
S. Sengupta, B. Andriamanalimanana, S. W. Card, P. Kadam, S. Ranwadkar, K. Das, S. Parikh / Computing, 2003, Vol. 2, Issue 2, 52-57

 52

TOWARDS DATA MINING TEMPORAL PATTERNS FOR ANOMALY
INTRUSION DETECTION SYSTEMS

Sam Sengupta 1), Bruno Andriamanalimanana 1), Stuart W. Card 2),

Pradnya Kadam 1), Saket Ranwadkar 1), Kaustav Das 1), Sagar Parikh 1)

1) State University of New York Institute of Technology, Utica NY 13504-3050,

sengupta@sunyit.edu, fbra@sunyit.edu, kadamp@sunyit.edu,
ranwads@sunyit.edu, dask@sunyit.edu, parikhs@sunyit.edu

2) Critical Technologies Inc., 1001 Broad Street - Suite 400, Utica NY 13501,
stuart.card@critical.com

Abstract: A reasonably light-weight host and net-centric Network IDS architecture model is indicated. The model is
anomaly based on a state-driven notion of “anomaly”. Therefore, the relevant distribution function need not remain
constant; it could migrate from states to states without any a priori warning so long as its residency time at a next
steady state is sufficiently long to make valid observations there. Only those intrusion events (basically DOS and DDOS
variety) capable of triggering anomalous streams of attacks/response both near and/or far of target monitoring point(s)
are considered at the first level of detection. At the next level of detection, the filtered states could be fine-combed in a
batch mode to mine unacceptable strings of commands or known attack signatures.

Keywords: - IDS, Anomaly detection, DOS, DDOS, NIDS

1. INTRODUCTION
One major problem of the current century that

seriously threatens the emerging Information
Technology industry must be our increasing inability
to comprehensively deal with the issue of
Information Assurance in cyberspace -- the
ubiquitous Internet or private internets both in the
civilian and in the government corridors. The
attackers of yesteryear return with ever new
approaches, foiling attempts to protect critical
information resources; sometimes they are
apprehended but the damage to the industry, to
economy, to the protected information base
continues unabated.

This paper is about intrusion detection [1,2,3] in
a network system supported by anomaly analysis of
network traffic as attempted by SPADE [7] and
SPICE [8]. Anomalous traffic is identified as a
potential intrusion event; its detection doesn’t
depend on knowledge of attack signatures and
therefore it is best suited to detect new attacks for
which signatures have yet to be developed. Our
model hinges on online statistical analysis of actual
packet traffic as observed by promiscuous capture
(ala tcpdump) or MIB variables at a host (local
traffic), at a router (neighborhood traffic), or as
logged events of dropped incoming traffic at

firewalls, or buffer overflows observed at an
interface, etc.

We assume that an intruder’s reconnaissance of
the system S(t) may generate at times an avalanche
of traffic at a site or in the neighborhood of a router
either as a result of persistent attacks or as the
system’s response, causing, in some sense, a
statistically anomalous traffic pattern. In our paper,
we indicate how such intrusion events may be
detected online, how, from the list of saved states at
and before intrusion events, observation of
significant correlation among seemingly
independent intrusion event patterns may trigger
alarms for the future, and how all such approaches
could be integrated into a coherent base on which
both known and unknown intrusion events could be
captured, if possible, before damage is done.

Minimally, an Intrusion Detection System (NIDS
at the network level, or IDS at the host or a router
level) in our design is conceptualized as a localized
entity as shown in Fig 1. It is a recursive architecture
in the sense that at any stage it has to identify any
anomaly from the set of raw data in its current buffer
and post such findings with an alert at the next level
down

The idea is that some anomalous events E remain
anomalous even when the target system as a whole
experiences a concept drift; these must be identified

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

S. Sengupta, B. Andriamanalimanana, S. W. Card, P. Kadam, S. Ranwadkar, K. Das, S. Parikh / Computing, 2003, Vol. 2, Issue 2, 52-57

 53

online, and if they somehow escape at level l as
legitimate traffic, the anomaly could potentially be
discerned at the next level 1l + , and so on.
Expanding such architecture to include the entire
internet in order to monitor resource usage in a
broader neighborhood would accord us an even

better grip on intrusion events initiated elsewhere,
and a manifest for a potentially global reach. This
would be the approach Homeland Security could
undertake since monitoring any private network
segment or traffic is otherwise illegal.

