
P.Fiorini, L.Lipsky / Computing, 2003, Vol. 2, Issue 1 (#3), 98-105

AVAILABILITY VERSUS PERFORMANCE

Pierre M. Fiorini 1), Lester Lipsky 2)

1) Department of Computer Science, University of Southern Maine, Portland, ME, USA, pfiorini@usm.maine.edu,
www.cs.usm.maine.edu

2) Department of Computer Science & Engineering, University of Connecticut, Storrs, CT, USA,
lester@engr.uconn.edu, www.cse.uconn.edu

Abstract: We discuss analytic procedures for evaluating the availability of parallel computer systems comprised of P
processors with N tasks subject to failures and repairs. In addition, we argue, via analytic and numeric examples, that
not incorporating the task-stream into the model is an inadequate approach for evaluating system performance.

Keywords: – Parallel and Distributed Processing, Performance Evaluation, Performability, Queueing Theory.

1. INTRODUCTION

There has been much research in the area of
studying the availability of parallel processing
systems (PPS) subject to failure and repair
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]. In
particular, they consider a system of P independent
processors with

 ()[] ()[] PkkxKxpa k ≤≤== 0forPr (1)

where K(x) is the random variable (r.v.) denoting the
number of processors that are functional (available)
at time x. This, and other performance parameters
such at Mean Time To First Failure (MTFF) and
Mean Time Between Failures (MTBF), have been
studied in detail [9]. Some researchers have even
been able to solve for systems where failure and
repair times have general probability distributions.

This is an important contribution to ascertaining
the reliability of any system. However, this
approach is inadequate for evaluating the
productivity, or performance, of a system as to
processing a set of N tasks (hereafter referred to as
the task-stream) since it is (often implicitly)
assumed that all resources that are available at any
time will somehow be used. The implication of this
is that system availability is independent or
decoupled) from the workload running on the
system.

Techniques have been developed that incorporate
the dependability and performance aspects of an
unreliable computing system in a performance
model. For instance, Markov Reward Models

(MRM's) are commonly used to assess system
performabilty [2] [12]. By definition, performability
models characterize the interaction between the
availability of a computing system and its
performance [4]. Often times, when using MRM's,
researchers and practioners decouple the
dependability and performance aspects of the model.
For instance, separate models are created that
represent system availability and performance
respectively. Each of the models are solved
separately and later combined to generate system
performance measures (for some examples see [12]).
The reasoning behind this technique is: 1) When the
problem is formulated in this manner, it is easier to
solve numerically; and 2) This approach can
significantly reduce the required state space [12].
Unfortunately, if availability and performance are
separated in this way, then results can be inadequate
since most computing systems are too dynamic to be
represented in this manner. The reason is that in an
unreliable system, tasks can potentially see one or
more changes in the number of active processors
during their lifetime.

Thus, in order to properly describe the execution
of tasks in a changing environment, execution,
failure, and repair must be treated together. One way
to do this is utilize MRM's that do not decouple
system dependability and performance. These types
of models are known as integrated performability
models. In general, these models are more desirable
than MRM's that separate system availability and
performance because the task-stream is more
faithfully represented. In other words, there will
always be a time when there is not enough work

98

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

P.Fiorini, L.Lipsky / Computing, 2003, Vol. 2, Issue 1 (#3), 98-105

available to keep all available processors busy and
these models capture that behavior. Indeed, in some
very interesting cases, the interaction between
execution and failure/repair is explicit. For instance,
if processors are subject to failure only when they
are actively processing tasks, then availability
cannot be decoupled from the workload, for there
are times when there are fewer tasks in the systems
than there are available processors.

2. CONTRIBUTIONS

In this paper, we illustrate how a matrix analytic
approach can be to calculate expected performance
measures (e.g., availability) for an unreliable
computing system given any number of tasks and
processors, assuming the failure, repair, and task
times are exponentially distributed. A complete
analysis for non-exponential distributions is reserved
for future research, however, much insight can be
gained from this model.

In addition, we investigate how availability
affects, and is affected by the task stream. We do
this by analyzing the job via epochs or task
completion points from which much insight can be
gained. Comparable work in this area has been done
using PH distributions, however, these approaches
consider the distribution of the entire job and not
individual task completion points (see, for example,
[13]).

