
S. Sengupta, B. Andriamanalimanana, S. W. Card, P. Kadam, S. Ranwadkar, K. Das, S. Parikh / Computing, 2003, Vol. 2, Issue 2, 52-57 

 

 52 

 
 
 
 
 

TOWARDS DATA MINING TEMPORAL PATTERNS FOR ANOMALY 
INTRUSION DETECTION SYSTEMS 

 
Sam Sengupta 1), Bruno Andriamanalimanana 1), Stuart W. Card 2), 

Pradnya Kadam 1), Saket Ranwadkar 1), Kaustav Das 1), Sagar Parikh 1) 

 
1) State University of New York Institute of Technology, Utica NY 13504-3050, 

sengupta@sunyit.edu, fbra@sunyit.edu, kadamp@sunyit.edu,  
ranwads@sunyit.edu, dask@sunyit.edu, parikhs@sunyit.edu 

2) Critical Technologies Inc., 1001 Broad Street - Suite 400, Utica NY 13501, 
stuart.card@critical.com 

 
Abstract: A reasonably light-weight host and net-centric Network IDS architecture model is indicated. The model is 
anomaly based on a state-driven notion of “anomaly”. Therefore, the relevant distribution function need not remain 
constant; it could migrate from states to states without any a priori warning so long as its residency time at a next 
steady state is sufficiently long to make valid observations there. Only those intrusion events (basically DOS and DDOS 
variety) capable of triggering anomalous streams of attacks/response both near and/or far of target monitoring point(s) 
are considered at the first level of detection. At the next level of detection, the filtered states could be fine-combed in a 
batch mode to mine unacceptable strings of commands or known attack signatures. 
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1. INTRODUCTION 
One major problem of the current century that 

seriously threatens the emerging Information 
Technology industry must be our increasing inability 
to comprehensively deal with the issue of 
Information Assurance in cyberspace -- the 
ubiquitous Internet or private internets both in the 
civilian and in the government corridors.  The 
attackers of yesteryear return with ever new 
approaches, foiling attempts to protect critical 
information resources; sometimes they are 
apprehended but the damage to the industry, to 
economy, to the protected information base 
continues unabated.  

This paper is about intrusion detection [1,2,3] in 
a network system supported by anomaly analysis of 
network traffic as attempted by SPADE [7] and 
SPICE [8]. Anomalous traffic is identified as a 
potential intrusion event; its detection doesn’t 
depend on knowledge of attack signatures and 
therefore it is best suited to detect new attacks for 
which signatures have yet to be developed. Our 
model hinges on online statistical analysis of actual 
packet traffic as observed by promiscuous capture 
(ala tcpdump) or MIB variables at a host (local 
traffic), at a router (neighborhood traffic), or as 
logged events of dropped incoming traffic at 

firewalls, or buffer overflows observed at an 
interface, etc.  

We assume that an intruder’s reconnaissance of 
the system S(t) may generate at times an avalanche 
of traffic at a site or in the neighborhood of a router 
either as a result of persistent attacks or as the 
system’s response, causing, in some sense, a 
statistically anomalous traffic pattern. In our paper, 
we indicate how such intrusion events may be 
detected online, how, from the list of saved states at 
and before intrusion events, observation of 
significant correlation among seemingly 
independent intrusion event patterns may trigger 
alarms for the future, and how all such approaches 
could be integrated into a coherent base on which 
both known and unknown intrusion events could be 
captured, if possible, before damage is done. 

Minimally, an Intrusion Detection System (NIDS 
at the network level, or IDS at the host or a router 
level) in our design is conceptualized as a localized 
entity as shown in Fig 1. It is a recursive architecture 
in the sense that at any stage it has to identify any 
anomaly from the set of raw data in its current buffer 
and post such findings with an alert at the next level 
down 

The idea is that some anomalous events E remain 
anomalous even when the target system as a whole 
experiences a concept drift; these must be identified 
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online, and if they somehow escape at level l as 
legitimate traffic, the anomaly could potentially be 
discerned at the next level 1l + , and so on. 
Expanding such architecture to include the entire 
internet in order to monitor resource usage in a 
broader neighborhood would accord us an even 

better grip on intrusion events initiated elsewhere, 
and a manifest for a potentially global reach. This 
would be the approach Homeland Security could 
undertake since monitoring any private network 
segment or traffic is otherwise illegal.  
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Fig. 1 - IDS Architecture. 

