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Abstract: We discuss analytic procedures for evaluating the availability of parallel computer systems comprised of P 
processors with N tasks subject to failures and repairs. In addition, we argue, via analytic and numeric examples, that 
not incorporating the task-stream into the model is an inadequate approach for evaluating system performance. 
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1. INTRODUCTION 

There has been much research in the area of 
studying the availability of parallel processing 
systems (PPS) subject to failure and repair 
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]. In 
particular, they consider a system of P independent 
processors with  

 

      ( )[ ] ( )[ ] PkkxKxpa k ≤≤== 0forPr     (1) 

 
where K(x) is the random variable (r.v.) denoting the 
number of processors that are functional (available) 
at time x. This, and other performance parameters 
such at Mean Time To First Failure (MTFF) and 
Mean Time Between Failures (MTBF), have been 
studied in detail [9].  Some researchers have even 
been able to solve for systems where failure and 
repair times have general probability distributions. 

This is an important contribution to ascertaining 
the reliability of any system.  However, this 
approach is inadequate for evaluating the 
productivity, or performance, of a system as to 
processing a set of N tasks (hereafter referred to as 
the task-stream) since it is (often implicitly) 
assumed that all resources that are available at any 
time will somehow be used. The implication of this 
is that system availability is independent or 
decoupled) from the workload running on the 
system.  

Techniques have been developed that incorporate 
the dependability and performance aspects of an 
unreliable computing system in a performance 
model. For instance, Markov Reward Models 

(MRM's) are commonly used to assess system 
performabilty [2] [12]. By definition, performability 
models characterize the interaction between the 
availability of a computing system and its 
performance [4]. Often times, when using MRM's, 
researchers and practioners decouple the 
dependability and performance aspects of the model. 
For instance, separate models are created that 
represent system availability and performance 
respectively. Each of the models are solved 
separately and later combined to generate system 
performance measures (for some examples see [12]). 
The reasoning behind this technique is: 1) When the 
problem is formulated in this manner, it is easier to 
solve numerically; and 2) This approach can 
significantly reduce the required state space [12]. 
Unfortunately, if availability and performance are 
separated in this way, then results can be inadequate 
since most computing systems are too dynamic to be 
represented in this manner. The reason is that in an 
unreliable system, tasks can potentially see one or 
more changes in the number of active processors 
during their lifetime.  

Thus, in order to properly describe the execution 
of tasks in a changing environment, execution, 
failure, and repair must be treated together. One way 
to do this is utilize MRM's that do not decouple 
system dependability and performance. These types 
of models are known as integrated performability 
models. In general, these models are more desirable 
than MRM's that separate system availability and 
performance because the task-stream is more 
faithfully represented. In other words, there will 
always be a time when there is not enough work 

98 

computing@tanet.edu.te.ua 
www.tanet.edu.te.ua/computing 

ISSN 1727-6209
International  Scientific 

Journal  of  Computing



P.Fiorini, L.Lipsky / Computing, 2003, Vol. 2, Issue 1 (#3), 98-105 
 

 

available to keep all available processors busy and 
these models capture that behavior. Indeed, in some 
very interesting cases, the interaction between 
execution and failure/repair is explicit.  For instance, 
if processors are subject to failure only when they 
are actively processing tasks, then availability 
cannot be decoupled from the workload, for there 
are times when there are fewer tasks in the systems 
than there are available processors. 

 
2. CONTRIBUTIONS 

In this paper, we illustrate how a matrix analytic 
approach can be to calculate expected performance 
measures (e.g., availability) for an unreliable 
computing system given any number of tasks and 
processors, assuming the failure, repair, and task 
times are exponentially distributed. A complete 
analysis for non-exponential distributions is reserved 
for future research, however, much insight can be 
gained from this model.  

In addition, we investigate how availability 
affects, and is affected by the task stream.  We do 
this by analyzing the job via epochs or task 
completion points from which much insight can be 
gained. Comparable work in this area has been done 
using PH distributions, however, these approaches 
consider the distribution of the entire job and not 
individual task completion points (see, for example, 
[13]). 

Furthermore, it can be shown by using our 
technique, the state space required to represent the 
process of execution - failure – repair - execution is 
substantially reduced. For example, the method 
proposed by [13] requires N . (P + 1) states to 
represent this process. The reason is that Kronecker 
products are used (see [13]). On the other hand, our 
method requires (P + 1) states – an improvement is 
by a factor of N. This is important consideration for 
whatever algorithm is utilized to compute 
performance measures - especially as N and P get 
large. 

