
László Sragner, Gábor Horváth / Computing, 2003, Vol. 2, Issue 2, 93-100

 93

IMPROVED MODEL ORDER ESTIMATION FOR NONLINEAR DYNAMIC
SYSTEMS

László Sragner 1), Gábor Horváth 2)

Department of Measurement and Information Systems, Technical University of Budapest

H-1117 Budapest, Magyar tudósok körútja 2.
1) sragner@mit.bme.hu, 2) horvath@mit.bme.hu

Abstract: In system modeling the choice of proper model structure is an essential task. Model structure is defined if
both the model class and the size of the model within this class are determined. In dynamic system modeling model size
is mainly determined by model order. The paper deals with the question of model order estimation when neural
networks are used for modeling nonlinear dynamic systems. One of the possible ways of estimating the order of a
neural model is the application of Lipschitz quotient. Although it is easy to use this method, its main drawback is the
high sensitivity to noisy data. The paper proposes a new way to reduce the effect of noise. The idea of the proposed
method is to combine the original Lipschitz method and the Errors In Variables (EIV) approach. The paper presents the
details of the proposed combined method and gives the results of an extensive experimental study.

Keywords: - Model order, Errors-in-Variables, Lipschitz-method

1. INTRODUCTION
For building a system model many different

approaches can be used depending on the main
features of the system, the purpose of the model and
the available information about the system to be
modeled. If model building is based mainly on
input-output data, black box models can be
constructed. As building black box models may be
much simpler than physical ones, they are used not
only when the lack of physical insight does not let us
build physical models, but also in such cases when
we have enough physical knowledge, but it is too
complex, there are mathematical difficulties, or
when the cost of building physical models is too
high, etc.

In black box modeling a general model structure
must be selected, which is flexible enough to build
models for a wide range of different systems.

In black box modeling neural networks play
important role. As there are neural networks, like
multi- layer perceptrons (MLP) and radial basis
function (RBF) networks that are universal
approximators ([1], [2]), neural networks can be
considered as general modeling devices. Although
the basic neural architectures can be applied only for
modeling static systems, they can be extended easily
such that they are able to model dynamic systems as
well.

For dynamic modeling local memory (e.g. tapped
delay lines) and/or feedback must be applied. Using
different extensions different classes of dynamic
neural models can be constructed such as NFIR,
NARX, NOE, NARMAX, etc. [3].

For selecting the model structure first one has to
choose a model class then the order of the model.
E.g. if the NFIR model class is selected it uses the
past values of the input data, so it applies a tapped
delay line in the input data path and we have to
determine the length of this tapped delay line.
Similarly for a NARX or a NOE model the lengths
of the corresponding input and output tapped delay
lines must be determined.

As the correct model order is often not known a
priori it makes sense to postulate several different
model orders. Based on these, some criterion can be
computed that indicated which model order to
choose.

To determine the model order is not any easy
task. Various methods and criterions have been
developed for estimating the model order. These
criteria like Akaike Information Criterion (AIC) [4],
Final Prediction Error (FPE) [5], or Minimum
Description Length (MDL) [6], etc. were developed
for linear systems, however most of them can be
applied for neural networks too. Using these criteria
we can only qualify the models after the
construction and the validation of the model, so it is
possible that we have to train several neural

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

László Sragner, Gábor Horváth / Computing, 2003, Vol. 2, Issue 2, 93-100

 94

networks to get the best model order. Recently a
different approach was suggested by He and Asada
[7], where the estimate of the model order is
determined directly from the measurement data. This
approach is based on the continuity property of the
nonlinear function, which represents the input-
output model of a continuous dynamic system. The
approach calculates Lipschitz quotients of the
system input-output mapping using solely the
measured input-output data. Based on the Lipschitz
quotients a Lipschitz number can be defined. The
Lipschitz number can indicate whether or not the
proper order of the model has been found.

The problem with the Lipschitz method is that it
does not give a sharp answer in noisy cases. If the
measurement data are noisy we can estimate only a
range where the proper model order can probably be
found. In this case further search within this range is
required, so the Lipschitz number can be used only
for getting a good starting point for the order
estimation. The correct model order can be
determined only if several different models with
model order in this range are built. In neural
modeling this means that we have to train and
validate several dynamic neural networks of
different complexity.

To get an easier way of obtaining the proper
model this paper proposes a new approach: the
Lipschitz method can be combined with the training
of the networks using the Errors-In-Variables (EIV)
cost function [8].

