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Abstract: We propose an incomplete Cholesky factorization for the solution of large positive definite systems of 
equations and for the solution of large-scale trust region sub-problems. The factorization is based on the two-
parameter −),( pm drop-tolerance strategy for insignificant elements in the incomplete factor matrix. The factorization 
proposed essentially reduces the negative processes of irregular distribution and accumulation of errors in factor 
matrix and provides the optimal rate of memory filling with essential nonzero elements. On the contrary to the known 

−p retain and −τ drop-tolerance strategies, the −),( pm strategy allows to form the factor matrix in fixed memory. 
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1. INTRODUCTION 
The main idea of conjugate gradients methods 

with preconditioner is to form a special БС  matrix at 
the preparatory step, which is called A matrix's 
preconditioner and satisfies the following 
conditions: 
1) БС  is a good approximation of the matrix A; 
2) БС  is easily obtained from Б  and it uses 

effective memory-save mechanisms; 
3) It should be much easier to solve the system of 

equations BXСБ =  than input system ВБЧ = . 
The preconditioner matrix БС  is used in order to 

provide clustering of Б 's proper values. Then the 
convergence of iterative solution of preconditioning 
equation system ВСБЧС 1

Б
1
Б

−− =  is significantly 
higher than one of the input system ВБЧ = . 

The construction of preconditioner is commonly 
based on the well-known methods of matrix 
factorization: LLT, LDLT and LU, LDU [6 – 7]. 
These methods traditionally applied to symmetric 
and asymmetric matrices are implemented in so-
called incomplete form, with the addition of any 
non-zero elements drop-tolerance strategy [1 – 5]. 
The successfully chosen drop-tolerance strategy 
allows creating the preconditioner БС , which 
satisfies the conditions 1) – 3) in the best way. 

Let us consider the problems with large sparse 
symmetric matrices only. In order to solve them the 
conjugate gradients iteration methods with 

preconditioner built on the base of incomplete 
Cholesky factorization are used. 

Initially proposed for positive definite systems, 
iteration methods with preconditioner on the base of 
incomplete Cholesky factorization are now being 
developed to be applicable to indefinite systems [1 
– 4]. Indefinite systems may appear in n–measured 
function minimization problems, where the solution 
process is reduced to the sequence of solutions of 
sub problems: 

 







 ∆≤+

2
:

2
1min  DXAXXXB TT    (1) 

 
where ∆  is the trust region radius, B ∈ n  is the 
gradient of the function at the current iterate,  
A ∈ nn ×  is an approximation to the Hessian 
matrix, D ∈ nn ×  is a nonsingular  scaling matrix 
[10]. To solve (1) we generally need to solve 
indefinite system of linear equations AX + B = 0. 

To find an approximate solution of large-scale 
problem (1), it is proposed, according to paper [11], 
a conjugate gradients method with preconditioner, 
which takes into account the restriction on radius of 
trust region and the possibility that matrix A is 
indefinite. As it is indicated in papers [1, 10], if 

∆≤
2

 kDX , then the conjugate gradients method 
generates sequences { }kX  and directions { }kP  until 
one of the next three conditions is satisfied: 
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    BBAXk σ≤+ , 0≤k

T
k APP , ∆>+ 2

 1kDX .  (2) 
 
In all three cases an approximate solution of problem 
(1) satisfying the three convergence conditions of 
iteration methods in n-measured trust region is 
defined. In most problems where ∆  is comparatively 
small, the third condition can be satisfied on the first 
few iterations. As it is pointed out in papers [1 – 2] 
for the satisfaction of the first two conditions a 
higher number of iterations of conjugate gradients 
method is needed, particularly when A is nearly 
singular. In this case the second condition can be 
satisfied only if A is not positively defined. Then kP  
is a direction of negative curvature. 
 Our aim is to reduce the number of iterations 
needed to satisfy the first two conditions in 
expression (2), which is comparatively difficult [2]. 
 To solve the problem (1) we, as in paper [1], 
transform the ellipsoidal trust region in the sphere 
trust region and obtain the following problem 
 







 ∆≤+

22
1min  xa x:xxb TT      (3) 

 
where BDb T−= , .1−−= ADDa T  Then the 
approximate solution x  of the problem (3) 
corresponds to the solution X  of the problem (1) 
with relationship .1 xDX −=  

As the scaled matrix D clusters the proper values 
of matrix A , the conjugate gradients method 
provides the solution of problem (3) in a small 
number of iterations. Matrix D is formed on the base 
of Cholesky factorization. 
 