 
3. THE MODEL 

Consider a system with P identical, independent 
processors that can fail, at 
exponential rate α.  When failed, they are repaired 
(one or more at a time, depending on how many 
repairmen there are - here assumed to be 1) at 
exponential rate β.  A job, made up of N 
independent and identically distributed (iid) tasks, 
must run on this system. Up to P 
tasks run simultaneously, the rest reside in a waiting 
line.  If a processor fails while executing a task, the 
task goes back in the waiting line, but when it 
restarts later, it continues where it previously left 

off. It is assumed task times are exponentially 
distributed, with mean, τ = 1/λ. A state, (k, j), in our 
model represents the number of processors that are 
up (0 ≤ k ≤ P), an the number of tasks that have 
completed (1 ≤ j ≤ N). If one of the simultaneously 
executing tasks finishes when the system is in state 
(k, j), then the jth task has completed. The state of the 
system moves up and down as processors fail and 
are repaired, and moves in a feed-forward manner to 
the right when one of the active tasks finishes. The 
period between departures is called an epoch, which 
we denote by j. When an epoch completes, these are 
called embedding points or epoch completion points 
and indicates that a task has completed. For 
example, when the first epoch completes, then the 
first task finishes. Thus, the system enters state (k, j 
+ 1). The job is completes when the system 
transitions from one of the states when j = N.  

Let  
 
               ( ) [ ]1,min, +−= jNkjky               (2) 
 
be the number of active tasks when there are k 
functional processors in the jth epoch.  Then the 
mean time spent at state (k,  j) is 1/µ(k,  j) for 
 

( ) ( ) ( ) ( )jkjkjkjk ,,,, µµµµ βλαα ++= . 
 
Two different models for the rate at which 
processors fail are: 
 

( ) ( ) fail.processorsactiveif

fail;processorsidleif

,
,





=
jky

k
jk

α
α

µα  

Also, 
 

( ) ( )jkyjk ,, λµλ =  

 
is the rate at which tasks finish, and 
 

( )
time).aatrepaired(one

;necessary)repairs(no0
,

Pk

Pk
jk

<
=





=
β

µβ  

is the rate at which processors are repaired. 
Obviously, other choices for µβ are possible (e.g., µβ 
(k, j) = β(P - k) – all processors have a self-repair 
capability). 

Define the kth component of the state vector (a 
row vector), [p(j)]k, to be the probability that there 
are k functional processors at the start of the jth 
epoch.  Then p(j) . ε' = 1 for all j, where ε' is the 
column vector with all 1's.  In a normal state of 
operation, a job would begin with all processors 
functional.  In this case the job starts in state (P, 1) 
(the beginning of the first epoch), so 
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( ) [ ]0...,,0,0,11 =p , 

 
Note that for convenience we place the elements 

in reverse order.  That is, 
 

( ) ( ) ( ) ( )[ ]0...,,,, 21 jpjpjpj PPP −−=p . 

 
There could be a scenario where if the system 

fails (the system finds itself in state (0, j) then the 
job must start from the beginning.  In that case it 
could restart when the first processor is repaired 
(state (1, 1) ). But now 

 
( ) [ ]0,1...,,0,01 =p . 

 
If one considers the set of states in column j to 

describe the jth epoch, then the (P + 1) × (P + 1) 
infinitesimal generator matrix is given by: 
 

( )

( ) ( )
( ) ( )

( )
( ) 






















=
−

−

−
−

j
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jPjP
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α

B  

(3) 
 
where l = N – j + 1 is the number of tasks remaining. 
Again, the columns are listed in reverse order. For 
instance, [B(l)]PP = µ(P, j), and [B(l)]00 = µβ(0, j). 
The reason for using l instead of j for labelling the 
B's is that B(l1) = B(l2) for all l1, l2 ≥ P, independent 
of N, if N > P.  

The vector-matrix pair, <p(j), B(l)> generates the 
evolution of the system during any epoch, for it can 
be shown that the Reliability Matrix, defined by: 
 

( ) ( )( )[ ] ( )( )iktKtlBtj jikik |Prexp:| ==−=R  

 
has the following meaning: Given that the jth epoch 
started with i functional processors, at time t there 
will be k functional processors, and no task will have 
finished.  Therefore, [R(j)ε']i is the probability that 
the jth epoch will end after time t, given that it started 
with i functional processors. 

