algorithm 
is reduced by 6 times. 
 
4.2 DOUBLE PRECISION 

The same algorithms can be also implemented in 

double. In this case, in (8) 522mN  and 

1023bias  for 64-bit IEEE 754 numbers. Also, 

1534Q  in the magic constant (22). 

For example, an analogue of the InvSqrt41 
algorithm for double will be: 
 

1. double InvSqrt45_d (double x){ 
2.   long long i = *(long long*) &x; 

3.   i = i>>1; 
4.   long long ii = 0x5FCBF6DB526DE7D9 - i; 
5.   i = 0x5FEBF6DB526DE7D9 - i; 
6.   double y = *(double*)&i; 
7.   double yy = *(double*)&ii; 
8.   y = yy*(4.7642670066528519 - x*y*y); 
9.   return y; 
10. } 

 
This algorithm has almost the same accuracy, 

namely 
 

,10501427.6 4
max1

   

,10501427.6 4
max1

   
(45) 

 
but the use of a double-precision data type will give 
a tangible improvement after two or three iterations. 
To illustrate this, the double version of InvSqrt43 
algorithm will have an accuracy of 21.59 bits, and it 
will be 30.44 bits for the InvSqrt44 algorithm. 

A modification of the InvSqrt43 algorithm with 
three Newton-Raphson iterations, optimized for 
speed, will look like:  
 

1. double InvSqrt46_d (double x){ 
2.   long long i = *(long long*) &x; 
3.   long long ix = i - 0x8010000000000000; 
4.   i = i>>1; 
5.   long long ii = 0x5FCBF6D99EF4C0F4 - i; 
6.   i = 0x5FEBF6D99EF4C0F4 - i; 
7.   double y = *(double*)&i; 
8.   double yy = *(double*)&ii; 
9.   y = yy*(4.7642669737958503 - x*y*y); 
10.  double mhalf = *(double*)&ix; 
11.  double t = fma(mhalf, y*y, 
   0.50000031699508796); 
12.  y = fma(y, t, y); 
13.  t = fma(mhalf, y*y, 0.50000000000007538); 
14.  y = fma(y, t, y); 
15.  return y; 
16. } 

 
This algorithm has nine multiplications and 

provides 43.59 correct bits. For comparison, the 
corresponding FISR [6, 8] and Walczyk [12] 
algorithms have 10 multiplications and an accuracy 
of 34.88 and 41.85 bits. 

To further improve the accuracy of the algorithm 
in type double, you need to perform an additional 
iteration of the quadratic convergence in the 
algorithm based on InvSqrt44 or replace the last 
iteration in the previous algorithm (lines 13-14) with 
the Householder’s formula of order 2 (lines 13-16 of 
the InvSqrt47_d algorithm). Both algorithms will 
have similar accuracy for type double, but the 
second option should be faster: 
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1. double InvSqrt47_d (double x){ 
2.   long long i = *(long long*) &x; 
3.   long long ix = i - 0x8010000000000000; 
4.   i = i>>1; 
5.   long long ii = 0x5FCBF6D9DB9A45CD - i; 
6.   i = 0x5FEBF6D9DB9A45CD - i; 
7.   double y = *(double*)&i; 
8.   double yy = *(double*)&ii; 
9.   y = yy*(4.7642670025852993 - x*y*y); 
10.  double mhalf = *(double*)&ix; 
11.  double t = fma(mhalf, y*y, 
   0.50000031697852854); 
12.  y = fma(y, t, y); 
13.  double c = x*y; 
14.  double r = fma(y, c, -1.0); 
15.  c = fma(0.375, r, -0.5); 
16.  y = fma(r*y, c, y); 
17.  return y; 
18. } 

 
The maximum relative errors of this algorithm 

are: 
 

,10387779.1 16
max3

   

.10387779.1 16
max3

   
(46) 

 
As you can see, the algorithm provides an 

accuracy of 52.68 bits out of 53 possible for double 
and it has eleven multiplications. Comparing with 
the algorithm suggested by Lemaitre et al. [6] for 
double precision numbers, which includes two 
iterations of the order 3 Householder’s method using 
FMA and contains 12 multiplication operations, the 
errors of our algorithm are reduced by 3.5 times. 

 
4.3 HIGHER PRECISION 

In general, for numbers of any precision, the 
value of Q  in the magic constant R  is obtained by 

the formula 
 

 2/biasbiasQ  . (47) 

 
Then the theoretical value of the basic magic 

constant R  for the proposed method is determined 

by (22), where the value of the mantissa Rm  is equal 

to (38) and the parameters bias  and mN  are 

determined by the data type that is applied. The 
second magic constant 2R  is obtained from R  
using the following expression: 
 

.22 mNRR   (48) 

 

The value of the constant 2k  in the first iteration 

is (37). 
Table 1 summarizes the process of determining 

the theoretical values of the magic constants R  and 
2R  for the three basic data types of the IEEE 754 

standard (float, double, and __float128 respectively). 

Table 1. Theoretical values of the magic constants 

Constant 
IEEE 754 binary floating-point format 

single 
(32 bits) 

double 
(64 bits) 

quadruple 
(128 bits) 

bias  127 1023 16383 

mN  232  522  1122  
Q  190 1534 24574 

R  5F5FB6DB 5FEBF6DB
610C8A67 

5FFEBF6D
B610C8A6
75345B2E4
EFA8BA0 

2R  5E5FB6DB 5FCBF6DB
610C8A67 

5FFCBF6D
B610C8A6
75345B2E4
EFA8BA0 

 
Please note that in practice, the theoretical values 

of the magic constants indicated in the table may not 
be optimal due to the rounding of arithmetic 
operations. 
 