Capture
buffer Event stream

Optional
packet-sniffer
coprocessor

Passed Events

Passed Events

Syslog Alert File
WinPopup msg

Next Level
Event Stream

IDS Filter

Fig. 1 - IDS Architecture.

Note that a packet-sniffer coprocessor in the
proposed architecture complements the IDS filter in
order to identify attacks employing header
modification. Such modifications, seen as errors by
the packet-sniffer, would not always lead to alert-
events that are expected to be captured by the IDS
filter; they might escape inspection there. The
coprocessor could be used as an optional feature in
parallel with the IDS filter and, since event postings
at the Syslog file must be on a real-time basis, we
require the alert detection coprocessor to respond to
alert-events with minimal delay. Since it is optional,
one could also expand the coprocessor to include a
multiple set of concurrent coprocessors each of
which could act as an independent rule-server
checking out possible violations to one or a few
rules the packet must obey.

Advances in storage technology allow for the
capture of significant of amounts of data, much of
which is not necessarily information to the IDS. Our
approach is to extend memory management with
compression and selection techniques that mirror the
hierarchical nature of the IDS process. An engine
controls each (compression and selection) stage by
monitoring its own dataflow, feeding forward the
interesting data and responding to feedback from the

lower engines. Figure 2 illustrates a three-stage
compression and selection approach for IP packet,
header and flow processing. At each level, the
memory allocation is scaled to meet the inflow rate
and classification window requirement.

The selection of a mid-buffer trigger point
affords the IDS classification filter future and past
information that might avert unnecessary processing
that is typically associated with no-memory or
history-only packet analysis. Note that ‘capture’
really refers to ‘retention’: all packets are briefly
held in the first stage buffer; if they satisfy a trigger
condition, they are kept; if not, payload statistics are
updated, payloads discarded, and headers move on
to the next stage. Retention is temporary for
uninteresting raw data and short-term statistics, to
limit storage requirements; but permanent for highly
interesting raw data and long term statistics, to
support post-mortem analysis.

The nominal TCP three-way handshake (SYN →
SYN ACK → ACK) typically would not be flagged
as anomalous, if the packet capture memory were
large enough to accommodate the stream. If
congestion delays prevented timely capture in the
packet buffer, each packet would be marked as
interesting and would naturally age to the next stage

S. Sengupta, B. Andriamanalimanana, S. W. Card, P. Kadam, S. Ranwadkar, K. Das, S. Parikh / Computing, 2003, Vol. 2, Issue 2, 52-57

 54

where, in this case, the data is trimmed and the
header remains intact. When a header reaches the
buffer trigger point, it now competes with similarly
selected candidates. Due to the reduction in storage
element size and the initial classification, a larger
time interval can be observed for anomalous events,
such as unsuccessful connection attempts.

The natural extension is to address micro-flows
where connection duration and port usage are of
interest. Here even a successful connection can be
termed interesting by virtue of its context at this
level. Consider a successful

Trigger Point

Packet buffer & stats Header buffer & stats

Packet
Compression

Selection

Header
Compression

Selection

Flow buffer & stats

• runt?
• giant?
• deviation from

size statistics?
• etc.

-> packet capture

• port scan?
• inconsistent

headers?
• foreign MAC?
• etc.

-> header capture

• NEW not SYN?
• deviation from

service usage
statistics?

• etc.
-> flow capture

Aging Packet

Fig. 2 – Multivariate Multilevel Compression and Selection.