The application of Error-In-Variables cost
function during training makes it possible not only
to determine the parameters (weights) of the neural
model, but to optimise the noisy input data. The EIV
approach takes into consideration the statistical
features of the noisy training data, so EIV let us
obtain a new, less noisy training set. Based on this
training set the Lipschitz method can result in a
more accurate estimation of the model order. The
proposed method needs the calculation of the
Lipschitz number at least two times. If the second
run of the Lipschitz method gives sharper results
than in the first case we know that the order what we
selected was good, otherwise we have to select
another one. The efficiency of the combined method
has been tested by extensive experiments. The
results show that the greatest improvement occurs at
the correct order. The combined method can be
applied for different model classes. Here it will be
presented for NARX models only.

The paper is organized as follows. In the second
section we will give a brief overview of the different
nonlinear dynamic model classes and we will give
some arguments about the importance of the NARX
model class. In the third and fourth sections we will
describe shortly the Lipschitz method and the basic

idea of using EIV cost function, respectively.
Section V. deals with the proposed combined
method. Finally, section VI presents the results of
the experimental study.

2. BACKGROUND

There are several ways to form dynamic neural
networks using static neurons, however in all ways
we use storage elements and/or apply feedback.
Both approaches can result in different dynamic
neural network architectures.

Storage elements can be used in different parts of
a static network. For example some storage modules
can be associated with each neuron, with the inputs
or with any intermediate nodes of a static network.
As an example a feed-forward dynamic network can
be constructed from a static multi-input − single-
output network (e.g. from an MLP or RBF) if a
tapped delay line is added to its inputs. This means
that the static network is extended by an embedded
memory, which stores the past values of the inputs.

A more general form of constructing dynamic
neural networks is if first we define a regressor
vector, and this vector will be used as input of a
static neural network. Thus the output of the neural
model is described as a parameterized nonlinear
function of this regressor vector [3]:

() ()()Θ= ,txfty (1)

Here И is the parameter vector and ()tx denotes the
regressor vector.

The regressor can be formed from past inputs,
past system outputs, past model outputs etc.
according to the model structure selected. When
only the past inputs are used as the components of
the regressor vector an NFIR model is obtained. If
both past inputs and past system outputs are used in
the regressor the NARX model can be constructed.
Here the regressor vector is formed as:

 () () () () () () ()[]ltututumtdtdtdtx −−−−−= ,...,1,,,...,2,1 (2)

and the mapping of the dynamic neutral network is
described by

)),(),...1(),(),(),...,2(),1(()(Θltututumtdtdtdfty −−−−−= (3)

where ()ty is the calculated (model) output, ()td is
the system output (the desired output in the training
process) and ()tu is the system input at the t-th time
step. Similarly, defining the regressor vectors
properly we can form NOE, NARMAX or NJB
model classes [3].

László Sragner, Gábor Horváth / Computing, 2003, Vol. 2, Issue 2, 93-100

 95

In this paper we will deal only with the NARX
model class. The advantage of this model class is
that its inputs (the regressor vector) are directly
taken from the system input-output data. It can
realize dynamic models; it works as if it were a
feedback system, while during training it can be
handled as a feedforward network, avoiding any
stability problem. Of course the results are valid for
NFIR models too, as it can be considered as a
special NARX model without feedback part.

For NARX models the model order is defined as
the lengths of the tapped delay lines, the values of m
and l in Eq. (2). It means how many lagged inputs
and outputs are taken into account in the inputs of
the static neural network. If the model order is (m,l)
and the system to be modeled has a-dimensional
input and b-dimensional output, then the
corresponding static neural network will have

()1++ almb inputs.

3. THE LIPSCHITZ METHOD
If a model is constructed solely from input-output

data, both model structure and the model parameters
should be determined using these data. The
Lipschitz method applies a direct way of obtaining
the model order from the available input-output data.
The parameters of the model, the weights of the
dynamic neural network will be determined from the
same data set during training.

