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Abstract: In system modeling the choice of proper model structure is an essential task. Model structure is defined if 
both the model class and the size of the model within this class are determined. In dynamic system modeling model size 
is mainly determined by model order. The paper deals with the question of model order estimation when neural 
networks are used for modeling nonlinear dynamic systems. One of the possible ways of estimating the order of a 
neural model is the application of Lipschitz quotient. Although it is easy to use this method, its main drawback is the 
high sensitivity to noisy data. The paper proposes a new way to reduce the effect of noise. The idea of the proposed 
method is to combine the original Lipschitz method and the Errors In Variables (EIV) approach. The paper presents the 
details of the proposed combined method and gives the results of an extensive experimental study. 

 
Keywords: - Model order, Errors-in-Variables, Lipschitz-method 
 
 

1. INTRODUCTION 
For building a system model many different 

approaches can be used depending on the main 
features of the system, the purpose of the model and 
the available information about the system to be 
modeled. If model building is based mainly on 
input-output data, black box models can be 
constructed. As building black box models may be 
much simpler than physical ones, they are used not 
only when the lack of physical insight does not let us 
build physical models, but also in such cases when 
we have enough physical knowledge, but it is too 
complex, there are mathematical difficulties, or 
when the cost of building physical models is too 
high, etc.  

In black box modeling a general model structure 
must be selected, which is flexible enough to build 
models for a wide range of different systems.  

In black box modeling neural networks play 
important role. As there are neural networks, like 
multi- layer perceptrons (MLP) and radial basis 
function (RBF) networks that are universal 
approximators ([1], [2]), neural networks can be 
considered as general modeling devices. Although 
the basic neural architectures can be applied only for 
modeling static systems, they can be extended easily 
such that they are able to model dynamic systems as 
well.  

For dynamic modeling local memory (e.g. tapped 
delay lines) and/or feedback must be applied. Using 
different extensions different classes of dynamic 
neural models can be constructed such as NFIR, 
NARX, NOE, NARMAX, etc. [3].  

For selecting the model structure first one has to 
choose a model class then the order of the model. 
E.g. if the NFIR model class is selected it uses the 
past values of the input data, so it applies a tapped 
delay line in the input data path and we have to 
determine the length of this tapped delay line. 
Similarly for a NARX or a NOE model the lengths 
of the corresponding input and output tapped delay 
lines must be determined.  

As the correct model order is often not known a 
priori it makes sense to postulate several different 
model orders. Based on these, some criterion can be 
computed that indicated which model order to 
choose.  

To determine the model order is not any easy 
task. Various methods and criterions have been 
developed for estimating the model order. These 
criteria like Akaike Information Criterion (AIC) [4], 
Final Prediction Error (FPE) [5], or Minimum 
Description Length (MDL) [6], etc. were developed 
for linear systems, however most of them can be 
applied for neural networks too. Using these criteria 
we can only qualify the models after the 
construction and the validation of the model, so it is 
possible that we have to train several neural 
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networks to get the best model order. Recently a 
different approach was suggested by He and Asada 
[7], where the estimate of the model order is 
determined directly from the measurement data. This 
approach is based on the continuity property of the 
nonlinear function, which represents the input-
output model of a continuous dynamic system. The 
approach calculates Lipschitz quotients of the 
system input-output mapping using solely the 
measured input-output data. Based on the Lipschitz 
quotients a Lipschitz number can be defined. The 
Lipschitz number can indicate whether or not the 
proper order of the model has been found.  

The problem with the Lipschitz method is that it 
does not give a sharp answer in noisy cases. If the 
measurement data are noisy we can estimate only a 
range where the proper model order can probably be 
found. In this case further search within this range is 
required, so the Lipschitz number can be used only 
for getting a good starting point for the order 
estimation. The correct model order can be 
determined only if several different models with 
model order in this range are built. In neural 
modeling this means that we have to train and 
validate several dynamic neural networks of 
different complexity. 