.
FTP login, but no related data connection is

made. Certainly a legitimate action, but one that
should be flagged as anomalous! Extension may
continue to arbitrary levels of macro-flow
aggregation with attendant compression of buffered
date and consequent lengthening of buffer window
temporal extent. The approach is multi-resolution (or
multi-scale), non-stationary statistical profiling

2. IDS BASED ON ANOMALOUS
CONCEPT DRIFTS

This chapter briefly indicates how intrusion
events may conceptually be detected from the
network traffic around the system. Assume that a
dynamic system)(tS , one we want to protect, is in
equilibrium or in a state of “quasi-equilibrium” in
the sense that it is allowed to migrate slowly from its
current equilibrium state eϕ to another neighboring
equilibrium state fϕ in a time-interval t∆ such that

thresholdt
τϕ <

∆
∆

. The system is in its “normal” state

if either it stays in its last observed equilibrium state
for a substantial period of time or is confined to
move within a set of equilibrium points so as to be in
a “quasi-equilibrium” state as per our requirement.
The system S(t), when it transits from a steady state
ϑ , undergoes a “concept drift” and is assumed to be
in a “roaming” state until it discovers its next
equilibrium state ξ .

An intrusion event X(t), in our case, is basically
like a port flooding, port walking, probing, online
password cracking attempt etc., defined here to be
any inexplicable or unauthorized tweaking of the
system that forces S(.) to depart from its latest
equilibrium norm. This happens, for instance, when
the system in question at some sampling time

tt ∆+ is not at its latest observed equilibrium state
but at some other distant state (shown as a circle)
(see Fig. 2), or seeking still another equilibrium state
to park but nothing is available in the immediate
vicinity but a non-stationary or a roaming state
shown as a square in the diagram [5,6].

In figure 3, the system in its phase space moves
either from steady states to steady states instantly or

S. Sengupta, B. Andriamanalimanana, S. W. Card, P. Kadam, S. Ranwadkar, K. Das, S. Parikh / Computing, 2003, Vol. 2, Issue 2, 52-57

 55

from a steady state to a non-stationary state first and
then to a steady state. In the first case, the
equilibrium is unstable, but, more importantly,
depending on X(t), it could, from its current steady
state, migrate to either (a) neighboring steady state ,
or, (b) to a distant steady state. This is akin to
moving from one cluster to either a neighborhood
cluster in one jump and stay there or to a distant
cluster after a while.

Given our functional definition of “quasi-
stationary” state earlier, the event X(t) becomes an
intrusion if it leads to a situation in (b). Note that a
real intrusion event (in an actual system) may not
always force its victim to take giant leaps in phase
space. It could manipulate the system to stay within
a sequence of legitimate equilibrium state points
slowly pushing it out to an undesirable absorbing
state for the final kill and yet actual damage would
not be known for a while. Obviously, no simple
solution could be found to detect such events in
terms of our expected “normal” system behavior [5].
Therefore, we define

),t(S eϕ

X(t)

),tt(S fϕ∆+

Fig. 3 – System movement in phase space.

Definition 1. An event *e ∑∈ is a potential
intrusion event if e causes the system to migrate
from a steady state ϑ to a roaming state (or a non-
equilibrium state) ζ such that threshold || τζϑ >− .
Otherwise, the event ∑∈e where *∑∑U = U some
universal set , and ∅=∑∑ *I
. (1a)

Definition 2. Every event *e ∑∈ causes the
following response:

))protcl),port,IP(,,e(SB,alarm(triggere * τ⇒∑∈
 : post event in buffer SB online
 Intrusione||positive_Falsee,...)e(SB ∈∈⇒ (1b)

For event ∑∈e ⇒)filelog,e(event_release :
event is released for normal consumption
)negative_Falsee||event_Normale()e(filelog_ ⇒∈⇒ (1c)

Definition 2 asserts how finally an event would
appear to our NIDS filter. If an event is considered a
potential intrusion, it would trigger an alarm and
then it would be saved in the first-level short term
buffer SB. Such an event could be either a true

intrusion or a false one (a legitimate event by a
bonafide user). For other events, they would just be
thrown out as garbage, though a portion of them
would prove to be intrusion events (or false
negatives).

