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Abstract: Problem of multisensor system calibration is of great importance in a number of applications. Most often the 
problem is solving by means of statistical methods using data of calibration controlled experiment. However, in many 
cases uncertainty and inaccuracy of experimental data more reasonably to express not in terms of random errors but in 
terms of known bounded absolute errors. For this case based on the introduced definition of “interval readings” 
interval calibration model is suggested. Within interval paradigm all calibration subproblems are reasonably solved 
including sensor sensitivity test, most accurate sensors subset selection and aggregate estimation of measurable 
variable uncertainty interval. There are given a numerical examples. 
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1. PROBLEM DEFINITION 

Let be given an instrument assigned for 
measuring a single variable х by m sensors of 
different type with monotonic conversion functions 
yj=fj(x), j=1…m. As a rule, the calibration problem 
is solved on the base of calibration controlled 
experiment F={xi; y1i;…yji …ymi, i=1…n} with n 
trials.  

Basically, decomposition of multisensor system 
calibration problem resulting in two subproblems: 
first, for each j-th sensor to determine the direct 
function yj =fj(x) using experimental data and 
second, to define its inverse x=fj-1(yj). 

Mostly, these problems are solved in the frame of 
statistical approach by means of regression analysis 
[1, 2] supported by well-known and popular 
software. At the same time regression analysis is 
based on rather restricted assumptions concerning 
the type and the model of errors. Namely, it is 
usually supposed that controlled variable x is 
measured without errors and responses of sensors 
are additively mixed with normally distributed 
random errors. In practice, the additive model of 
errors is too simple and does not correspond to a 
number of real situations. Statistical approach to the 
calibration problem cannot involve into 
consideration non-statistical errors of observations 
including systematic errors of measurements, round-
off errors, a priory expert information, etc. Besides 

that there exists theoretical difficulty to inverse the 
random normally distributed value. For this reason 
statistical approach does not allow to estimate 
correctly the accuracy of calibration model under 
question. 

To overcome above given demerits of statistical 
approach the aggregate interval calibration model is 
suggested below.  

 
2. GENERIC DEFINITIONS OF INTERVAL 

APPROACH 
An interval approach [3÷8] introduced below is 

based on the definition of interval variable. Let be 
given some numerical constant or variable a whose 
exact value is unknown but there are given lower 
and upper bounds a-; a+ of its possible values. Then 
interval [a]=[a- ; a+]={a: a-≤a≤ a+} is called interval 
variable denoted as [a]. It is followed from given 
definition that true value of parameter a certainly 
belongs to the interval. Neither density function is 
specified on interval.  

Depending on priory information related with 
uncertainty of parameter a different models can be 
applied for determining the interval [а]. Particularly, 
lower and upper bounds of unknown true value а can 
be derived from replications of trials and expert’s 
estimation. Some times, there is given point 
observation a  with known either absolute error ∆ or 
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fractional error δ=∆/a. Then the lower and upper 
bounds of interval can be easily calculated. Thus, 
different forms of interval representation can be used 

 
[a]=[ a -∆; a +∆]=[ a ⋅(1-δ); a ⋅(1+δ)]=[a- ; a+]

 (1) 
 
Evidently, that there exists one-to-one 

correspondence between all representations of 
interval.  

In present paper interval approach is applied to 
the calibration of multisensor system under 
assumption that errors of observations (both in x and 
y) are bounded and there are given n observations of 
calibration experiment presented in the interval form 
F={[xi]; [y1i],…[ymi], i=1…n}. 
 
3. INTERVAL CALIBRATON MODEL FOR 

A SINGLE SENSOR 
Since multisensor calibration model is based on 

the calibration model of a single sensor let’s 
consider it in more details.  

Let be given n interval observations of calibration 
experiment for a single sensor {[xi]; [yi], i=1…n} 
(see Fig. 1a). Using interval observations it is 
necessary to solve the following problems:  

to test whether sensor is sensitive to the change 
of variable x or not;  

if yes, to select the proper type of fitting curve;  
to determine the parameters of direct and inverse 

interval calibration functions (models).  
Testing of sensor sensitivity. Within the 

framework of interval approach any monotonic 
function y=f(x) which passes through all intervals 
can be applied for fitting results of experiment. If 
there are number of such functions it is reasonably to 
select the simplest one. But if it is function like y=C, 
i.e. if there exists horizontal line that passes through 
all interval observations then sensor is not sensitive 
to the change of variable x and cannot be used for 
measuring. More strictly we can state the following 

 

 
Fig 1a. 

 
Fig 1b. 

If there exists such constant C that С∈ [yi] for any 
i-th observation then sensor is not sensitive and 
should be cast out from the given set of sensors. 

(With reference to fig.1a such case may appear if 
calibration experiment contains only observation 
from No7 to No11). 