To get an easier way of obtaining the proper 
model this paper proposes a new approach: the 
Lipschitz method can be combined with the training 
of the networks using the Errors-In-Variables (EIV) 
cost function [8].  

The application of Error-In-Variables cost 
function during training makes it possible not only 
to determine the parameters (weights) of the neural 
model, but to optimise the noisy input data. The EIV 
approach takes into consideration the statistical 
features of the noisy training data, so EIV let us 
obtain a new, less noisy training set. Based on this 
training set the Lipschitz method can result in a 
more accurate estimation of the model order. The 
proposed method needs the calculation of the 
Lipschitz number at least two times. If the second 
run of the Lipschitz method gives sharper results 
than in the first case we know that the order what we 
selected was good, otherwise we have to select 
another one. The efficiency of the combined method 
has been tested by extensive experiments. The 
results show that the greatest improvement occurs at 
the correct order. The combined method can be 
applied for different model classes. Here it will be 
presented for NARX models only.  

The paper is organized as follows. In the second 
section we will give a brief overview of the different 
nonlinear dynamic model classes and we will give 
some arguments about the importance of the NARX 
model class. In the third and fourth sections we will 
describe shortly the Lipschitz method and the basic 

idea of using EIV cost function, respectively. 
Section V. deals with the proposed combined 
method. Finally, section VI presents the results of 
the experimental study.  

 
2. BACKGROUND 

There are several ways to form dynamic neural 
networks using static neurons, however in all ways 
we use storage elements and/or apply feedback. 
Both approaches can result in different dynamic 
neural network architectures.  

Storage elements can be used in different parts of 
a static network. For example some storage modules 
can be associated with each neuron, with the inputs 
or with any intermediate nodes of a static network. 
As an example a feed-forward dynamic network can 
be constructed from a static multi-input − single-
output network (e.g. from an MLP or RBF) if a 
tapped delay line is added to its inputs. This means 
that the static network is extended by an embedded 
memory, which stores the past values of the inputs.  

A more general form of constructing dynamic 
neural networks is if first we define a regressor 
vector, and this vector will be used as input of a 
static neural network. Thus the output of the neural 
model is described as a parameterized nonlinear 
function of this regressor vector [3]:  

 
( ) ( )( )Θ= ,txfty   (1) 

 
Here И  is the parameter vector and ( )tx denotes the 
regressor vector.  

The regressor can be formed from past inputs, 
past system outputs, past model outputs etc. 
according to the model structure selected. When 
only the past inputs are used as the components of 
the regressor vector an NFIR model is obtained. If 
both past inputs and past system outputs are used in 
the regressor the NARX model can be constructed. 
Here the regressor vector is formed as: 

 
 ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]ltututumtdtdtdtx −−−−−= ,...,1,,,...,2,1  (2) 

 
and the mapping of the dynamic neutral network is 
described by  
 

)),(),...1(),(),(),...,2(),1(()( Θltututumtdtdtdfty −−−−−= (3) 
 
where ( )ty  is the calculated (model) output, ( )td  is 
the system output (the desired output in the training 
process) and ( )tu is the system input at the t-th time 
step. Similarly, defining the regressor vectors 
properly we can form NOE, NARMAX or NJB 
model classes [3].  
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In this paper we will deal only with the NARX 
model class. The advantage of this model class is 
that its inputs (the regressor vector) are directly 
taken from the system input-output data. It can 
realize dynamic models; it works as if it were a 
feedback system, while during training it can be 
handled as a feedforward network, avoiding any 
stability problem. Of course the results are valid for 
NFIR models too, as it can be considered as a 
special NARX model without feedback part. 

For NARX models the model order is defined as 
the lengths of the tapped delay lines, the values of m 
and l in Eq. (2). It means how many lagged inputs 
and outputs are taken into account in the inputs of 
the static neural network. If the model order is (m,l) 
and the system to be modeled has a-dimensional 
input and b-dimensional output, then the 
corresponding static neural network will have 

( )1++ almb  inputs.  
 