Furthermore, it can be shown by using our
technique, the state space required to represent the
process of execution - failure – repair - execution is
substantially reduced. For example, the method
proposed by [13] requires N . (P + 1) states to
represent this process. The reason is that Kronecker
products are used (see [13]). On the other hand, our
method requires (P + 1) states – an improvement is
by a factor of N. This is important consideration for
whatever algorithm is utilized to compute
performance measures - especially as N and P get
large.

3. THE MODEL

Consider a system with P identical, independent
processors that can fail, at
exponential rate α. When failed, they are repaired
(one or more at a time, depending on how many
repairmen there are - here assumed to be 1) at
exponential rate β. A job, made up of N
independent and identically distributed (iid) tasks,
must run on this system. Up to P
tasks run simultaneously, the rest reside in a waiting
line. If a processor fails while executing a task, the
task goes back in the waiting line, but when it
restarts later, it continues where it previously left

off. It is assumed task times are exponentially
distributed, with mean, τ = 1/λ. A state, (k, j), in our
model represents the number of processors that are
up (0 ≤ k ≤ P), an the number of tasks that have
completed (1 ≤ j ≤ N). If one of the simultaneously
executing tasks finishes when the system is in state
(k, j), then the jth task has completed. The state of the
system moves up and down as processors fail and
are repaired, and moves in a feed-forward manner to
the right when one of the active tasks finishes. The
period between departures is called an epoch, which
we denote by j. When an epoch completes, these are
called embedding points or epoch completion points
and indicates that a task has completed. For
example, when the first epoch completes, then the
first task finishes. Thus, the system enters state (k, j
+ 1). The job is completes when the system
transitions from one of the states when j = N.

Let

 () []1,min, +−= jNkjky (2)

be the number of active tasks when there are k
functional processors in the jth epoch. Then the
mean time spent at state (k, j) is 1/µ(k, j) for

() () () ()jkjkjkjk ,,,, µµµµ βλαα ++= .

Two different models for the rate at which
processors fail are:

() () fail.processorsactiveif

fail;processorsidleif

,
,

=
jky

k
jk

α
α

µα

Also,

() ()jkyjk ,, λµλ =

is the rate at which tasks finish, and

()
time).aatrepaired(one

;necessary)repairs(no0
,

Pk

Pk
jk

<
=

=
β

µβ

is the rate at which processors are repaired.
Obviously, other choices for µβ are possible (e.g., µβ
(k, j) = β(P - k) – all processors have a self-repair
capability).

Define the kth component of the state vector (a
row vector), [p(j)]k, to be the probability that there
are k functional processors at the start of the jth
epoch. Then p(j) . ε' = 1 for all j, where ε' is the
column vector with all 1's. In a normal state of
operation, a job would begin with all processors
functional. In this case the job starts in state (P, 1)
(the beginning of the first epoch), so

99

P.Fiorini, L.Lipsky / Computing, 2003, Vol. 2, Issue 1 (#3), 98-105

() []0...,,0,0,11 =p ,

Note that for convenience we place the elements

in reverse order. That is,

() () () ()[]0...,,,, 21 jpjpjpj PPP −−=p .

There could be a scenario where if the system

fails (the system finds itself in state (0, j) then the
job must start from the beginning. In that case it
could restart when the first processor is repaired
(state (1, 1)). But now

() []0,1...,,0,01 =p .

If one considers the set of states in column j to

describe the jth epoch, then the (P + 1) × (P + 1)
infinitesimal generator matrix is given by:

()

() ()
() ()

()
()

=
−

−

−
−

j

j

jPjP

jPjP

l

,0

,1

1,

,,

...00

...00

............

0...,

0...

µ
µ

µµ
µµ

β

α

β

α

B

(3)

where l = N – j + 1 is the number of tasks remaining.
Again, the columns are listed in reverse order. For
instance, [B(l)]PP = µ(P, j), and [B(l)]00 = µβ(0, j).
The reason for using l instead of j for labelling the
B's is that B(l1) = B(l2) for all l1, l2 ≥ P, independent
of N, if N > P.