2. INCOMPLETE FACTORIZATION 
The authors of papers [1 – 3, 5] point out that the 

factor Cholesky clustering property depends on the 
choice of the filling pattern S . It is confirmed that 
matrix L must be a lower-triangle matrix and satisfy 
the next conditions: 
 

,RLLA T += 0=ijl  if Sji ∉),(  and 0=ijr  if .),( Sji ∈  (4) 
 
 Different strategies of forming filling pattern S  
are described in papers [2, 5, 12 – 14]. Strategies 
proposed are based on two following ideas: 
– Pattern S  is initially fixed; 
– Pattern S  is formed in the process of forming L. 

The first strategy, where S  is initially fixed, is 
rather attractive due to the following reasons: 
– Pattern S  of matrix L is easily obtained from 

pattern of matrix А; 
– The amount of memory needed for matrix L is 

predictable; 

– There is no need to control drop-tolerance. 
There are many variants of pattern S  initial 

fixation. For example, one could define a pattern S  
so that matrix L  has become a band fixed-width 
matrix. Another way is to get pattern S  and pattern 
matrix А identical. The most promising variant was 
first used in the paper [14] for )( pILU  factorization 
of asymmetric matrix А. In this case for parameter 
p =0 the pattern S  is set on the pattern of matrix А. 

If p >0, additional filling of L  and U  columns is 
allowed. Actually, an additional number of non-zero 
elements placed in L  and U  during their creation 
are limited by parameter p .  

The disadvantage of initial fixation of pattern S  
consists in uncontrollability losses of non-zero 
elements of L  and U . These losses in the formation 
of preconditioners often make it impossible to 
cluster the proper values of matrix А. 

The other idea of S  formation strategy in the 
process of matrix А factorization was first used in 
paper [13] as a so-called −τ drop-tolerance strategy. 
In this case on a ν - step formation L  and U  
correspondent elements are considered to be 
unimportant and they are not stored in memory (as 
zero elements) if they satisfy the condition 

)()()( ννν τ jjiiij aaa ≤ . The τ  parameter defines the 

limit of losses. 
The −τ drop-tolerance strategy has two 

disadvantages: 
– Unpredictability of memory requirements on factor 

matrices storage, which depends on the value of a 
chosen parameter τ ; 

– Elasticity of parameter τ  vagueness influence on 
the ability of factor matrices to cluster the proper 
values of matrix А. 
Different combinations of pattern S  formation 

strategies described earlier are used at present. For 
example, a modified −p strategy for symmetric 
matrices is used in papers [2, 12]. The modification 
is based on forming the filling pattern S  
independently from the position jn  of non-zero 
elements in j column of matrix А. Only pn j +  
elements of j  column of L are stored. The approach 
presented in paper [12] combines −p  and −τ  
strategies. The idea of this two-parameter strategy is 
a gradual application of −τ  drop-tolerance strategy 
to the elements of j - column of matrix L formed on 
j - step. According to the −p strategy the 

pn j + elements with the biggest absolute value are 
stored in memory. There are some other approaches. 

There is a considerable disadvantage in traditional 
strategies for forming pattern S . These strategies 
generate considerably irregular distribution of errors, 
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which appears during matrix factorization process in 
fixed amount of memory. As Cholesky factorization 
procedure is a gradual procedure and can be 
performed either by rows or by columns, only errors 
initially inputted in matrix L in the first few rows or 
columns correspondingly can be controlled. Once 
initially set during the first step of factorization, 
these errors can quickly spread on the rest of matrix 
L during the next steps of factorization procedure. 
This process involves not only multiplication of 
errors but also their accumulation. Besides the 
assumption that the formed filling pattern S  don’t 
satisfy the desirable conditions  (4) is a mistake. In 
general case, the pattern S  does not satisfy the last 
condition, as 0≠ijr  if .),( Sji ∈  

As an example, let us show this on jki version of 
LLT Cholesky factorization implemented in the 
algorithm 1, so that the elements of lower-triangle 
part of matrix L are computed at the positions of 
elements of input matrix А. This algorithm presents 
no drop-tolerance strategy. 
 

for j = 1:n 
a(j,j) = sqrt( a(j,j) ) 
for k = 1:(j-1) 

for i = (j+1):n 
a(i,j) = a(i,j) - a(i,k)*a(j,k) 

end 
  end 
  for i = (j+1):n 

a(i,j) = a(i,j)/a(j,j) 
a(i,i) = a(i,i) - a(i,j)^2 

  end 
end 

Algorithm 1 – jki version of LLT factorization. 