5. EXPERIMENTAL RESULTS AND 
DISCUSSION 

We have also tested the proposed algorithms on 
the ESP-WROOM-32 microcontroller [19]. In 
Table 2 you can find the results of measuring the 
latency and accuracy of the algorithms for single and 
double precision numbers. 
 
5.1 SINGLE PRECISION 

After analyzing the results for single precision 
numbers, we can say that the InvSqrt1, InvSqrt2, and 
InvSqrt43 algorithms have the highest performance, 
but our algorithm (InvSqrt43) provides the best 
accuracy among them. InvSqrt44 has the highest 
accuracy among all the considered algorithms, 
namely 23.47 bits, and its speed is the same as in the 
Householder’s algorithm of order 5. As you can see, 
all FISR-based algorithms on this platform are 
superior in speed to using the sqrtf function from the 
cmath library. However, only this mathematical 
function supports subnormal numbers. 

Please note that relative errors may differ slightly 
on different platforms depending on the compiler 
and the implementation of arithmetic operations, in 
particular, the InvSqrt2 algorithm has higher 
accuracy on ESP-32 than on Intel. The reason is that 
this microcontroller has fast hardware FMA 
instructions for type float [20], which are 
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automatically used by the compiler to perform all 
arithmetic operations. Here we use the following 
compiler  options  (for GCC 5.2.0):  -std=gnu++11 
-Os -ffp-contract=fast. 

Table 2. Evaluation of the algorithms on ESP-32 

Algorithm 
Accuracy, 

bits 
Latency, 

ns 
float 

1.0f/sqrtf(x) 23.42 801.5 
FISR [7] (InvSqrt1) 17.69 281.2 
Walczyk [12] (InvSqrt2) 20.40 281.2 
Householder (order 4) [6] 
(InvSqrt3) 

20.54 323.1 

Householder (order 5) [6] 20.87 348.3 
InvSqrt42 21.26 306.4 
InvSqrt43 21.21 281.2 
InvSqrt44 23.47 348.3 

double 
1.0/sqrt(x) 52.42 6893.5 
FISR [6, 8] (3 iter.) 34.88 5373.9 
FISR [6, 8] (4 iter.) 51.68 6849.9 
Walczyk [12] (3 iter.) 41.85 5471.4 
Walczyk [12] (4 iter.) 51.69 6982.3 
Householder (order 3) [6] 
(2 iter.) 

50.86 8010.5 

Householder (order 3) [6] 
(2 iter.) (*) 

50.71 7548.1 

Householder (order 3) [6] 
(2 iter.) (**) 

50.62 7455.6 

InvSqrt46_d 43.59 6106.0 
InvSqrt46_d (**) 43.59 5258.7 
InvSqrt47_d 52.68 7286.9 
InvSqrt47_d (*) 52.68 6777.1 

 

5.2 DOUBLE PRECISION 

Regarding numbers of type double on the 
microcontroller, first of all, it should be said that 
ESP-32 does not have the hardware to support 
them [20], so all the corresponding operations are 
emulated by software, in particular, multiplication, 
addition, and FMA. That is why, all the considered 
algorithms are inefficient in terms of speed, and 
using the FMA function on this platform is 
especially costly. Therefore, to increase the 
performance of the approximation algorithms, the 
sign “*” in Table 2 indicates the implementation of 
the algorithms using only one FMA function, which 
is applied at the last iteration. For example, for the 
InvSqrt47_d (*) algorithm, this is FMA in line 14. 
Accordingly, “**” indicates the absence of FMA. It 
should be said that this step may cause a decrease in 
accuracy. 

Based on Table 2 ??? , it can be said that our 
InvSqrt47_d (*) algorithm provides both the best 
accuracy and latency when compared to the sqrt 
function and corresponding FISR and Walczyk 
algorithms. Regarding the InvSqrt46_d (**) 

algorithm, it is also more accurate than the Walczyk 
algorithm for three iterations and has better 
performance on ESP-32. 

Thus, based on the obtained results, we can 
conclude that for the effective implementation of the 
proposed algorithms with two magic constants, it is 
important to have fast hardware multiplication and 
FMA operations of the corresponding floating-point 
data type. 
 

6. CONCLUSIONS 

We have proposed the FISR-based inverse square 
root calculation algorithms that contain one less 
floating-point multiplication by introducing an 
additional magic constant. The advantage of the 
considered algorithms is that they do not use lookup 
tables to form an initial approximation and offer 
increased calculation accuracy by minimizing the 
maximum relative error and using FMA. 

The practical value of the results lies in the fact 
that the proposed algorithms can easily replace the 
basic FISR method in many applications, which 
increases the accuracy of calculations and reduces 
the latency on some platforms. In particular, the 
FISR algorithm with the magic constant 
R = 0x5f3759df is widely used to implement the 
approximation of the reciprocal square root function 
in computer vision and object detection 
tasks [14, 21-24] when it is necessary to improve the 
performance of the software and/or hardware 
application, especially in the case of real-time 
computing. 

These algorithms can be effectively used in 
microcontrollers that support floating-point 
calculations, but do not have an FPU (floating-point 
unit) to calculate the inverse square root, such as, for 
example, ESP-WROOM-32 [19-20]. They can also 
be effective in hardware implementation on FPGA 
platforms that have pipelining and cheap integer 
operations. An example of such a platform is Intel 
Cyclone, which has fast single-precision floating-
point blocks [25]. 

It should also be noted that only normalized 
floating-point numbers of single and double 
precision were discussed in the article. As was 
shown, these algorithms can be easily generalized to 
other data formats of the IEEE 754 standard, namely 
for quadruple and octuple precision. 
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