The basic idea behind the Lipschitz method is the
Lipschitz theorem, which tells that every continuous
mapping has bounded gradient, which can be
estimated by the maximum of the gradients at the
known points. Assuming that the system to be
modeled implements a smooth input-output mapping
this idea can be used for getting an estimate of
model order. The Lipschitz method determines such
numbers - the Lipschitz numbers - that measure the
smoothness of the mapping. The Lipschitz numbers
are based on the following quotient:

() ()

() () () ()∑∑
==

−−−
+

+−−−

−
= l

q

m

p

lm
tt

qtuqtu
al

ptdptd
mb

tdtd
L

0

2
12

1

2
12

2
12),(

,

)1(
1121

(4)

where . is the Euclidean norm of a vector. Eq. (4)
determines the normalized slope of the mapping
between two points of the training set. From the

),(
, 21

lm
ttL quotients the Lipschitz number can be

calculated as:

p

lm
p

k

lm kLalmbL

1

),(

1

),()()1(

++= ∏

=

 (5)

where)(),(kL lm is the k-th largest quotient among all

),(
, 21

lm
ttL 21 tt ≠ . This is a geometrical average weighted

by the model order and the number of input and
output dimensions (the number of the neural
network inputs). The number of averaged values is
denoted by p; this is usually 1-2 percent of the size
of the training set.

From the continuity property it follows that if
()00 , lm is the optimal order-pair, the ()lmL , Lipschitz
numbers at ()00 ,1 lm + , ()1, 00 +lm and ()1,1 00 ++ lm
are nearly the same as at ()00 , lm , but at ()00 ,1 lm − ,
()1, 00 −lm and ()1,1 00 −− lm are much larger than

()00 ,lmL .
To get the Lipschitz estimate of the order of a

given model we have to calculate Eq. (5) for every
possible presumed model order. The optimal order is
where the graph of L versus m and l has a sharp
breakpoint.

In noisy cases the values of Eq. (4) may vary
around the true value because of the noise. In this
case the graph of L will not have a sharp breakpoint;
there will be a steep slope at small orders and a
saturation region for large orders but there is a
smooth region between them. The optimal model
order can be found somewhere in this smooth
region. The consequence of this smooth transition
from the steep slope to the saturated part is that we
cannot get the correct order directly using the
Lipschitz method; however we can restrict the
possible presumed model orders to a limited and
rather small region. To select the optimal order
within this region we have to create different order
models. We do this with a special training of the
network, when during training we have an additional
task: to reduce the noise of the input data. After
training a second run of the Lipschitz-method will
evaluate the selected model order whether it was
good or not. The whole process starts with a model
of small order and model complexity is increased
step-by-step.

4. THE ERRORS-IN-VARIABLES COST

FUNCTION
To reduce the effects of input noise, which

decreases the order-indicating property of the
Lipschitz method, we will use the Errors-In-
Variables (EIV) approach [9]. The EIV approach
applies a modified cost function during the network
training. This makes it possible not only to train the
weights of the neural network, but to modify the
input data for getting a less noisy, more accurate
input data set. EIV can be applied if we have some
information about the input and output noise: we

László Sragner, Gábor Horváth / Computing, 2003, Vol. 2, Issue 2, 93-100

 96

have prior information about the variances of the
noise components of the data, or multiple
measurements can be taken in all time steps, and
from these measurements the noise variances can be
estimated. The EIV approach applies for MIMO
(Multiple Inputs Multiple Outputs) systems;
however, to simplify the notations we discuss it for
SISO (Single Inputs Single Outputs) systems only.

We seek a black box model for the system in the
form () ()()Θ= ,txfty . The EIV cost function is the
following:

() ()()()

()
() ()()

()∑
=

 −+Θ−=
N

t xy
EIV t

txtx
t
txfty

N
C

1
2

2

2

2,1
σσ

 (6)

where N is the number of the time steps, ()ty€ and

()tx€ are the estimated means of the outputs and the
inputs of the measurements respectively in the t-th
time step and ()tx

2€σ and ()ty
2€σ are the estimated

variances of the input- and output-noise in the t-th
time step. With this cost function the significance of
the contribution of the training samples are
determined according to their noise levels. If the
noise is greater the training sample affects the total
cost less, because we assume that the knowledge
obtained from this training is less accurate. The
parameters are modified by the following equations
using gradient approach:

() ()()

()
()()∑

= Θ∂
Θ∂Θ−=∆Θ

N

t jy
j

txf
t

txfty
N 1

2

,,
2
1

σ
η (7)

() () ()()
()

()()
()

() ()
()

 −+
∂

Θ∂Θ−=∆
t

txtx
tx

txf
t

txftytx
xky
22

,,
2
1

σσ
η (8)

where η is the training factor. Eq. (8) shows that we
modify not only the parameters of the neural
network, but also the input data of the training set.
This means that the number of adjusted parameters,
the number of free parameters of the whole training
process is increased significantly. The increased
number of the free parameters could result in
overtraining, as a model structure with too many free
parameters is rather prone to overfitting. To avoid
overtraining early stopping can be used or a starting
neural model can be constructed using the classical
training process with LS cost function. In our
experiments this latter method was applied.