 
Notice, that for symmetric input matrix А the 
equation is solved gradually by columns respectively 
to elements ijl  of matrix L. During solving 
procedure of the equation (5) matrix А is being 
gradually transformed in Cholesky factor L. As a 
result the matrix TLLL =)0(  can be  
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presented as following: 
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and so on till LL n =)( . 
 Assume that in the result of the first step 
factorization from matrix )0(L  we have obtained 
matrix )1(L , with insignificantly small element, for 
example, 21l  which should be dropped according to 
the chosen pattern S  formation strategy. Therefore 
the transformation from )0(L  to )1(L  introduces a 
contortion to the diagonal element 22l  of matrix )1(L . 
During the next step from )1(L  to )2(L  the small error 

21l  will be multiplied with the lower elements of the 
first column of matrix )1(L  and spread towards the 
whole second column of matrix )2(L  in the form of 
unconsidered components. During the next steps of 
factorization the contorted elements of the second 
column generate deviation of matrix elements at the 
right lower position from the element 21l . Moreover 
the further operations on the contorted elements 
result in unpredictable accumulation of errors in 
elements of final matrix LL n =)( . Such errors are 
non-uniformly spread, so that their lowest level is 
observed in the first columns of matrix L, and the 
highest one is in the last columns. 
 Significant level of accumulated errors is often a 
reason of the formation of such a matrix L, that is 
being substituted in the first equation of expression 
(4), could not guarantee the admissible level of 
errors. So, the matrix L obtained does not inherit 
properties of matrix А and so could not be a good 
preconditioner for conjugate gradients method. 
 Authors in paper [2] propose an interesting variant 
of )( pILLT  Cholesky factorization, based on a 
modified −p drop-tolerance strategy. Implemented 
here as algorithm 2 this variant of factorization is 
worth a particular attention, as it partially blocks 
error distribution in matrix being formed. Algorithm 
2 differs from other algorithms as it contains two 
loops in j-step of Cholesky factorization instead of 
traditional one. 
 

for j = 1:n 
a(j,j) = sqrt( a(j,j) ) 

  col_len = size( i > j: a(i,j) ≠ 0 ) 
  for k = 1:(j-1) & a(j,k) ≠ 0 
    for i = (j+1):n & a(i,k) ≠ 0 
      a(i,j) = a(i,j) - a(i,k)*a(j,k) 
    end 
  end 
  for i = (j+1):n & a(i,j) ≠ 0 
    a(i,j) = a(i,j)/a(j,j) 
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  end 
Retain the largest col_len + p elements in 

a((j+1):n,j). 
  for i = (j+1):n & a(i,j) ≠ 0 
    a(i,i) = a(i,i) - a(i,j)^2 
  end 
end 

Algorithm 2 – )( pILLT  factorization 
modified by C. -J. Lin and J. J. Morė. 

In the first loop j column of forming matrix )( jL  
are calculated with respect to the elements ijl  for 

ji >  and a necessary correction of diagonal 
elements iil  for ji >  is done in the second loop. A 
drop-tolerance strategy is implemented between two 
loops so that insignificant elements formed in the 
first loop do not alter the diagonal elements iil . 
Therefore the contortions admissible while dropping 
unimportant elements do not influence the 
corresponding diagonal elements and the result 
errors TLLAR −=  become smaller. In this algorithm 
an indirect error distribution is possible only through 
non-diagonal elements. This helps to form better 
preconditioners for conjugate gradients method. 
 Algorithm 2 has three essential disadvantages: 
– Incomplete usage of limited amount of memory 

(limit on memory usage is set by p parameter) for 
such a j column of matrix )( jL , which has a filling 
less than pn j + , where jn  – is a number of non-
zero elements in j- column of matrix А; 

– As parameter p can not take negative values, the 
formed preconditioner L can not be placed in less 
amount of memory than is needed to store matrix 
А; 

– Incomplete losses of elements in different columns 
of matrix L, does not permit the exhaustive usage 
of the memory resources provided for high-quality 
computation of incomplete Cholesky factorization. 
We propose a ),( pmILLT  Cholesky factorization 

with adaptive −τ  drop-tolerance strategy without 
disadvantages described above. The errors 

TLLAR −=  are proved to be less than in algorithm 
2. 