Observation 1. One could arbitrarily chose
thresholdτ .

1.0tive)false_negaprob(e ,e e , *
threshold ==→∑∑∈∃∞→ Φτ

 and (2a)
1.0tive)false_posiprob(e ,e e ,0 *

threshold ==→∑∑∈∃→ Φτ
 (2b)

We chose thresholdτ as low as we can get away with
so that the frequency of occurrence of false
negatives is tolerable.

Let us assume the target system states to be a
vector ϑ where
) ,,(ki210 αααααϑ = (3a)

where each iα is an appropriate system variable that
is expected to be affected when an intrusion event
takes place either from within or without. We
assume that for each variable iα the measure n

iα has
a steady sampling distribution at an equilibrium state
where it is observed and one can therefore obtain its
higher order sampling statistics, if need be.

Lemma 1. At an equilibrium, 0
dt
d ni n

i =∀∀ α

→),0(T)(E)n(
i

n
i

n
i σαα =− where T(.,.) is some

steady state distribution. The statistic)n(
iσ is the

standard deviation associated with the sampling
distribution statistics of the variable n

iα .
The First-level NIDS filter design now emerges.

Every first level NIDS filter is a conglomerate of a
concurrent set of nk filters where k is the largest
index value of the observable in the vector ϑ in (3a)
and n is the largest order statistics the filter is
equipped to handle. Note that this value n should not
be too high lest the error in the computed statistics
be too overwhelming, thus degrading the filter’s
efficiency.

We define an)p,i(IDS filter as follows: The filter
monitors the pth power of the variable iα through

the expression)p(
i

p
i

p
i))(E(abs
σ

αα − p
ik≤ . If for the

current sample of the random variable

)p(
i

p
i

p
i))(E(abs
σ

αα − = p
i

p
i km > , the IDS(i,p) filter issues

an alarm to the observer with a strength
p

i
p

i
p
i k/)km(− indicating that a potential intrusion

event is indicated at this variable with a belief index
of p

i
p

i
p
i k/)km(− .

A comprehensive IDS filter may be articulated as

S. Sengupta, B. Andriamanalimanana, S. W. Card, P. Kadam, S. Ranwadkar, K. Das, S. Parikh / Computing, 2003, Vol. 2, Issue 2, 52-57

 56

follows.

 a. (g:)i(IDS p
p

i
p

i
p
i k/)km(−) where pg is

some suitable aggregating function like pmin , pmax ,
total

 b. IDS :))i(IDS(fi where if is some
appropriate aggregating function like pg

3. ANOMALY DETECTION
COPROCESSOR

The main impetus of the IDS filter is to respond
to anomaly attacks when an anomaly is seen in a
statistical sense primarily in terms of variance from
a normal data flow from the network or outgoing to
the network or percolating within a LAN. Anomaly
is a straightforward event; it is anything that is
outside the norm. In the discrete sample space
spanned by packet header parameters, one may, for
instance, encounter events e such that

*
i21i21)param,...param,amheader(pare param...paramparam header ∑∈=∃∃∃∀

Such events could be seen in some deterministic
finite state automaton as an unaccepted language L
[4]. There are several different types of commercial
IDS system which can detect such strings e and flag
them accordingly. Typically, one thinks of Snort,
Emerald and Spade type packages [9] in this context,
extending coverage using heuristics based on a
number of rules. Using such systems concurrently at
the same level as our IDS filter, we could reduce the
chance of making false negatives (as in 2a). In
terms of scope of the system at this coprocessor, we
envisage, for example, detection of the following
types of anomalous events. Obviously this is just an
indication of what we want the coprocessor to cover.