5. THE COMBINATION OF THE

METHODS
Lipschitz method is an easy-to-use way for

getting an estimate of the model order directly from
the training data. Its applicability, however, is

limited if the input data are noisy. At the same time
the main task of EIV is to correct the input data
while the network is trained. So combining EIV and
Lipschitz method we can correct the noisy data and
using the corrected data the Lipschitz method can
give a more accurate estimate of the model order.

To utilize the advantages of both methods we use
them in the following way: first we make initial
model order estimation with the Lipschitz method
where the original (noisy) data set is used. The
initial estimation does not give an exact answer,
instead only a range of possible orders can be
determined from the Lipschitz curve. We expect that
if we create a model with an order selected from this
range and train the neural network using the EIV
approach than the noise will reduce. This can be
justified by using the Lipschitz-method again. The
test results show that the second run of the Lipschitz
method gives better results than in the first case, the
Lipschitz curve will be sharper near the true model
order. The greatest improvement can be measured if
the first order-selection was the optimal one. To get
the best features of both techniques, we combine the
two methods in the following way:

Fig. 1 – Dataflow diagram of the combined method.

First we create a model according to the first run
of the Lipschitz-method. Next we train it with the

László Sragner, Gábor Horváth / Computing, 2003, Vol. 2, Issue 2, 93-100

 97

classical supervised learning which is based on LS
cost function. The task of this early training is to
lower the effect of overtraining by getting a rough
estimate of the parameter vector. This will give a
good starting point for the EIV approach. The BP
(backpropagation) and EIV finalize the parameters
of the NN and modify the input sequence. With this
modified sequence and the original output sequence
we calculate the second Lipschitz estimates, and
compare the results with those of the first run. If
noise is present, there will be no sharp breakpoint in
the Lipschitz-graph, so we have to select the model
order from a neighbourhood where the optimal
model order is most likely to be, than we can repeat
the parameter estimation sequence with another
model order selected from this neighbourhood. The
optimal model order is the one where the greatest
improvement of the Lipschitz estimates can be
achieved.

6. TEST RESULTS

The combined method was tested on several
artificial problems. Here only the results of a SISO
(Single Input Single Output) model with model
order (0, 3) will be presented. In this case there is no
feedback from the output to the input and three
previous inputs are used as inputs of a static neural
network. The transfer function of the test problem is
the following:

))3(),2(),1(),(()(−−−= tutututufty (9)

))610()710()610()710((2
)410()510()410()510(

)510()610()510()610(
)310()410()310()410(

),,,(

3333

2222

1111

0000

3210

−−−++−+
+−−−++−+

+−−−++−+
+−−−++−+

=

xthxthxthxth
xthxthxthxth

xthxthxthxth
xthxthxthxth

xxxxf

(10)

1000 random sample points were generated from

a uniform distribution in [-1,+1]; the same input-
output data set was used in every experiments. The
input data were corrupted by additive Gaussian noise
with 0 mean and 0.01, 0.05, 0.1 and 0.2 standard
deviations. For obtaining estimates of the noise
variances that are is necessary for using Eq. (6), we
repeat the measurements by 3-, 5- and 10-times.

In the noiseless case the true order could be
obtained from the Lipschitz numbers, but in the
noisy cases it cannot be decided whether the optimal
order was (0, 2), (0, 3) or (0, 4). Some experiments
were also done using model orders more different
from the true values to get additional information
about the behaviour of the combined method. With
these model orders different dynamic neural
architectures were constructed, where in all cases
one hidden layer of 30 neurons was applied. When
Least Squares cost function was used the Levenberg-

Marquardt training method was applied. With the
EIV cost function the training was done using
simple gradient descent search with adaptive
training factor. The number of training cycles was
300 for both methods, and in both cases fast
convergence could be observed during training.

Figs. 2 and 3 shows the summary of the results.
On Fig. 2 we can see the sharp breakpoint at (0, 3)
which is the true order.

Fig. 2 – Lipschitz quotients for the selected model

order in noiseless.

On Fig. 3 the results are presented for the four noisy
cases. The graph belonging to the 0.01 noise
variance is almost the same as in the noiseless case,
so this small amount of additive noise has no
significant effect. However, the next three cases do
not have such sharp breakpoints and it is hard to
decide which is the optimal order among (0, 2), (0,
3) and (0, 4). The higher orders (0, 5), (0, 6) and(0,7)
cannot be good candidates as they are in the
saturated range of the curve, while (0, 1) is definitely
on the slope.