The vector-matrix pair, <p(j), B(l)> generates the
evolution of the system during any epoch, for it can
be shown that the Reliability Matrix, defined by:

() ()()[] ()()iktKtlBtj jikik |Prexp:| ==−=R

has the following meaning: Given that the jth epoch
started with i functional processors, at time t there
will be k functional processors, and no task will have
finished. Therefore, [R(j)ε']i is the probability that
the jth epoch will end after time t, given that it started
with i functional processors.

Note that in (1) x refers to the time since the job
began, while here, t is the time since the jth epoch
began. Thus Kj(t) is the r.v. denoting the number of
functional processors at time t since the jth epoch
began. The epoch points and x are not directly
related. Given some time x one would have to find
the probability that j tasks have finished (or that the

system is in epoch (j + 1)). On the other hand, the jth
epoch could have begun at any time, so one would
have to find the probability that the jth epoch began
at time x.

From the definition of p(j), it follows that

 () () ()ε ′= tjjtj || RpR

is the reliability function for the jth epoch. Let
V(l):=[B(l)]-1, then [V(l)]ik is the mean time that
there are k functional processors during the jth epoch,
given that the epoch started with i functional
processors. Finally, we have the mean time for the
jth epoch:

 () () ()ε ′= ljjT Vp (4)

The total time to complete the job is then

 () ()∑
=

=Τ
N

j

jTN
1

 (5)

We next define the Completion rate matrix for

the jth epoch:

()

()
()

()

=
−

00...000

0,...000

..................

00...0,0

00...00

1

1

,

j

jP

jP

y

y

l

y

λΛ

(6)

and follows that B(l)ε'= ΛΛΛΛ(l)ε'. Therefore, it can be
shown the matrix, Y(l), defined by

() () ()lll ΛVY =

satisfies Y(l)ε' = ε', i.e., it is a Markov matrix. It’s
meaning is as follows. Given that epoch j started
with i functional servers, [Y(l)]ik is the probability
that the next epoch will start with k functional
processors. Therefore, we can write:

 () () ()ljj Ypp =+1 (7)

As before, l = N – j + 1, and all V(l), ΛΛΛΛ(l), and
Y(l) are independent of l for l ≥ P. What we have
described above (the sequence of times, T(j)), is
known as a Markov Renewal Process. Only if Y(l)
is of rank 1, and is independent of l does the process
become a simple (actually, delayed) renewal
process. For then each epoch would be independent

100

P.Fiorini, L.Lipsky / Computing, 2003, Vol. 2, Issue 1 (#3), 98-105

of the previous one, and the T(j)'s, except for T(1),
would be iid.

4. AVAILABILITY IN THIS MODEL

We now examine where availability fits into our
model. If we define Availability as the total time
available on functional processors, then this can be
calculated by defining the Processor Availability
Matrix,

()

−

=

00...000

01...000

..................

00...010

00...00

P

P

lA

Then

 () () () ε ′= AVp ljjA (8)

is the total time that processors are available during
the jth epoch. But

() PNllA −≤∀= Λλ ,

therefore (where τ = 1/λ),

() () () () () τετετ =′=′= ljljjA YpAVp ,

since Y(l) = V(l)ΛΛΛΛ(l) and Y(l)ε' = ε' for all l.

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8

Epoch, j

E
x

p
e

c
te

d
 A

va
ila

b
ili

ty
 D

u
ri

n
g

 E
p

o
c

h

j,

A
(

j)

 A(j): Expec ted Availability During Epoch j, P = 8, N = 32, τ = 1.0, β = 1.0

α = 0.00

α = 0.25

α = 0.50

α = 0.75

α = 1.00
Trans ient Zone s .s. Zone

Completion Zone

Fig 1 - The expected time processors are available during the
jth epoch, A(j), when P = 8, N = 32 β = 1.0, and τ = 1.0 for α

between 0.00 to 1.00 inclusive.

Another parameter, processor activity, becomes

trivial in this model where the assumption is that all
tasks restart where they left off. Since v(j)k =
[p(j)V(l)]k is the total time there are k functional
processors during epoch j, then using (2), ∑k v(j)k

y(k, j) is the total time spent processing tasks in that
epoch. But from (6), y(k, j) = τ[ΛΛΛΛ(l)]kk, so

() () () ()

() () .

,
1

τετ

ετ

=′=

′=∑
=

lj

ljjkyjv
P

k
k

Yp

AVp

In other words, the useful activity in each epoch

is exactly the time needed to process one task. Thus
the total useful activity to finish the whole job is τ N.
As long as j ≤ N - P there are always enough tasks to
keep the processors busy, so for those epochs,
availability = activity. Fig. 1 demonstrates this
behavior.