The ),( pmILLT  factorization allows forming 
matrix L within an amount of memory provided 
without positioning of the initial matrix А. The 
memory size provided to matrix L is chosen 
independently from the memory size occupied by 
matrix А and is set by parameter m, which fixes the 
relation of memory sizes occupied by both matrices. 
Consider a lower-triangle part of symmetric matrix 
А contains nnz non-zero elements. Then the 
parameter m can assume any values so that 

nnz
nm ≥ . Obviously in a partial case if 

nnz
nm = , 

the matrix L is diagonal matrix with n elements. 
The fact that an input matrix А and preconditioner 

L are stored in memory simultaneously is not a 
desirable condition to implement an iterative 
solution of problem (1) by conjugate gradients 
method. That is why the refusal to implement 
factorization in place of positioning of matrix А is 
not only justified, but it also permits even more 
effective usage of memory resources, provided. 

The structural analysis of elements of intermediate 
matrices )( jL  (5) – (7) formed by LLT Cholesky 
factorization confirms the existence of such memory 
resources. 

 

   R 1

      R 2
R 3

  j-  c o lu m nk -  c o lu m n

k -  ro w

l-  ro w

 j-  ro w

 

Fig. 1 – Matrix )( jL  after j steps of factorization. 

Without taking into account the positioning of zero 
elements in matrix )( jL , we distinguish three groups 
of elements R1, R2 and R3, forming the lower-
triangle partition of matrix, and lower and upper 
diagonal elements. Diagonal elements marked in 
dark-grey, elements of R1, group and elements of 
row j, contain result elements of matrix L, which do 
not change and are not used during the further 
process of formation of matrices )1( +jL , )2( +jL , . . . 

LL n =)( . Elements of R2 group marked in light grey 
and elements of j column are also the result 
elements, which do not change but they are still 
needed to form the elements of R3 group and lower 
diagonal elements. Ineffectiveness of memory usage 
is estimated by measuring the size of R3 group, 
where corresponding elements of A placed initially 
are stored. It is obvious that the size of R3 group 
depends on the step j of factorization process. 
During the first steps the size of R3 group is 
comparable to the size of the whole lower-triangle 
partition of matrix A, but it reduces linearly to zero 
during the next steps.  

As R3 group consists of elements of separately 
stored matrix A, there is no need to store the same 
elements twice. The released amount of memory can 
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be used to store a bigger number of elements of 
matrices )0(L , )1(L , … LL n =)(  and therefore compute 
an incomplete Cholesky factorization with lower 
level of losses. We will denote the stored matrices 
that do not contain R3 group as )0(L , )1(L , … 

Ln =)(L . 
Another special feature of ),( pmILLT  Cholesky 

factorization proposed is the usage of an adaptive 
−τ drop-tolerance strategy. This drop-tolerance 

strategy allows coordinating memory requirements 
for matrices )0(L , )1(L , … Ln =)(L  formed gradually 
with the possibility to place the elements of these 
matrices in memory actually provided. Normally, 
during the first steps of factorization memory 
requirements for formed )0(L , )1(L , … matrices 
storage do not exceed a provided memory limit. 
Consequently, at the beginning any element losses 
may be admissible and we may actually start with 
LLT Cholesky factorization. Factorization with 0=τ  
continues until the deficit of memory for distributed 
of following )( jL  matrix is arisen. Then if we 
increase τ  and set 0 =ikl  for the such elements ikl  
that 
 

{ }) ,1( ), ,1(  ;  jknkill kkik ∈+∈⋅≤ τ     (8) 
 
we can decrease )( jL  matrix's filling to an 
appropriate level and provide an opportunity to 
place the rest of non-zero elements in provided 
memory. It is obvious that τ  should be increased 
gradually and filling of matrix )( jL  with non-zero 
elements should be strictly observed. A new value of 
τ  parameter should be selected so that we can find 
an admissible filling of matrix )( jL  as soon as 
possible and, from the other side, do not permit 
redundant losses and unjustified big errors in 
matrices )( jL , )1( +jL , …, Ln =)(L . All these 
conflicting requirements satisfy the following 
correspondence for τ  
 