1. For each TCP connection , check to see if
a. 3-way handshake is properly followed.

Flag the connection event e if
∈e {connection rejected, attempted:

SYN-ACK never delivered, SYN-
ACK received without initiating
SYN}

b. Data packets have corresponding ACK
packets. Flag the event e if

∈e {unbalanced resent and ACK rates,
hole rate, wrong data packet size rate,
.. }

c. Normal connection termination event.
Flag the event e if

∈e {one or both sides do not send FIN,
one uses RST, only one sends FIN}

d. Proper TCP header. Flag the event e if
∈e {short TCP headers, port = 0 for

either sender or receiver or both,
(URG , PSH flag | no data packet),

(SYN ∧ URG), (SYN ∧ PSH)}
2. At the IP level, flag the event e if

a. ∈e {IP header < 20 octets,
 packet length < header length,
 (Low TTL value ∧ ¬ (limited
broadcast)) …}

b. ∈e {private IP addresses, “this address”,
“loopback address” | public internet}

4. CONCLUSION

Our paper outlines a low-CPU-usage, low-
bufferbased network-, host- or router-centric
intrusion detection system that is essentially an
anomaly detector. This has the advantage that the
limited buffer size would not become a bottleneck
for the system. The basic architecture is iterative in
that at each stage it would encounter a set of
questionable events on its event list triggering an
alert signal to the system administrator and posting
the event to its Syslog file for further processing. To
enhance its capability, it is suggested that a detection
coprocessor be added to it so that the coprocessor
mines out those significant questionable events
which our IDS filter misses. The concept could be
extended to include self-similar analysis to mine
other indirect information.

5. REFERENCES
[1] Wenke Lee, Salvatore J. Stolfo, Philip K. Chan,

Eleazar Eskin, Wei Fan, Matthew Miller,
Shlomo Hershkop, Junxin Zhang. Real Time
Data Mining-based Intrusion Detection. Proc.
Second DARPA Information Survivability
Conference and Exposition.

[2] Eleazar Eskin, Matthew Miller, Zhi-Da Zhong,
George Yi, Wei-Ang Lee, Salvatore Stolfo.
Adaptive Model Generation for Intrusion
Detection Systems (2000). Proceedings of the
ACMCCS Workshop on Intrusion Detection and
Prevention, Athens, Greece 2000.

[3] Vern Paxon. Bro: A system for detecting
network intruders in real-time. In Proceedings
of the 7th USENIX Security Symposium, San
Antonio, TX 1998.

[4] K. Ilgun, R. A. Kemmerer, P. A. Porras. State
transition analysis: A rule-based intrusion
detection approach, IEEE Transactions on
Software Engineering 21 (3) (March 1995). pp.
181-199.

[5] Sam Sengupta, Bruno Andriamanalimanana.
Model abstractions for real-time network
environment. Proceedings of SPIE, Vol. 4026,
April 2000. pp. 212-220.

[6] Sam Sengupta, Bruno Andriamanalimanana.
Domain-size constraint on real-time model
abstractions. Proceedings of SPIE, Vol. 4367,

S. Sengupta, B. Andriamanalimanana, S. W. Card, P. Kadam, S. Ranwadkar, K. Das, S. Parikh / Computing, 2003, Vol. 2, Issue 2, 52-57

 57

April 2001.
[7] Mohammed J. Zaki. SPADE: An Efficient

Algorithm for Mining Frequent Sequences, in
Machine Learning Journal, special issue on
Unsupervised Learning (Doug Fisher, ed.), Vol.
42 Nos. 1/2, Jan/Feb 2001. pp. 31-60.

[8] http://www.silicondefense.com/spice. SPICE is
the product of Silicon Defense.

[9] Jack Koziol. Intrusion detection with Snort.
SAM Publication.

Sam Sengupta is the professor
of Computer Science Department
at SUNY Institute of Technology,
Utica, New York.
His research activities and
interests: Real-time network
monitoring and management,
Newtork protocols, Distributed

Systems, Systems modelling, Operarting Systems.
Current research activities include: Intrusion-
detection techniques and security related issues;
Fault-tolerance and survival using active networking;
Mobile agent distributed architecture for large fast
network.