3. THE LIPSCHITZ METHOD 
If a model is constructed solely from input-output 

data, both model structure and the model parameters 
should be determined using these data. The 
Lipschitz method applies a direct way of obtaining 
the model order from the available input-output data. 
The parameters of the model, the weights of the 
dynamic neural network will be determined from the 
same data set during training.  

The basic idea behind the Lipschitz method is the 
Lipschitz theorem, which tells that every continuous 
mapping has bounded gradient, which can be 
estimated by the maximum of the gradients at the 
known points. Assuming that the system to be 
modeled implements a smooth input-output mapping 
this idea can be used for getting an estimate of 
model order. The Lipschitz method determines such 
numbers - the Lipschitz numbers - that measure the 
smoothness of the mapping. The Lipschitz numbers 
are based on the following quotient: 
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where .  is the Euclidean norm of a vector. Eq. (4) 
determines the normalized slope of the mapping 
between two points of the training set. From the 
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where )(),( kL lm  is the k-th largest quotient among all 

),(
, 21

lm
ttL  21 tt ≠ . This is a geometrical average weighted 

by the model order and the number of input and 
output dimensions (the number of the neural 
network inputs). The number of averaged values is 
denoted by p; this is usually 1-2 percent of the size 
of the training set. 

From the continuity property it follows that if 
( )00 , lm  is the optimal order-pair, the ( )lmL ,  Lipschitz 
numbers at ( )00 ,1 lm + , ( )1, 00 +lm  and ( )1,1 00 ++ lm  
are nearly the same as at ( )00 , lm , but at ( )00 ,1 lm − , 
( )1, 00 −lm  and ( )1,1 00 −− lm  are much larger than 

( )00 ,lmL .  
To get the Lipschitz estimate of the order of a 

given model we have to calculate Eq. (5) for every 
possible presumed model order. The optimal order is 
where the graph of L versus m and l has a sharp 
breakpoint.  

In noisy cases the values of Eq. (4) may vary 
around the true value because of the noise. In this 
case the graph of L will not have a sharp breakpoint; 
there will be a steep slope at small orders and a 
saturation region for large orders but there is a 
smooth region between them. The optimal model 
order can be found somewhere in this smooth 
region. The consequence of this smooth transition 
from the steep slope to the saturated part is that we 
cannot get the correct order directly using the 
Lipschitz method; however we can restrict the 
possible presumed model orders to a limited and 
rather small region. To select the optimal order 
within this region we have to create different order 
models. We do this with a special training of the 
network, when during training we have an additional 
task: to reduce the noise of the input data. After 
training a second run of the Lipschitz-method will 
evaluate the selected model order whether it was 
good or not. The whole process starts with a model 
of small order and model complexity is increased 
step-by-step. 

 
4. THE ERRORS-IN-VARIABLES COST 

FUNCTION 
To reduce the effects of input noise, which 

decreases the order-indicating property of the 
Lipschitz method, we will use the Errors-In-
Variables (EIV) approach [9]. The EIV approach 
applies a modified cost function during the network 
training. This makes it possible not only to train the 
weights of the neural network, but to modify the 
input data for getting a less noisy, more accurate 
input data set. EIV can be applied if we have some 
information about the input and output noise: we 
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have prior information about the variances of the 
noise components of the data, or multiple 
measurements can be taken in all time steps, and 
from these measurements the noise variances can be 
estimated. The EIV approach applies for MIMO 
(Multiple Inputs Multiple Outputs) systems; 
however, to simplify the notations we discuss it for 
SISO (Single Inputs Single Outputs) systems only.  