In our further experiments we focused on the
three most likely orders. The tests are also done for
other orders and it can be seen that if the model
order is outside the

Fig. 3 – Lipschitz quotients for the selected model

order in the tested noise cases.

László Sragner, Gábor Horváth / Computing, 2003, Vol. 2, Issue 2, 93-100

 98

most likely range, than training with EIV does not
reduce the effect of noise in the input data, instead it
may distort the input data further. The reason is that
we try to adjust the data points to a too simple or a
too complex mapping function. It is necessary to get
the smoothest possible mapping before we start to
use EIV while in Eq. (8) we use the slopes of the
mapping to modify the input points. If the slope is
too large then the changing of the input data will
also be unnecessarily large (it leads to overtraining).
If the mapping is smooth and the order is small, the
slope is also small but in Eq. (8) we multiply the
slope with the sample’s error and this is large at
small orders (The network cannot approximate the
data correctly) and the changing of the input data is
large again.

EIV utilises the variances of the input and output
data. It can happen, that there are data samples with
large noise variances, while the additive noise in
other data samples is small. If there are data samples
with very small variances then this sample’s error is
overweighted in the total error and the input update
will be incorrect. It comes from the fact that EIV
applies the reciprocal of the input and output
variances, and these reciprocals can be extremely
large. In our experiences this is the case when the
variance is 0.01, so at further examinations we
leaved this case out. If the noise is small the model
order can be determined directly from the first run of
the Lipschitz method, this is not a real weakness of
the combined method. It is necessary to limit
somehow the reciprocals to make the method
applicable for small variances. Although a detailed
analysis of this question will be the subject of a
study in the near future, it is assumed that if some
limit is introduced the robustness of the method for
small noise variances can be improved.

During the evaluation of the experiments three
quality measures are used. The first is the
improvement in the Lipschitz criterion:

() ()() () ()()3,02,03,02,0

initinitfinalfinalimp LLLLL −−−= (11)

where),(ji

initL is the Lipschitz quotient of the (i,j)
model order at the initial Lipschitz estimation and

),(ji
finalL is the Lipschitz quotient of the (i,j) model

order at the final estimation. impL measures the
change in the graph of the two runs of Lipschitz
algorithm. The higher impL value means that the
graph became sharper after training with EIV cost
function. The second quality measure is the distance
between the noisy and the modified input data:

 () ()()∑
=

−=
N

t
change txtxD

1

2* (12)

Where ()tx denotes the noisy input data and
()tx* the modified input data. changeD measures how

much the EIV training modified the input data. The
third measure is the following:

() ()() () ()()∑∑
==

−−−=
N

t
orig

N

t
origcorrection txtxtxtxD

1

2*

1

2 (13)

Where ()txorig is the original noiseless input data.

correctionD measures the quality of the change on the
input sample data. If correctionD is high it means that
the modified input data is closer to the original input
data then the noisy one. The main problem with

correctionD is that it can be calculated only if we have
the original noiseless input data, which is rare in
real-life applications. Its importance is that we can
show correlation between impL and correctionD
therefore we can conclude from the measurable impL
to the value of correctionD and the overall performance
of the combined method.

On Fig. 4 we compare the results of the
combined method for different noisy cases by the
measures impL , changeD and correctionD . We select the
measurements with the same noise levels, for
example with variation 0.05. We group these
measurements into triplets, one measurement from
the selected model orders: (0,2), (0,3),
(0,4). We calculate a measure (for example impL)
and select the model order with the highest measure
value for every triplet (this is the winner). Than we
count how many times a selected model order was a
winner. The number of winners for every measure
and every noise level can be seen on a histogram
(for noise level 0.05 and measure impL this is the top-
left histogram). On Fig. 5 this process is done by
repetition number and not by noise level.

To evaluate the histograms we can compare the
winners of impL and correctionD on Fig (4). For noise
level 0.05 and 0.1 it can be seen that the most
frequent winner for both measures is the true model
order. This points to the fact that the higher impL is
due to the higher correctionD , the combined method
modifies the input data in the right way. The
combined method helps to get better estimates for
the model order (if impL is higher the Lipschitz
method identifies the model order sharper) and as a
secondary effect we can identify whether the EIV
corrects the samples or not (if impL is not the highest
than correctionD is also not the highest). If the second
run of the Lipschitz method does not improve than
the change of the input data does not reduce the
noise. The histograms for changeD (middle column)

László Sragner, Gábor Horváth / Computing, 2003, Vol. 2, Issue 2, 93-100

 99

shows, that the change in the sample data is not
significant versus the model order.