Note that in (1) x refers to the time since the job 
began, while here, t is the time since the jth epoch 
began.  Thus Kj(t) is the r.v. denoting the number of 
functional processors at time t since the jth epoch 
began.  The epoch points and x are not directly 
related. Given some time x one would have to find 
the probability that j tasks have finished (or that the 

system is in epoch (j + 1) ). On the other hand, the jth 
epoch could have begun at any time, so one would 
have to find the probability that the jth epoch began 
at time x.   

From the definition of p(j), it follows that 
 

          ( ) ( ) ( )ε ′= tjjtj || RpR  
 
is the reliability function for the jth epoch.  Let 
V(l):=[B(l)]-1, then [V(l)]ik is the mean time that 
there are k functional processors during the jth epoch, 
given that the epoch started with i functional 
processors.  Finally, we have the mean time for the 
jth epoch: 
 

            ( ) ( ) ( )ε ′= ljjT Vp                  (4) 
 
The total time to complete the job is then  
 

            ( ) ( )∑
=

=Τ
N

j

jTN
1

                      (5) 

 
We next define the Completion rate matrix for 

the jth epoch: 
 

( )

( )
( )

( )






















=
−

00...000

0,...000

..................

00...0,0

00...00

1

1

,

j

jP

jP

y

y

l

y

λΛ

(6) 
 

and follows that B(l)ε'= ΛΛΛΛ(l)ε'. Therefore, it can be 
shown the matrix, Y(l), defined by 

 

( ) ( ) ( )lll ΛVY =  

 

satisfies Y(l)ε' = ε', i.e., it is a Markov matrix. It’s 
meaning is as follows.  Given that epoch j started 
with i functional servers, [Y(l)]ik is the probability 
that the next epoch will start with k functional 
processors.  Therefore, we can write: 
 
                       ( ) ( ) ( )ljj Ypp =+1                   (7) 
 

As before, l = N – j + 1, and all V(l), ΛΛΛΛ(l), and 
Y(l) are independent of l for l ≥ P. What we have 
described above (the sequence of times, T(j) ), is 
known as a Markov Renewal Process.  Only if Y(l) 
is of rank 1, and is independent of l does the process 
become a simple (actually, delayed) renewal 
process.  For then each epoch would be independent 
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of the previous one, and the T(j)'s, except for T(1), 
would be iid.  

 

4. AVAILABILITY IN THIS MODEL 

We now examine where availability fits into our 
model.  If we define Availability as the total time 
available on functional processors, then this can be 
calculated by defining the Processor Availability 
Matrix, 

( )






















−

=

00...000

01...000

..................

00...010

00...00

P

P

lA  

Then  
 

        ( ) ( ) ( ) ε ′= AVp ljjA                       (8) 
 
is the total time that processors are available during 
the jth epoch. But  
 

( ) PNllA −≤∀= Λλ , 
 

therefore (where τ = 1/λ), 
 

( ) ( ) ( ) ( ) ( ) τετετ =′=′= ljljjA YpAVp , 
 

since Y(l) = V(l)ΛΛΛΛ(l) and Y(l)ε' = ε' for all l. 
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Fig 1 - The expected time processors are available during the 
jth epoch, A(j), when P = 8, N = 32 β = 1.0, and τ = 1.0 for α 

between 0.00 to 1.00 inclusive. 

 
Another parameter, processor activity, becomes 

trivial in this model where the assumption is that all 
tasks restart where they left off.  Since v(j)k = 
[p(j)V(l)]k is the total time there are k functional 
processors during epoch j, then using (2), ∑k v(j)k 

y(k, j) is the total time spent processing tasks in that 
epoch. But from (6), y(k, j) = τ[ ΛΛΛΛ(l)]kk, so 

 

( ) ( ) ( ) ( )

( ) ( ) .

,
1

τετ

ετ

=′=

′=∑
=

lj

ljjkyjv
P

k
k

Yp

AVp
 

 
In other words, the useful activity in each epoch 

is exactly the time needed to process one task.  Thus 
the total useful activity to finish the whole job is τ N. 
As long as j ≤ N - P there are always enough tasks to 
keep the processors busy, so for those epochs, 
availability = activity. Fig. 1 demonstrates this 
behavior. 
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Fig 2 - The expected time time to complete the jth epoch, T(j), 
when P = 8, 32 and N = 32 when α = 0.50, β = 1.0, and τ = 

1.0. 