We seek a black box model for the system in the 
form ( ) ( )( )Θ= ,txfty . The EIV cost function is the 
following: 

 
( ) ( )( )( )

( )
( ) ( )( )

( )∑
=










 −+Θ−=
N

t xy
EIV t

txtx
t
txfty

N
C

1
2

2

2

2,1
σσ

 (6) 

 
where N is the number of the time steps, ( )ty€  and 

( )tx€  are the estimated means of the outputs and the 
inputs of the measurements respectively in the t-th 
time step and ( )tx

2€σ  and ( )ty
2€σ  are the estimated 

variances of the input- and output-noise in the t-th 
time step. With this cost function the significance of 
the contribution of the training samples are 
determined according to their noise levels. If the 
noise is greater the training sample affects the total 
cost less, because we assume that the knowledge 
obtained from this training is less accurate. The 
parameters are modified by the following equations 
using gradient approach: 
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where η  is the training factor. Eq. (8) shows that we 
modify not only the parameters of the neural 
network, but also the input data of the training set. 
This means that the number of adjusted parameters, 
the number of free parameters of the whole training 
process is increased significantly. The increased 
number of the free parameters could result in 
overtraining, as a model structure with too many free 
parameters is rather prone to overfitting. To avoid 
overtraining early stopping can be used or a starting 
neural model can be constructed using the classical 
training process with LS cost function. In our 
experiments this latter method was applied.  

 
5. THE COMBINATION OF THE 

METHODS 
Lipschitz method is an easy-to-use way for 

getting an estimate of the model order directly from 
the training data. Its applicability, however, is 

limited if the input data are noisy. At the same time 
the main task of EIV is to correct the input data 
while the network is trained. So combining EIV and 
Lipschitz method we can correct the noisy data and 
using the corrected data the Lipschitz method can 
give a more accurate estimate of the model order.  

To utilize the advantages of both methods we use 
them in the following way: first we make initial 
model order estimation with the Lipschitz method 
where the original (noisy) data set is used. The 
initial estimation does not give an exact answer, 
instead only a range of possible orders can be 
determined from the Lipschitz curve. We expect that 
if we create a model with an order selected from this 
range and train the neural network using the EIV 
approach than the noise will reduce. This can be 
justified by using the Lipschitz-method again. The 
test results show that the second run of the Lipschitz 
method gives better results than in the first case, the 
Lipschitz curve will be sharper near the true model 
order. The greatest improvement can be measured if 
the first order-selection was the optimal one. To get 
the best features of both techniques, we combine the 
two methods in the following way: 

 
Fig. 1 – Dataflow diagram of the combined method. 

First we create a model according to the first run 
of the Lipschitz-method. Next we train it with the 
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classical supervised learning which is based on LS 
cost function. The task of this early training is to 
lower the effect of overtraining by getting a rough 
estimate of the parameter vector. This will give a 
good starting point for the EIV approach. The BP 
(backpropagation) and EIV finalize the parameters 
of the NN and modify the input sequence. With this 
modified sequence and the original output sequence 
we calculate the second Lipschitz estimates, and 
compare the results with those of the first run. If 
noise is present, there will be no sharp breakpoint in 
the Lipschitz-graph, so we have to select the model 
order from a neighbourhood where the optimal 
model order is most likely to be, than we can repeat 
the parameter estimation sequence with another 
model order selected from this neighbourhood. The 
optimal model order is the one where the greatest 
improvement of the Lipschitz estimates can be 
achieved.  

 
6. TEST RESULTS 

The combined method was tested on several 
artificial problems. Here only the results of a SISO 
(Single Input Single Output) model with model 
order (0, 3) will be presented. In this case there is no 
feedback from the output to the input and three 
previous inputs are used as inputs of a static neural 
network. The transfer function of the test problem is 
the following: 

 
 ))3(),2(),1(),(()( −−−= tutututufty  (9) 
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1000 random sample points were generated from 

a uniform distribution in [-1,+1]; the same input-
output data set was used in every experiments. The 
input data were corrupted by additive Gaussian noise 
with 0 mean and 0.01, 0.05, 0.1 and 0.2 standard 
deviations. For obtaining estimates of the noise 
variances that are is necessary for using Eq. (6), we 
repeat the measurements by 3-, 5- and 10-times. 