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4
 T(j): Expec ted Time to Complete a Task During Epoch j, N = 32, α = 1.0, τ = 1.0, β = 1.0

E
x

p
e

c
te

d
 T

im
e

 t
o

 C
o

m
p

le
te

 a
 T

a
s

k
 D

u
ri

n
g

 E
p

o
c

h

j,

T
(

j)

Epoch, j

Transient Zone

s .s . Zone

Completion Zone
 P = 8, N = 32
 P = 32, N = 32

Fig 2 - The expected time time to complete the jth epoch, T(j),
when P = 8, 32 and N = 32 when α = 0.50, β = 1.0, and τ =

1.0.

Next observe that B(l) and ΛΛΛΛ(l), and thus V(l),

Y(l) and R(j|t) are all independent of j as long as j ≤
N - P, that is, as long as there are more tasks
available than there are processors. (In what
follows, we drop the dependence on j when j ≤ N -
P. E.g., B(l) = B in that range.) Even so, the p(j)'s,
R(j|t)'s and T(j)'s only approach a constant value
with increasing j, assuming N is large enough. After
all, from (7) we see that p(j) ≠ p(j +1), and they only
approach each other as they approach the steady-
state vector, p, defined by

 () pYpp ==

∞→
j

Nj
lim
,

 (9)

where Y = Y(l) for every l ≥ P. Note that once l < P
all the matrices change with l. In the last P epochs
everything changes. Even so, we will call the region
j0 < j ≤ N - P the steady-state (s.s.) zone (if it exists),
where j0 is big enough so that the variation in the
p(j)'s is negligible. The region below j0 is called the

101

P.Fiorini, L.Lipsky / Computing, 2003, Vol. 2, Issue 1 (#3), 98-105

transient zone, and we will call the region, l < P (N –
P < j ≤ N) the completion zone of the job. For the
mean completion time for the jth epoch, from the
above discussion, it should be clear that when N = P,
there is no s.s. zone. Fig. 2 illustrates the above
behaviors when N >> P and N = P.

From the discussion preceding (4), it follows that
[pV]k is the mean time that there are k functional
processors during any epoch in the steady-state
zone, and since this doesn't change from epoch to
epoch, the s.s. probability of finding k functional
processors (in the s.s. zone) is

() []
T

kK kpV
==Pr ,

where T = pVε' is the s.s. value of T(j) from (4).
We see then, that the status of the hardware

(available processors) is decoupled from the task-
stream in the s.s. zone, but not in the transient zone.
Some researchers integrate the Chapman-
Kolmogorov equations from x = 0 to the s.s. zone to
find the availability of the system there. The total
availability, which in our model would be, from (8),

() () () ().
1

∑∑
−==

+−==Α
N

PNj

N

j

jAPNjAN τ

For finite N, the completion zone is treated

incorrectly if the hardware is decoupled from the
task-stream. After all, now there are fewer tasks than
there are processors, whether they are available or
not. This is particularly significant if only active
processors can fail. If N is not sufficiently large so
that the s.s. zone is insignificant, or even non-
existent, then the availability of processors will not
tell a proper story.

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

Epoch, j

E
xp

ec
te

d
 A

va
ila

bi
lit

y
D

u
rin

g
E

po
c

h
 j

,
 A

(
j)

 A(j): Expec ted Availability During Epoch j, P = 32, N = 32, τ = 1.0, β = 1.0

α = 0.00

α = 0.25

α = 0.50

α = 0.75

α = 1.00
Trans ient Zone

Fig 3. - The expected time processors are available
during the jth epoch, A(j), when P = 32, N = 22, ββββ = 1.0,

and τ τ τ τ = 1.0 for a between 0.00 to 1.00 inclusive.

Recalling when N = P, there exists no s.s. zone,
then from the viewpoint of the task-stream, the
system is always in the transient zone.
Consequently, decoupling the availability from the
workload in this case will likely lead to misleading
measures regarding system availability. This
behavior is demonstrated in Fig. 3.

As a final comment, we would expect the
coupling of hardware to task-stream to be even more
important for systems where there are arrivals as
well as departures, for then the system will be
continually moving among the three zones.