Note that a packet-sniffer coprocessor in the 
proposed architecture complements the IDS filter in 
order to identify attacks employing header 
modification. Such modifications, seen as errors by 
the packet-sniffer, would not always lead to alert-
events that are expected to be captured by the IDS 
filter; they might escape inspection there.  The 
coprocessor could be used as an optional feature in 
parallel with the IDS filter and, since event postings 
at the Syslog file must be on a real-time basis, we 
require the alert detection coprocessor to respond to 
alert-events with minimal delay.  Since it is optional, 
one could also expand the coprocessor to include a 
multiple set of concurrent coprocessors each of 
which could act as an independent rule-server 
checking out possible violations to one or a few 
rules the packet must obey.  

Advances in storage technology allow for the 
capture of significant of amounts of data, much of 
which is not necessarily information to the IDS. Our 
approach is to extend memory management with 
compression and selection techniques that mirror the 
hierarchical nature of the IDS process. An engine 
controls each (compression and selection) stage by 
monitoring its own dataflow, feeding forward the 
interesting data and responding to feedback from the 

lower engines. Figure 2 illustrates a three-stage 
compression and selection approach for IP packet, 
header and flow processing. At each level, the 
memory allocation is scaled to meet the inflow rate 
and classification window requirement.  

The selection of a mid-buffer trigger point 
affords the IDS classification filter future and past 
information that might avert unnecessary processing 
that is typically associated with no-memory or 
history-only packet analysis. Note that ‘capture’ 
really refers to ‘retention’: all packets are briefly 
held in the first stage buffer; if they satisfy a trigger 
condition, they are kept; if not, payload statistics are 
updated, payloads discarded, and headers move on 
to the next stage.  Retention is temporary for 
uninteresting raw data and short-term statistics, to 
limit storage requirements; but permanent for highly 
interesting raw data and long term statistics, to 
support post-mortem analysis. 

The nominal TCP three-way handshake (SYN → 
SYN ACK → ACK) typically would not be flagged 
as anomalous, if the packet capture memory were 
large enough to accommodate the stream. If 
congestion delays prevented timely capture in the 
packet buffer, each packet would be marked as 
interesting and would naturally age to the next stage 
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where, in this case, the data is trimmed and the 
header remains intact. When a header reaches the 
buffer trigger point, it now competes with similarly 
selected candidates. Due to the reduction in storage 
element size and the initial classification, a larger 
time interval can be observed for anomalous events, 
such as unsuccessful connection attempts.  

The natural extension is to address micro-flows 
where connection duration and port usage are of 
interest. Here even a successful connection can be 
termed interesting by virtue of its context at this 
level. Consider a successful 
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Fig. 2 – Multivariate Multilevel Compression and Selection. 

.
FTP login, but no related data connection is 

made. Certainly a legitimate action, but one that 
should be flagged as anomalous! Extension may 
continue to arbitrary levels of macro-flow 
aggregation with attendant compression of buffered 
date and consequent lengthening of buffer window 
temporal extent. The approach is multi-resolution (or 
multi-scale), non-stationary statistical profiling 
 

2. IDS BASED ON ANOMALOUS 
CONCEPT DRIFTS 

This chapter briefly indicates how intrusion 
events may conceptually be detected from the 
network traffic around the system. Assume that a 
dynamic system )(tS , one we want to protect,  is in 
equilibrium or in a state of “quasi-equilibrium” in 
the sense that it is allowed to migrate slowly from its 
current equilibrium state eϕ  to another neighboring 
equilibrium state fϕ in a time-interval t∆ such that 

thresholdt
τϕ <

∆
∆

.  The system is in its “normal” state 

if either it stays in its last observed equilibrium state 
for a substantial period of time or is confined to 
move within a set of equilibrium points so as to be in 
a “quasi-equilibrium” state as per our requirement.  
The system S(t), when it transits from a steady state 
ϑ , undergoes a “concept drift” and is assumed to be 
in a “roaming” state until it discovers its next 
equilibrium state ξ .  