 
Next observe that B(l) and ΛΛΛΛ(l), and thus V(l), 

Y(l) and R(j|t) are all independent of j as long as  j ≤ 
N - P, that is, as long as there are more tasks 
available than there are processors.  (In what 
follows, we drop the dependence on j when j ≤ N - 
P.  E.g., B(l) = B in that range.)  Even so, the p(j)'s, 
R(j|t)'s and T(j)'s only approach a constant value 
with increasing j, assuming N is large enough. After 
all, from (7) we see that p(j) ≠ p(j +1), and they only 
approach each other as they approach the steady-
state vector, p, defined by  

 
                       ( ) pYpp ==

∞→
j

Nj
lim
,

                (9) 

 

where Y = Y(l) for every l ≥ P.  Note that once l < P 
all the matrices change with l. In the last P epochs 
everything changes.  Even so, we will call the region 
j0 < j ≤ N - P the steady-state (s.s.) zone (if it exists), 
where j0 is big enough so that the variation in the 
p(j)'s is negligible. The region below j0 is called the 
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transient zone, and we will call the region, l < P (N – 
P < j ≤ N) the completion zone of the job. For the 
mean completion time for the jth epoch, from the 
above discussion, it should be clear that when N = P, 
there is no s.s. zone. Fig. 2 illustrates the above 
behaviors when N >> P and N = P. 

From the discussion preceding (4), it follows that 
[pV]k is the mean time that there are k functional 
processors during any epoch in the steady-state 
zone, and since this doesn't change from epoch to 
epoch, the s.s. probability of finding k functional 
processors (in the s.s. zone) is 

( ) [ ]
T

kK kpV
==Pr , 

 

where T = pVε' is the s.s. value of T(j) from (4).  
We see then, that the status of the hardware 

(available processors) is decoupled from the task-
stream in the s.s. zone, but not in the transient zone.  
Some researchers integrate the Chapman-
Kolmogorov equations from x = 0 to the s.s. zone to 
find the availability of the system there. The total 
availability, which in our model would be, from (8), 
 

( ) ( ) ( ) ( ).
1

∑∑
−==

+−==Α
N

PNj

N

j

jAPNjAN τ  

 
For finite N, the completion zone is treated 

incorrectly if the hardware is decoupled from the 
task-stream. After all, now there are fewer tasks than 
there are processors, whether they are available or 
not. This is particularly significant if only active 
processors can fail. If N is not sufficiently large so 
that the s.s. zone is insignificant, or even non-
existent, then the availability  of processors will not 
tell a proper story. 
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Fig 3. - The expected time processors are available 
during the jth epoch, A(j), when P = 32, N = 22, ββββ = 1.0, 

and τ τ τ τ = 1.0 for a between 0.00 to 1.00 inclusive. 

 

Recalling when N = P, there exists no s.s. zone, 
then from the viewpoint of the task-stream, the 
system is always in the transient zone. 
Consequently, decoupling the availability from the 
workload in this case will likely lead to misleading 
measures regarding system availability. This 
behavior is demonstrated in Fig. 3.  

As a final comment, we would expect the 
coupling of hardware to task-stream to be even more 
important for systems where there are arrivals as 
well as departures, for then the system will be 
continually moving among the three zones. 
 

5. AN EXAMPLE 
Let us consider the simplest non-trivial example 

for any N. First we mention that P = 1 (a 'trivial' 
case) is a straight-forward renewal process, where 
each epoch is generated by the < p, B> pair: 
 

( ) [ ] ( ) .;0,1 jlj ∀







−

−+
====

ββ
αλα

BBpp  

That is all epochs, including the first and last are iid. 
The other quantities of interest are: 
 

( ) 
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VV l  

 
and 
 

( ) ll ∀







==
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From (4), T = τ(1 + γ), where γ = α/β is the ratio of 
failure to repair rates. The availability vector (s.s. or 
otherwise) is 
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The simplest non-trivial example is for P = 2. In 

this case 
 

( ) [ ]0,0,11 == pp  
 
and for 1 ≤ j < N (remember l = N – j + 1), 
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and 
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== λ2ΛΛ l  

 
However the last epoch is different, since there is 

only one task left, but there are 2 processors. So for j 
= N (l = 1), 
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We are considering two cases together. For z = 1 

only active processors can fail, while z = 2, idle 
processors can fail as well. Note that in all cases, 
B(l)ε'= ΛΛΛΛ(l) ε' ∀ l. 
 

From its definition, it can be shown that 
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(10) 
where B2 = |B2| = 2βλ(α + β + l) is the determinant 
of B2. Furthermore, 
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Additional calculations yield (for pY2 = p) 
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and 
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(pa)j is the s.s. probability that a random observer 
will find j processors available, and is the s.s. 
solution of the M/M/2/2 queue. T2 is the mean time 
per epoch when the system is in the s.s. 