On Fig. 5 there are the results of the combined
method for different measurement repetition
number. The three rows are according to the
different repetition numbers: 3, 5, 10. The figure
shows that the combined method works well for 5
and 10 repetitions (the true model order is the
winner at the histograms of impL and correctionD).

Fig. 4 – Histograms of the results at different noise

levels.

Fig. 5 – Histograms of the results at different

measurement repetition numbers.

These amounts of measurements are enough to
get “good” estimates of the noise variances.
Repeating the measurements only 3 times leads to
no significant results. The number of measurements
in this case is too small to get a "good" estimate of
the noise variance. The middle column shows, that

changeD is independent from the repetition number,
also from noise variance. We can also determine as
it is shown in Fig. 4, that the improvement of the
Lipschitz method and the correction of the EIV are
correlated.

7. CONCLUSIONS

In this paper a combined method to estimate the
order of the model of a dynamic system was
presented. The Lipschitz method, which is capable
to estimate the model order directly from the

measurement data, was combined with the EIV cost
function that changes the training sequence during
the estimation of the model’s parameters. This effect
was evaluated with a second run of the Lipschitz
method. Comparing the two runs, the true model
order can be determined and as a secondary effect
we can determine whether the EIV corrects the noisy
data or not. In our test we examined the robustness
of the method against noise and the repetition
number. It was found that small variances could
cause instability of the method so some bound of the
variance should be introduced. The detailed analysis
of this possibility will be the subject of further study
in the near future. Also an important next step will
be to test the results on more complex real-life
problems.

8. REFERENCES

[1] K. Hornik, M. Stinchcombe, H. White. Multilayer
Feedforward Networks are Universal
Approximators, Neural Networks Vol. 2 (1989).
pp. 359-366.

[2] J. Park, I. W. Sandberg. Approximation and
Radial-Basis-Function Networks, Neural
Computation, Vol. 5 No. 2 (1993). pp. 305-316.

[3] J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste,
B.Delyon, P.-Y. Glorennec, H. Hjalmarsson,
A.Juditsky. Non-linear Black-box Modeling in
System Identification: A Unified Overview,
Automatica, 31 1691-1724 (1995).

[4] H. Akaike. A New Look at the Statistical Model
Identification, IEEE Transaction on Aut. Control
Vol. AC-19, No. 6 (1974). pp.716-723.

[5] J. Rissanen. Estimation of Structure by Minimum
Description Length, Circuits, Systems and Signal
Processing, special issue on Rational
Approximations, Vol. 1, No. 3-4 (1982). pp. 395-
406.

[6] H. Akaike. Statistical Predictor Identification,
Ann. Istitute of Statistical Mathematics, Vol. 22
(1970). pp. 203-217.

[7] X. He, H Asada. A New Method for Identifying
Orders of Input-output Models for Nonlinear
Dynamic Systems. Proceedings of the American
Control Conference, San Francisco, California
June 1993, pp. 2520-2523.

[8] G. Vandersteen. Identification of Linear and
Nonlinear Systems in an Errors-In-Variables
Least Squares and Total Least Squares
Framework. PhD thesis, Vrije Universiteit
Brussel, Belgium April 1997.

[9] J. Van Gorp, J. Schoukens, R. Pintelon. The
Errors-In-Variables Cost Function for Learning
Neural Networks with Noisy Inputs, ANNIE 1998,
Intelligent Engineering Systems Through

László Sragner, Gábor Horváth / Computing, 2003, Vol. 2, Issue 2, 93-100

 100

Artificial Neural Networks, Vol. 8 (1998). pp.
141-146.

Laszlo Sragner received the
M.S. degree in software
engineering from the Technical
University of Budapest (TUB) in
2002. He is currently pursuing the
Ph.D. degree at the TUB at the
Department of Measurement and
Information Systems. His main

research interests are non-linear system
identification and hybrid intelligent systems.

Dr. Gabor Horvath received
the degree of engineer in 1970,
the degree of doctor in 1987 all
from the Technical University of
Budapest (TUB). He is presently
an associate professor at the TUB
at Department of Measurement
and Information Systems. The
prime factors of his research is in the field of non-
linear signal processing and theory of neural
networks.