An intrusion event X(t), in our case, is basically 
like a port flooding, port walking, probing, online 
password cracking attempt etc., defined here to be 
any inexplicable or unauthorized tweaking of the 
system that forces S(.) to depart from its latest 
equilibrium norm. This happens, for instance, when 
the system in question at some sampling time 

tt ∆+ is not at its latest observed equilibrium state 
but at some other distant state (shown as a circle) 
(see Fig. 2), or seeking still another equilibrium state 
to park but nothing is available in the immediate 
vicinity but a non-stationary or a roaming state 
shown as a square in the diagram [5,6]. 

In figure 3, the system in its phase space moves 
either from steady states to steady states instantly or 
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from a steady state to a non-stationary state first and 
then to a steady state. In the first case, the 
equilibrium is unstable, but, more importantly, 
depending on X(t), it could, from its current steady 
state, migrate to either (a) neighboring steady state , 
or, (b) to a distant steady state. This is akin to 
moving from one cluster to either a neighborhood 
cluster in one jump and stay there or to a distant 
cluster after a while.  

Given our functional definition of “quasi-
stationary” state earlier, the event X(t) becomes an 
intrusion if it leads to a situation in (b). Note that a 
real intrusion event (in an actual system) may not 
always force its victim to take giant leaps in phase 
space. It could manipulate the system to stay within 
a sequence of legitimate equilibrium state points 
slowly pushing it out to an undesirable absorbing 
state for the final kill and yet actual damage would 
not be known for a while. Obviously, no simple 
solution could be found to detect such events in 
terms of our expected “normal” system behavior [5]. 
Therefore, we define 

 

),t(S eϕ

X(t) 

),tt(S fϕ∆+

 

Fig. 3 – System movement in phase space. 

Definition 1. An event *e ∑∈ is a potential 
intrusion event if e causes the system to migrate 
from a steady state ϑ  to a roaming state (or a non-
equilibrium state) ζ such that threshold  || τζϑ >− . 
Otherwise, the event ∑∈e  where *∑∑U = U  some 
universal set , and ∅=∑∑ *I  
. (1a) 

Definition 2.  Every event *e ∑∈  causes the 
following response: 

))protcl),port,IP(,,e(SB,alarm(triggere * τ⇒∑∈   
 : post event in  buffer SB online 
   Intrusione||positive_Falsee,...)e(SB ∈∈⇒  (1b) 

For event      ∑∈e ⇒ )filelog,e(event_release  : 
event is released for normal consumption 
     )negative_Falsee||event_Normale()e(filelog_ ⇒∈⇒  (1c) 

Definition 2 asserts how finally an event would 
appear to our NIDS filter. If an event is considered a 
potential intrusion, it would trigger an alarm and 
then it would be saved in the first-level short term 
buffer SB. Such an event could be either a true 

intrusion or a false one (a legitimate event by a 
bonafide user). For other events, they would just be 
thrown out as garbage, though a portion of them 
would prove to be intrusion events (or false 
negatives). 

Observation 1.   One could arbitrarily chose 
thresholdτ . 

1.0tive)false_negaprob(e   ,e  e , *
threshold ==→∑∑∈∃∞→ Φτ  

                     and (2a) 
1.0tive)false_posiprob(e ,e e ,0 *

threshold ==→∑∑∈∃→ Φτ  
 (2b) 

We chose thresholdτ as low as we can get away with 
so that the frequency of occurrence of false 
negatives is tolerable. 

Let us assume the target system states to be a 
vector ϑ  where 
              ) ...  ... ,,( ki210 αααααϑ =  (3a) 

where each iα is an appropriate system variable that 
is expected to be affected when an intrusion event 
takes place either from within or without.  We 
assume that for each variable iα  the measure n

iα has 
a steady sampling distribution at an equilibrium state 
where it is observed and one can therefore obtain its 
higher order sampling statistics, if need be.  

Lemma 1.  At an equilibrium, 0
dt
d   ni n

i =∀∀ α  

→ ),0(T)(E )n(
i

n
i

n
i σαα =− where T(.,.) is some 

steady state distribution. The statistic )n(
iσ  is the 

standard deviation associated with the sampling 
distribution statistics of the variable n

iα .   
The First-level NIDS filter design now emerges.  