The other matrices of interest are: 
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What we want from these quantities are Τ(N) and 

Α(N), and then examine them to see how they 
depend upon the task-stream, as represented by τ (or 
1/λ) and N. From (4), (5), and (7) we have 
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We can give a closed-form expression for this by 
finding the spectral decomposition of Y2 which we 
now do. First, the Spectral Decomposition Theorem 
states that any matrix S, can be written in the 
following form: 

 

,uvS nn∑= λ n  

where 
 
         ,and vvSuSu nnnn ′=′= λλ nn     (15) 

 
is normalized to satisfy un 

. vn' = 1. (Recall that 
objects like vn' 

. un are square matrices of rank 1.) 
That is, { λn }, { un }, and { vn' } are the set of 
eigenvalues, left eigenvectors, and right eigenvectors 
respectively, of S. It is not hard to show that uk 

. vk' 
= 0 for n ≠ k. Therefore, 
 

              .0for,
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=
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n
n

j
n

j
n uvS λ     (16) 

 
Since Y(l)ε'= ε', 1 is an eigenvalue of Y(l) with 

right eigenvector ε'. All  Y(l)’s also share the 
property that their last column are all 0’s (Y(l)0i = 0, 
∀ i). Consequently, they all have at least one 
eigenvalue of 0. 
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We now turn our attention specifically to Y2 from 
(11) to find an explicit expression for Τ(N) in (14). 
Solving for ||Y2 – λI|| = 0 yields three eigenvalues, 
λ0 = 0, λ1 = 1, and  
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Solving for the eigenvectors from (15) and 
substituting them into (16) where S = Y2 we get 
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where δij is the Kronecker delta function, which 
equals 1 for i = j, and is 0 otherwise. We next need 
to evaluate 
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Putting this altogether, we get 
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The three terms each have their own meaning. 
The first term provides the time as though the 
system is always in the s.s. The second term only 
contributes if the system happens to begin with all 
processors down, and the third term provides the 
(initial) transient contribution. 

We relieve the reader of the burden of going 
through the rest of the calculation. Suffice to say that 
if one (carefully) places this expression, together 
with (10) and (13) into (14), one gets 
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(17) 
where T2 is given in (12) and 
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is the mean time for the last task (completion zone) 
if the s.s. period had previously been reached (i.e., N 
is large enough so that p(1)Y2

N-1 = p). Any deviation 
from this is included in the term containing (λ2)

N-1. 
These are certainly too cumbersome expressions 

from which to gain direct insight. But first notice 
that if α = 0 (no failures), T2 = τ/2; T1 = τ, and Τ(N) 
= τ(N+1)/2 as would be expected. The same results 
occur if β → ∞ (instant repair). 

We net examine the limit of Τ(N) if W = τN = 
N/λ is held constant as N → ∞ and t → 0 (or λ → 
∞). First we look at (λ2)

N-1 
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It follows then from elementary calculus that 
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The rest follows easily, yielding: 
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The first term on the right is the time the job would 
take if there were no transient effects, while the 
second term gives the transient contribution, which 
reduces to total execution time because initially all 
processors are functional. The completion zone 
doesn’t contribute in this limit, because only one job 
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remains at the end, and t → 0. The formula also tells 
us that the s.s. region occurs if (α + β)W >> 1 (the 
exponential term goes to 0), but even then, the 
effects of the transient region can be significant 
unless W is very large. 
 

6. CONCLUSIONS 

There has been much research in the area of the 
design, implementation, and performance analysis of 
computing systems in the presence of failures and 
repairs.  In this paper, we discussed an analytic 
procedure for evaluating the availability of a 
computer system comprised of P processors subject 
to failures and repairs. In addition, by using our 
approach, we claimed the state space is reduced by a 
factor of N compared to other techniques (see [13]). 
In addition, via our analytic and numeric examples, 
we argued that not incorporating the task-stream is 
an inadequate approach for evaluating system 
performance. Furthermore, we stated this would 
especially be true in interactive environments where 
both arrivals and departures could occur since the 
system would be continuously moving between the 
transient, steady-state, and completion zones. 
Furthermore, we showed that when N = P, from the 
viewpoint of the task-stream, the system is always in 
the transient zone, thus, decoupling availability from 
the workload in this case would likely lead to 
misleading performance results. 
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