 −⋅=∆

n
jn

s τττ   ,max .      (9) 

 
Here the initial value of incremental growth 

0≠=∆ sττ  is set by expert way. Usually it is 
sufficiently small and does not lead to any 
significant losses. Further, the relative growth rate of 

τ  parameter is set to be equal to 
n

jn −=∆
τ
τ  for 

during the first steps of factorization for nj <<  and 
the low value of τ  closed to sτ we can set 
admissible level of losses quickly but not accurately. 
During the last steps of factorization if nj →  and 

the value of τ  is high one must not allow unjustified 
losses. 
 Two blocking strategies, current and retrospective, 
resist against further distribution and accumulation 
of errors occurring as a result of using the adaptive 

−τ losses strategy. We use the blocking strategies to 
decrease negative influence of dropped non-zero 
elements of R2 group, as they directly influence the 
elements of the lower diagonal group and indirectly 
influence the elements of adjacent columns from the 
left of R2 group. 

The current blocking strategy is needed on the 
current j step of factorization with regard to the 
elements of j column and drop-tolerance criteria 







 +∈⋅≤ ) ,1(  ;

2
  njill jjij

τ  can be used, which differs 

from criteria (8), as τ  is twice less. The correction 
of diagonal elements iil  on the loss value ijl  is not 
allowed according to the algorithm 2 and the 
explanations in paper [2]. Note that the drop-
tolerance strategy with regard to elements of j row is 
constant. 

The retrospective blocking strategy is used after 
the next incrementation of τ  parameter. This 
strategy supposed a partial recovering value of the 
elements of lower-diagonal group 
{ } ) ,1(  ; njklkk +∈ . The square values of kil  
elements, which now satisfy the condition 
{ } ) ,1(  ); ,1(  ; jinjklki ∈+∈≤τ , were subtracted from 
{ } ) ,1(  ; njklkk +∈  earlier. The recovering of 
corresponding values of kkl  involves the addition of 
values 2

kil . 
 The details of implementation of these blocking 
strategies are shown in algorithm 3 presented below. 
Here −τ  and −p  are drop-tolerance strategies used 
concurrently. The −p strategy is additional and used 
in special cases to influence the amount of 
calculations for ),( pmILLT  factorization. If р 
parameter is small, then −p  drop-tolerance strategy 
predominates and algorithm 3 becomes close to 
algorithm 2 in respect of its possibilities. If 
parameter p satisfies condition jnnp j −=+ , −p  
drop-tolerance strategy is inoperative. Such an 
unusual application of −p strategy could be 
ineffective in combination with equation- and 
variable- sorting algorithms, which are not 
considered. 
 
Select 0>sτ  
Set mt = m*nnz 
Set sττ =  
Copy the diagonal elements from A to L 
for j = 1:n 
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L(j,j) = sqrt( L(j,j) ) 
Copy the j-column from A to L 

  col_len = size( i > j: L(i,j) ≠ 0 ) 
  for k = 1:(j-1) & L(j,k) ≠ 0 
    for i = (j+1):n & L(i,k) ≠ 0 
      L(i,j) = L(i,j) - L(i,k)* L(j,k) 
    end 

end 
  for i = (j+1):n & L(i,j) ≠ 0 
    L(i,j) = L(i,j)/L(j,j) 
  end 
 Retain the largest col_len + p elements in 
L((j+1):n,j). 
  Erase the smallest q nonzero elements on 
conditions: 
      abs( L((j+1):n,j) ) τ≤ *L(j,j)/2; 
    abs( L(j,1:j-1) ) τ≤ *L(j,j). 
  mt = mt – ( col_len + p ) + q 
  while( mt < 0 ) 
   τ  = τ  + τ *(n-j)/n 
   for k = 1:(j-1) 
     Erase the smallest q nonzero elements 

on conditions: 
      abs( L(k,1:k-1) ) τ≤ *L(k,k), 
                   abs( L(J=(k+1):n,k) ) τ≤ *L(k,k) 
     and for J > j restore diagonal 
elements:  
      L(J,J) = L(J,J) + L(J,k)^2 
   end 
   mt = mt + q 
  end 
  for i = (j+1):n & L(i,j) ≠ 0 
    L(i,i) = L(i,i) - L(i,j)^2 
  end 
end 

Algorithm 3 – ),( pmILLT  factorization with adaptive 
−τ  drop-tolerance strategy 

 
3. SCALING AND SHIFTING 

The accumulation of errors often results in losses 
of positive definiteness of formed matrices )( jL  on 
the step j of factorization. In this case, at least one 
negative element appears among the elements of the 
lower diagonal group. There are a few methods to 
preserve a positive definiteness property of matrices 

)( jL  formed [1 – 2, 5, 10]. We use only one method, 
based on scaling and shifting procedure. 
 