Every first level NIDS filter is a conglomerate of a 
concurrent set of nk filters where k is the largest 
index value of the observable in the vector ϑ in (3a) 
and n is the largest order statistics the filter is 
equipped to handle. Note that this value n should not 
be too high lest the error in the computed statistics 
be too overwhelming, thus degrading the filter’s 
efficiency.  

We define an )p,i(IDS filter as follows: The filter 
monitors the pth power of the variable iα  through 

the expression   )p(
i

p
i

p
i ))(E(abs
σ

αα −  p
ik≤ . If for the 

current sample of the random variable  

)p(
i

p
i

p
i ))(E(abs
σ

αα −  = p
i

p
i km > , the IDS(i,p) filter issues 

an alarm to the observer with a strength 
p

i
p

i
p
i k/)km( −  indicating that a potential intrusion 

event is indicated at this variable with a belief index 
of  p

i
p

i
p
i k/)km( − .  

A comprehensive IDS filter may be articulated as 
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follows.  

            a. (g:)i(IDS p
p

i
p

i
p
i k/)km( − )  where pg is 

some suitable aggregating function like pmin , pmax , 
total  

            b. IDS : ))i(IDS(fi  where if is some 
appropriate aggregating function like pg  
 

3. ANOMALY DETECTION 
COPROCESSOR 

The main impetus of the IDS filter is to respond 
to anomaly attacks when an anomaly is seen in a 
statistical sense primarily in terms of variance from 
a normal data flow from the network or outgoing to 
the network or percolating within a LAN. Anomaly 
is  a straightforward event; it is anything that is 
outside the norm. In the discrete sample space 
spanned by packet header parameters,  one may, for 
instance, encounter events e such that 

*
i21i21 )param,...param,amheader(pare  param...paramparam header ∑∈=∃∃∃∀  

Such events could be seen in some deterministic 
finite state automaton as an unaccepted language L 
[4]. There are several different types of commercial 
IDS system which can detect such strings e and flag 
them accordingly. Typically, one thinks of Snort, 
Emerald and Spade type packages [9] in this context, 
extending coverage using heuristics based on a 
number of rules.  Using such systems concurrently at 
the same level as our IDS filter, we could reduce the 
chance of making false negatives (as in 2a).  In 
terms of scope of the system at this coprocessor, we 
envisage, for example, detection of the following 
types of anomalous events. Obviously this is just an 
indication of what we want the coprocessor to cover. 

1. For each TCP connection , check to see if 
a. 3-way handshake is properly followed.  

Flag the connection event e if  
∈e {connection rejected, attempted: 

SYN-ACK never delivered, SYN-
ACK received without initiating 
SYN} 

b. Data packets have corresponding ACK 
packets. Flag the event e if  

∈e {unbalanced resent and ACK rates, 
hole rate, wrong data packet size rate, 
.. } 

c. Normal connection termination event.   
Flag the event e if 

∈e {one or both sides do not send FIN, 
one uses RST, only one sends FIN} 

d. Proper TCP header. Flag the event e if 
∈e  {short TCP headers, port = 0 for 

either sender or receiver or both,  
(URG , PSH flag | no data packet),  

(SYN ∧ URG), (SYN ∧ PSH)} 
2. At the IP level, flag the event e if 

a. ∈e {IP header < 20 octets,  
 packet length < header length,  
 (Low TTL value  ∧  ¬ (limited 
broadcast)) …} 

b. ∈e {private IP addresses, “this address”, 
“loopback address” | public internet} 

 
4. CONCLUSION 

Our paper outlines a low-CPU-usage, low-
bufferbased network-, host- or router-centric 
intrusion detection system that is essentially an 
anomaly detector. This has the advantage that the 
limited buffer size would not become a bottleneck 
for the system. The basic architecture is iterative in 
that at each stage it would encounter a set of 
questionable events on its event list triggering an 
alert signal to the system administrator and posting 
the event to its Syslog file for further processing. To 
enhance its capability, it is suggested that a detection 
coprocessor be added to it so that the coprocessor 
mines out those significant questionable events 
which our IDS filter misses. The concept could be 
extended to include self-similar analysis to mine 
other indirect information. 
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