5. AN EXAMPLE
Let us consider the simplest non-trivial example

for any N. First we mention that P = 1 (a 'trivial'
case) is a straight-forward renewal process, where
each epoch is generated by the < p, B> pair:

() [] () .;0,1 jlj ∀

−

−+
====

ββ
αλα

BBpp

That is all epochs, including the first and last are iid.
The other quantities of interest are:

()

+

==
βαβ

αβ
β
τ

VV l

and

() ll ∀

==

00

01
YY .

From (4), T = τ(1 + γ), where γ = α/β is the ratio of
failure to repair rates. The availability vector (s.s. or
otherwise) is

.
1

,
1

1
,

++

=

++

=
γ

γ
γβα

α
βα

β
pa

The simplest non-trivial example is for P = 2. In

this case

() []0,0,11 == pp

and for 1 ≤ j < N (remember l = N – j + 1),

() ,

0

0222

−
−++−

−+
==

ββ
αλβαβ

ααλ
2BB l

and

102

P.Fiorini, L.Lipsky / Computing, 2003, Vol. 2, Issue 1 (#3), 98-105

() .

000

010

002

== λ2ΛΛ l

However the last epoch is different, since there is

only one task left, but there are 2 processors. So for j
= N (l = 1),

() ,

0

0

−
−++−

−+
==

ββ
αλβαβ

ααλ zz

lBB 1

and

() .

000

010

001

== λlΛΛ 1

We are considering two cases together. For z = 1

only active processors can fail, while z = 2, idle
processors can fail as well. Note that in all cases,
B(l)ε'= ΛΛΛΛ(l) ε' ∀ l.

From its definition, it can be shown that

[]
()

() ()
() ()[]

,

22

22
22

1

22

2

2

2

1

+++
++

+
=

= −

βλβαλαββ
λααλαββ

ααβλββ

B

22 BV

(10)
where B2 = |B2| = 2βλ(α + β + l) is the determinant
of B2. Furthermore,

.

0

0

0
1

+
+

+

++
=

=

λαβ
λαβ

αλβ

λβα

222 ΛVY

 (11)

Additional calculations yield (for pY2 = p)

()γ
γγτε

βα
α

βα
β

+
++

=′=

++

=

12

221

;0,,

2

2 2V

p

pT

 (12)

and

[] []
.

2,2,1

2,2,1
.

2,2,
2,2,

2

2
2

2

22

22

γγ
γγ

ααββ
ααββ

ε
==

′
=

pV

pV
pa

(pa)j is the s.s. probability that a random observer
will find j processors available, and is the s.s.
solution of the M/M/2/2 queue. T2 is the mean time
per epoch when the system is in the s.s.

The other matrices of interest are:

.

0

0

0
1

+
+

+

++
=

=

λαβ
λαβ

αλβ

λβα
z

z

z

z

111 ΛVY

What we want from these quantities are Τ(N) and

Α(N), and then examine them to see how they
depend upon the task-stream, as represented by τ (or
1/λ) and N. From (4), (5), and (7) we have

() () () () ()

() () () .11 1
1

1

1

1

1

1

εε

εε

′+′

=

′+′=+=Τ

−
−

=

−

=

−

=

∑

∑∑

1222

12

VYpVYpp

VpVp

N
N

j

N

j

N

j

j

NjNTjTN

(14)

We can give a closed-form expression for this by
finding the spectral decomposition of Y2 which we
now do. First, the Spectral Decomposition Theorem
states that any matrix S, can be written in the
following form:

,uvS nn∑= λ n

where

 ,and vvSuSu nnnn ′=′= λλ nn (15)

is normalized to satisfy un

. vn' = 1. (Recall that
objects like vn'

. un are square matrices of rank 1.)
That is, { λn }, { un }, and { vn' } are the set of
eigenvalues, left eigenvectors, and right eigenvectors
respectively, of S. It is not hard to show that uk

. vk'
= 0 for n ≠ k. Therefore,

 .0for,
1

≥′=∑
=

jn

m

n
n

j
n

j
n uvS λ (16)

Since Y(l)ε'= ε', 1 is an eigenvalue of Y(l) with

right eigenvector ε'. All Y(l)’s also share the
property that their last column are all 0’s (Y(l)0i = 0,
∀ i). Consequently, they all have at least one
eigenvalue of 0.