In the noiseless case the true order could be 
obtained from the Lipschitz numbers, but in the 
noisy cases it cannot be decided whether the optimal 
order was (0, 2), (0, 3) or (0, 4). Some experiments 
were also done using model orders more different 
from the true values to get additional information 
about the behaviour of the combined method. With 
these model orders different dynamic neural 
architectures were constructed, where in all cases 
one hidden layer of 30 neurons was applied. When 
Least Squares cost function was used the Levenberg-

Marquardt training method was applied. With the 
EIV cost function the training was done using 
simple gradient descent search with adaptive 
training factor. The number of training cycles was 
300 for both methods, and in both cases fast 
convergence could be observed during training.  

Figs. 2 and 3 shows the summary of the results. 
On Fig. 2 we can see the sharp breakpoint at (0, 3) 
which is the true order.  

 

 
Fig. 2 – Lipschitz quotients for the selected model 

order in noiseless. 

On Fig. 3 the results are presented for the four noisy 
cases. The graph belonging to the 0.01 noise 
variance is almost the same as in the noiseless case, 
so this small amount of additive noise has no 
significant effect. However, the next three cases do 
not have such sharp breakpoints and it is hard to 
decide which is the optimal order among (0, 2), (0, 
3) and (0, 4). The higher orders (0, 5), (0, 6) and(0,7) 
cannot be good candidates as they are in the 
saturated range of the curve, while (0, 1) is definitely 
on the slope.  

In our further experiments we focused on the 
three most likely orders. The tests are also done for 
other orders and it can be seen that if the model 
order is outside the  
 

 
Fig. 3 – Lipschitz quotients for the selected model 

order in the tested noise cases. 
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most likely range, than training with EIV does not 
reduce the effect of noise in the input data, instead it 
may distort the input data further. The reason is that 
we try to adjust the data points to a too simple or a 
too complex mapping function. It is necessary to get 
the smoothest possible mapping before we start to 
use EIV while in Eq. (8) we use the slopes of the 
mapping to modify the input points. If the slope is 
too large then the changing of the input data will 
also be unnecessarily large (it leads to overtraining). 
If the mapping is smooth and the order is small, the 
slope is also small but in Eq. (8) we multiply the 
slope with the sample’s error and this is large at 
small orders (The network cannot approximate the 
data correctly) and the changing of the input data is 
large again.  

EIV utilises the variances of the input and output 
data. It can happen, that there are data samples with 
large noise variances, while the additive noise in 
other data samples is small. If there are data samples 
with very small variances then this sample’s error is 
overweighted in the total error and the input update 
will be incorrect. It comes from the fact that EIV 
applies the reciprocal of the input and output 
variances, and these reciprocals can be extremely 
large. In our experiences this is the case when the 
variance is 0.01, so at further examinations we 
leaved this case out. If the noise is small the model 
order can be determined directly from the first run of 
the Lipschitz method, this is not a real weakness of 
the combined method. It is necessary to limit 
somehow the reciprocals to make the method 
applicable for small variances. Although a detailed 
analysis of this question will be the subject of a 
study in the near future, it is assumed that if some 
limit is introduced the robustness of the method for 
small noise variances can be improved.  

During the evaluation of the experiments three 
quality measures are used. The first is the 
improvement in the Lipschitz criterion: 

 
( ) ( )( ) ( ) ( )( )3,02,03,02,0

initinitfinalfinalimp LLLLL −−−=   (11) 
 
where ),( ji

initL  is the Lipschitz quotient of the (i,j) 
model order at the initial Lipschitz estimation and 

),( ji
finalL  is the Lipschitz quotient of the (i,j) model 

order at the final estimation. impL  measures the 
change in the graph of the two runs of Lipschitz 
algorithm. The higher impL  value means that the 
graph became sharper after training with EIV cost 
function. The second quality measure is the distance 
between the noisy and the modified input data: 