Selecting of fitting curve type. Within suggested 
interval approach this problem can be easily solved 
when there are given some typical functions-
candidates for fitting. For experimental data 
consisting of 11 interval observations presented in 
the fig. 1a three functions have been tested, namely, 
linear, quadratic and logarithmic. Their coefficients 
have been calculated with least square method 
(LSM) using midpoints of observation intervals. It is 
easy to see in Fig.1a that linear function intersects 
only 4 observations, quadratic function does not 
intersect observations No1, No2 and No3. 
Logarithmic function passes through all interval 
observations and for the experiment under 
consideration it is the only function from given set, 
which can be selected for fitting interval data.  

Interval calibration model. To clarify interval 
approach to building calibration interval model we 
will use the data of simple real calibration 
experiment. In this experiment viscosity of samples 
x have been measured with spectrometer by readings 
of incident light y. Viscosity was adjusted at three 
levels with normalized values 0, 1, 2. Each level was 
replicated four times that produced the lower and 
upper bounds of each interval observation. 
Uncertainty in establishing the viscosity levels with 
absolute errors equal to 0.05 has been also adopted. 
Three resulting interval observations (shown in left 
subplot of Fig. 1b as white rectangles) are 

[x1]=[-0.05; 0.05]; [y1]= [1.85; 1.94]; 
[x2]=[0.95; 1.05]; [y2]= [1.75; 1.85]; [x3]=[1.95; 
2.05]; [y3]=[1.6; 1.7]. 

First, to deliver the point estimation of measured 
variable x the average calibration model x  is 
calculated with LSM using midpoints of given 
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interval observations. Then, for specific extreme 
points of interval observations direct interval models 
are built as a linear interval spline-functions. These 
spline-functions describe bounds of variable y for 
three section of х total range, namely: No1: 0≤х≤2 
(value of х within calibration experiment); No2: 
х<0; No3: х>2 (value of х out of calibration 
experiment). At the last stage inverse calibration 
models are calculated.  

All mentioned models obtained for specific 
extreme points of given interval observations are 
presented in the Table 1.  

At the second line of the Table 1 the direct yav 
and inverse x  average models calculated for 
midpoints of interval observations {xiav, yiav } are 
presented. Direct models )(xyin

−  and )(xyin
+  for 

section No1 have been calculated with LSM for 
respective lower-left and upper-right corner points 
of interval observations. Boundary calibration 
models )(yxin

−  and )(yxin
+  have been defined by 

inverse of direct models.  
Direct interval models )(xyout

−  and )(xyout
+  out 

of the range 0≤х≤2 can be found similarly for the 
pair of observations with coordinates {(x1+ ; y1+); 
(x3-; y3-)} and {(x1- ; y1-); (x3+ ; y3+)}. Inverse of 
these models produce respective models )(yxout

− , 

)(yxout
+  that give uncertainty intervals out of 

experimental range. (Respective extreme models are 
drawn in Fig.1b by dash lines). Resulting direct and 
inverse interval models displayed in Fig.1b by gray 
color reflect uncertainty interval of y for any given x 
and vice versa. 

Table 1. 

 
Average calibration model x  and interval 

calibration model )(yx− , )(yx+  allow to determine 
both point estimation x  and interval of uncertainty 

of x for any given value y. For example, for y=2 we 
get x  =-0.78, [x]=[-2.153; -0.28]. For y=1.8 we 
have x  =0.85, [x]=[0.42; 1.3]. (Graphically, 
uncertainty interval for the last case is shown in the 
right subplot of fig.1b).  

It is necessary to stress that value x  may not 
coincide with midpoint of uncertainty interval and 
the fact that out of the experimental range of x the 
width of uncertainty interval may increase very fast.  
 

4. AGGREGATED INTERVAL 
CALIBRATION MODEL 

Suppose now that there is given set of m sensors, 
interval data of calibration experiment F={xi; 
[y1i],…[ymi], i=1…n} and all sensible to the 
measuring value x. To build the calibration model of 
multisensors system it is necessary to solve the 
following problems:  

to estimate the parameters of all direct functions 
yj=fj(x), j=1…m.  

to determine all inverse functions x=fj-1(yj), 
j=1…m.  

to select the subset of the most accurate sensors; 
to build aggregated interval calibration model for 

chosen sensors. 
Since solution of two first problems is described 

above let’s consider the two last problems supposing 
that all direct and inverse models are already 
obtained. 