103

P.Fiorini, L.Lipsky / Computing, 2003, Vol. 2, Issue 1 (#3), 98-105

We now turn our attention specifically to Y2 from
(11) to find an explicit expression for Τ(N) in (14).
Solving for ||Y2 – λI|| = 0 yields three eigenvalues,
λ0 = 0, λ1 = 1, and

..2 λβα
λ

λ
++

=

Solving for the eigenvectors from (15) and
substituting them into (16) where S = Y2 we get

[]

() [] ,0,1,1

1

1

1

1,1,0

1

1

1

0,
1

,
1

1

1

1

1

2

0

−

+

+

+
−

+

−

+

++

=

γ
γ

γ
γ

γ
γ

λ

δγ
γ

γ

j

j
j

2Y

where δij is the Kronecker delta function, which
equals 1 for i = j, and is 0 otherwise. We next need
to evaluate

() .
1

1

1∑
−

=

−=
N

j

jN 2YX

This is easy enough since () 111

1 −=∑ −
= NN

j ,

11
1 1,0 =∑ −

= −
N
j jδ and

()

.1

1

1

1

2

1
2

1

1
2

1

++

−
+

++=

−
−=

−

−−

=

−∑

λβα
λ

βα
λβα

λ
λλ

N

NN

j

j

Putting this altogether, we get

() () []

()[] [].0,1,1

1

1

1

1

1,1,0

1

0

0

1

2
1 −

+

+

+
−

−
+

+++

−

+′−=

−

γ
γ

γ
γ

γ
γ

λβα
λβα

ε

N

NN pX

The three terms each have their own meaning.
The first term provides the time as though the
system is always in the s.s. The second term only
contributes if the system happens to begin with all
processors down, and the third term provides the
(initial) transient contribution.

We relieve the reader of the burden of going
through the rest of the calculation. Suffice to say that
if one (carefully) places this expression, together
with (10) and (13) into (14), one gets

() () ()
()

()()
() () λ

λβαβαβ
αββαλα

βαβ
βαα

1
22

22

212

2

22

2

2
1

−

+++
−+++

+

+
+−+−=Τ

N

z

z

TTNN

(17)
where T2 is given in (12) and

() () ()
()()λβαβαβλ

ααββλβαβαβε
+++

+++++++′=
z

T
2222

1 1pV

is the mean time for the last task (completion zone)
if the s.s. period had previously been reached (i.e., N
is large enough so that p(1)Y2

N-1 = p). Any deviation
from this is included in the term containing (λ2)

N-1.
These are certainly too cumbersome expressions

from which to gain direct insight. But first notice
that if α = 0 (no failures), T2 = τ/2; T1 = τ, and Τ(N)
= τ(N+1)/2 as would be expected. The same results
occur if β → ∞ (instant repair).

We net examine the limit of Τ(N) if W = τN =
N/λ is held constant as N → ∞ and t → 0 (or λ →
∞). First we look at (λ2)

N-1

() .12

 ++=

++

=
−

λ
βα

λβα
λ

λ
λWN

N

It follows then from elementary calculus that

() () .lim 2 e WN βα

λ
λ +−

∞→
=

The rest follows easily, yielding:

() ()
()

()
()().1

12

21

12

221
lim 2

2

eWN Wβα

λ γβ
γγ

γ
λγ +−

∞→
+

+
+−

+
++=Τ

The first term on the right is the time the job would
take if there were no transient effects, while the
second term gives the transient contribution, which
reduces to total execution time because initially all
processors are functional. The completion zone
doesn’t contribute in this limit, because only one job

104

P.Fiorini, L.Lipsky / Computing, 2003, Vol. 2, Issue 1 (#3), 98-105

remains at the end, and t → 0. The formula also tells
us that the s.s. region occurs if (α + β)W >> 1 (the
exponential term goes to 0), but even then, the
effects of the transient region can be significant
unless W is very large.