 ( ) ( )( )∑
=

−=
N

t
change txtxD

1

2*             (12) 

Where ( )tx  denotes the noisy input data and 
( )tx*  the modified input data. changeD  measures how 

much the EIV training modified the input data. The 
third measure is the following: 
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Where ( )txorig  is the original noiseless input data. 

correctionD  measures the quality of the change on the 
input sample data. If correctionD  is high it means that 
the modified input data is closer to the original input 
data then the noisy one. The main problem with 

correctionD  is that it can be calculated only if we have 
the original noiseless input data, which is rare in 
real-life applications. Its importance is that we can 
show correlation between impL  and correctionD  
therefore we can conclude from the measurable impL  
to the value of correctionD  and the overall performance 
of the combined method. 

On Fig. 4 we compare the results of the 
combined method for different noisy cases by the 
measures impL , changeD  and correctionD . We select the 
measurements with the same noise levels, for 
example with variation 0.05. We group these 
measurements into triplets, one measurement from 
the selected model orders: (0,2), (0,3), 
(0,4). We calculate a measure (for example impL ) 
and select the model order with the highest measure 
value for every triplet (this is the winner). Than we 
count how many times a selected model order was a 
winner. The number of winners for every measure 
and every noise level can be seen on a histogram 
(for noise level 0.05 and measure impL  this is the top-
left histogram). On Fig. 5 this process is done by 
repetition number and not by noise level.  

To evaluate the histograms we can compare the 
winners of impL  and correctionD  on Fig (4). For noise 
level 0.05 and 0.1 it can be seen that the most 
frequent winner for both measures is the true model 
order. This points to the fact that the higher impL  is 
due to the higher correctionD , the combined method 
modifies the input data in the right way. The 
combined method helps to get better estimates for 
the model order (if impL  is higher the Lipschitz 
method identifies the model order sharper) and as a 
secondary effect we can identify whether the EIV 
corrects the samples or not (if impL  is not the highest 
than correctionD  is also not the highest). If the second 
run of the Lipschitz method does not improve than 
the change of the input data does not reduce the 
noise. The histograms for changeD  (middle column) 
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shows, that the change in the sample data is not 
significant versus the model order. 

On Fig. 5 there are the results of the combined 
method for different measurement repetition 
number. The three rows are according to the 
different repetition numbers: 3, 5, 10. The figure 
shows that the combined method works well for 5 
and 10 repetitions (the true model order is the 
winner at the histograms of impL  and correctionD ). 

 
Fig. 4 – Histograms of the results at different noise 

levels. 

 
Fig. 5 – Histograms of the results at different 

measurement repetition numbers. 

These amounts of measurements are enough to 
get “good” estimates of the noise variances. 
Repeating the measurements only 3 times leads to 
no significant results. The number of measurements 
in this case is too small to get a "good" estimate of 
the noise variance. The middle column shows, that 

changeD  is independent from the repetition number, 
also from noise variance. We can also determine as 
it is shown in Fig. 4, that the improvement of the 
Lipschitz method and the correction of the EIV are 
correlated. 

 
7. CONCLUSIONS 

In this paper a combined method to estimate the 
order of the model of a dynamic system was 
presented. The Lipschitz method, which is capable 
to estimate the model order directly from the 

measurement data, was combined with the EIV cost 
function that changes the training sequence during 
the estimation of the model’s parameters. This effect 
was evaluated with a second run of the Lipschitz 
method. Comparing the two runs, the true model 
order can be determined and as a secondary effect 
we can determine whether the EIV corrects the noisy 
data or not. In our test we examined the robustness 
of the method against noise and the repetition 
number. It was found that small variances could 
cause instability of the method so some bound of the 
variance should be introduced. The detailed analysis 
of this possibility will be the subject of further study 
in the near future. Also an important next step will 
be to test the results on more complex real-life 
problems. 
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