Selection of the most accurate sensors subset can 
be fulfilled with following simple algorithm: 

For given experimental values of xi (i=1…n) and 
known direct average models fjav(хi) point 
estimates yjiav=fjav(хi) (i=1…n, j=1…m) are 
calculated; 

Using points estimates yjiav and inverse models 
)( av

jiin yx − , )( av
jiin yx +  uncertainty intervals [xi]j 

(i=1…n, j=1…m) are calculated for each sensor. 
Selection of the most accurate sensors subset is 

based on the following statements:  
Sensor No(w) is the worst one and have to be 

eliminated from the set of m sensors if intervals 
[xi]w  covers all the rest intervals [xi]j, j=1…m, j≠w 
for any fixed i-th observation. 

Sensor No(b) is the best one if interval [xi]b  for 
any fixed i-th observation is enclosed in all the rest 
intervals [xi]j, j=1…m, j≠b. In this case all the rest 
sensors can be excluded from the given set and 
multisensors system degenerates into system with a 
single sensor No(b).  

If within the set of sensors there is neither worse 
nor best one all sensors are equivalent and can be 
used for building aggregate interval calibration 
model. 

Aggregate estimate of uncertainty interval [x] is 

# Range Specific 
points 

Direct 
model 

Inverse 
model 

  xi
av

, yi
av , 

I=1, 2, 3. 
yav=1.904-
0.1225⋅x  

x =15.544-
8.163⋅ y 

xi
-
, yi

- , i=1, 
2, 3. 

yin -=1.852-
0.125⋅x 

xin - =14.816-
8⋅y 

1 0≤x≤2; 
1.6≤y≤
1.94 xi

+
, yi

+ , i=1, 
2, 3. 

yin +=1.956-
0.12⋅x 

xin + =16.3-
8.333⋅y 

x1
+

, y1
+; x3

-
, 

y3
- .  

yout + =1.846-
0.0714⋅x 

xout - =10.89- 
5.588⋅y 

2 x<0; 
y>1.94. 

x1
-
, y1

-; x3
+

, 
y3

+ 
yout - =1.949-
0.179⋅x 

xout + =25.85-
14⋅y 

x1
-
, y1

-; x3
+

, 
y3

+ 
yout -=1.949-
0.179⋅x 

xout - =25.85-
14⋅y 

3 x>2; 
y<1.6. 

x1
+

, y1
+; x3

-
, 

y3
- 

yout +=1.846-
0.0714⋅x 

xout + =10.89- 
5.588⋅y 
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formed using intervals [x]j for all m sensors 
obtained with inverse model for some fixed 
unknown value x common for all sensors. Three 
aggregated estimates can be used: intersection of 
intervals ∩][x ; mean of intervals ][x  and union of 
intervals ∪][x  which are defined as: 

 
∩][x = );(max[ −

jj
x  )(min[ +

jj
x ]; 

][x =
m
1 ∑ =

m

j jx
1

][ ; ∪][x = )(min[ +
jj

x ; )(max −
jj

x ]. (2) 

 
Aggregate estimates (2) give the different degree 

of certainty. Estimate ∪][x  produces the widest 
uncertainty interval in turn estimate ∩][x  gives the 
most narrow uncertainty interval. It possible to show 
that estimate ∩][x  tends to the true value x if there 
are no systematic errors and number of observation 
replicates in calibration experiment tends to infinity. 

To illustrate selecting technique we will use the 
data of real calibration experiment [1]. In this 
experiment five sensors have been used for 
measuring level of viscosity with four different 
spectrometers (their responses are denoted as у1, у2, 
у3, у4) and one goniofhotometer recording peak-
height (response у5). At the calibration experiment 
viscosity have been adjusted at three levels - 0, 1, 2 
(normalized values). Each level was replicated four 
times. 

Using interval data of calibration experiment 
direct and inverse interval models have been 
calculated for all five sensors in accordance with 
methodology described above. Then using midpoints 
yjiav of sensor’s readings for each of three viscosity 
levels uncertainty intervals [xij] of viscosity have 
been calculated. Results are shown in the fig.2. 

In fig.2 sensors are numbered and their boundary 
readings marked with different marks jointed 
together by vertical lines. Each of these line 
segments is interval of uncertainty [xji] produced by 
errors of respective sensor.  

Be guided by the above statements it is easy to 
see that sensor No5 is the worst, all the rest are 
equivalent. The estimates (2) for subset of four 
chosen sensors when x=1 are equal respectively to  

∩][x =[0.82; 1.01]; ][x =[0.64; 1.27], 

∪][x =[0.44; 1.75]. 

 
Fig.2 

5. CONCLUSION 
Application of statistical methods to the 

calibration problem is faced with a number of 
difficulties that followed from the restricted initial 
assumptions concerning model of errors. Statistical 
approach does not allow to involve correctly into 
consideration the errors of non-statistical type and a 
priory expert information. Interval approach which 
has no such restriction can be seen as an alternative 
to the statistical methods. Its application to the 
calibration of multisensors system allows not only to 
take into account information of any type but also to 
deliver meaningful and reliable results based on 
simple methodology and algorithms.  
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