6. CONCLUSIONS

There has been much research in the area of the
design, implementation, and performance analysis of
computing systems in the presence of failures and
repairs. In this paper, we discussed an analytic
procedure for evaluating the availability of a
computer system comprised of P processors subject
to failures and repairs. In addition, by using our
approach, we claimed the state space is reduced by a
factor of N compared to other techniques (see [13]).
In addition, via our analytic and numeric examples,
we argued that not incorporating the task-stream is
an inadequate approach for evaluating system
performance. Furthermore, we stated this would
especially be true in interactive environments where
both arrivals and departures could occur since the
system would be continuously moving between the
transient, steady-state, and completion zones.
Furthermore, we showed that when N = P, from the
viewpoint of the task-stream, the system is always in
the transient zone, thus, decoupling availability from
the workload in this case would likely lead to
misleading performance results.

7. REFERENCES

[1] L. Donatiello and B. R. Iyer. Analysis of a Composite
Performance Reliability Measure for Fault-
Tolerant Systems, Journal of ACM 34 (1) (1987).
p. 179-199.

[2] B. Havakort, R. Marie, G. Rubino, and K. Trivedi.
Performability Modeling: Tools and Techniques.
Editors. Wiley, New York, 2002.

[3] P. Kanellakis and A. Shvartsman. Fault-Tolerant
Parallel Computation. Kluwer Academic
Publishers, Boston, 1997.

[4] J.Meyer. On Evalutating the Performability of
Degradable Computing Systems, IEEE
Transactions on Computers (C-29) 8 (1980).

[5] I. Mitrani and A. Puhalskii. Limiting Results for
Multiprocessor Systems with Breakdowns and
Repairs, Queueing Systems (14) (1993).

[6] I. Mitrani and P.E. Wright. Routing in the Presence of
Breakdowns, Performance Evaluation (20) (1994).

[7] H. Nabli and B. Sericola Performability Analysis: A
New Algorithm, IEEE Transactions on Computers,
45 (4) (1996).

[8] M.F. Neuts. Matrix-Geometric Solutions in Stochastic
Models: An Algorithmic Approach, Johns Hopkins
University Press, Baltimore, 1981.

[9] S. Osaki and T. Nishio. Reliability of Some Fault-

Tolerant Computer Architectures, Springer-
Verlag, New York, 1980.

[10] R.A. Sahner, K.S. Trivedi, and A. Puliafito.
Performance and Reliability Analysis of Computer
Systems: An Example-Based Approach using the
SHARPE Software Package, Kluwer Academic
Publishers, Boston, 1996.

[11] K. Wolter and A. Zisowsky. On Markov Reward
Modeling with FSPN's. Proceedings of “4th
International Computer Performance and
Dependability Symposium”, Chicago, IL, March
2000.

[12] K. Trivedi, J. Muppala, S. Woolet, and B. Havakort.
Composite Performance and Dependability
Analysis, Performance Evaluation (1992).

[13] A. Bobbio and K. Trivedi. Computation of the
Distribution of the Completion Time When the
Work Requirement is a PH Random Variable,
Communications in Statistics - Stochastic Models,
(6) 1 (1990).

[14] M.F. Neuts. Structured Stochastic Models of the
M/G/1 Type and their Applications, Marcel
Dekker, New York, 1989.

Pierre M. Fiorini is an Assistant
Professor of Computer Science at
the University of Southern Maine.
He received the Ph.D. degree
from the University of Connecticut
in Computer Science &
Engineering (1998), an M.S. in
Computer Science & Engineering

from the University of Connecticut (1995), and a
B.S. in Computer Science from Trinity College
(1989). His research interests include Queueing
Theory, Computer Performance Modeling, Network
Modeling, Stochastic Processes, and Computational
Intelligence. He is a member of the IEEE and ACM.

Lester Lipsky is a Professor of
Computer Science & Engineering
at the University of Connecticut.
He holds the Ph.D. degree from
the University of Connecticut in
Theoretical Atomic Physics
(1965), an M.S. in Physics from
Brandeis University (1958), and a
B.M.E in Mechanical Engineering from the City
College of New York (1956). His research Interests
include: Queuing Theory (Linear Algebraic
Approach), Computer System Performance
Modeling, Network Modeling, Stochastic Processes
Related to Telecommunications, and Computational
Atomic Physics. He is the author the text entitled,
Queueing Theory: A Linear Algebric Approach
(MacMillan & Co.) and a member of the IEEE, ACM,
Sigma Chi, Upsilon Pi Epsilon, and the American
Physical Society.

105