Choose 0>sα  and 0≥p . 
Compute 2/12/1 −−= ANNA  where )(

2iAediagN = . 
Set 00 =α  if 0)min( >iia  else siia αα +−= )min(0 . 
For k  = 0, 1, ... , 

Use algorithm ),( pmILLT  on 

IAA kk α+=  
if successful set kF αα =  and exit. 

Set ).,2max(1 skk ααα =+  

Algorithm 4 – ),( pmILLT  factorization 
with scaling and shifting procedure. 

In this algorithm scaling is based on 2l -norm of 
columns for the input symmetric matrix А 
normalization, and shifting by the value 0≥Fα  of 

proper values of the normalized matrix A . Shifting 
is used to compute the ),( pmILLT  factorization of 
newly formed positive definite matrix 

IAA FF α+= . 
 

4. CONJUGATE GRADIENTS METHOD 
As a result of scaling and shifting the matrices and 

vectors corresponding the problem (1) can be 
rewritten as following: 
 







 ∆≤+

2
:

2
1min XD XAXXB TT ,(10) 

where BNB 2
1−= , XNX 2

1
= , DND 2

1−= , 

,2
1

2
1 −−= ANNA  )(

2iAediagN = . Then, 
according to Steihaug assumption [11], 
correspondence for the trust region in problem (10) 
is: 
 

( ) ∆≤==
2

2
1

2
X xAXXD F

T    (11) 

 
Here T

F LLA = ; XLx T = ; matrices L  and TL  
are defined by algorithms 3 – 4. 

With respect to (11) the problem (10) is 
 

( ) ( )






 ∆≤+ −−−

2
1 1 : 

2
1min  xxLALxxBL TTT ,(12) 

 
where preconditioner L provides proper values of A€  
matrix clustering. Algorithm 5 reflects the main 
features of the computation for the solution of 
problem (12), with a preconditioner L [1, 5, 6, 11].  
 
Choose initial approximation 0x ∈  n . 

Set )( 0
11

0 xLALBLR T−−− +−=  and 00 RP = . 
For k = 0, 1, ... n, 

     Compute k
TT

kk PLALP −−= 1η ; 
            In case 0≤kη  exit loop; 
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     Compute kkk R ηµ 2= ; 
     Define more precisely kkkk Pxx µ+=+1 ; 
     Define more precisely 

k
T

kkk PLALRR −−
+ −= 1

1 µ ; 

            In case 2
2

1
2

1
BRN k ⋅≤⋅ + σ  exit loop; 

     Compute 22
1 kkk RR +=ν ; 

     Define more precisely kkkk PRP ν+= ++ 11 . 

Algorithm 5 – Conjugate gradients method 
with preconditioner L 

Here the exit loop conditions correspond to (2). 
Using the correspondence xLNX T−−=  2

1
 the final 

solution x  of the problem (12) can be easily 
transformed to the solution X  of the problem (1). 
 

5. CONCLUSION 
The ),( pmILLT  factorization algorithm was used 

for solving of the system of form AX+B=0 with 
matrices A taken from "Harwell-Boeing" collection 
and with the unity vector B. 

The choice for comparing of the factorization 
)( pILLT  algorithm was made due to its 

superficiality over the algorithms implemented in the 
code ma31 from the Harwell program library 
(Release 10) and in the routine cholinc from the 
Matlab package (Version 5) [2]. 
 The experiments showed the unpredictability of 
the memory consumed in fact by the )( pILLT  
algorithm at different values of p. On the contrary, 
the memory demand of the ),( pmILLT  algorithm 
correlated well with the memory actually consumed, 
moreover the memory needed was substantially less 
than the memory occupied by matrices A. The 
convergence of the iterative procedures in the 
conjugate gradients method with the preconditioner 
L formed by ),( pmILLT  algorithm was substantially 
higher than those preconditioner L formed by the 

)( pILLT  algorithm. Such a difference was especially 
noticeable for badly conditioned matrices. 
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