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Abstract: New parallel program synchronization mechanisms are presented. A specialized synchronizer process, or a 
hierarchy of such processes, gather information about process states and construct Strongly Consistent Global States, 
using time interval timestamps. Global predicates evaluated by synchronizers can cause synchronization signals to be 
sent to processes, the signals trigger asynchronous computation activation or cancellation. The proposed framework is 
integrated with a message passing system - it is added to the GRADE graphical parallel programming environment to 
enhance its message-passing based features. Architecture and implementation of the enhancement are discussed. 
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1. INTRODUCTION 
Message passing has become one of the most 

popular and most successful parallel programming 
paradigms, especially due to standardization enabled 
by PVM and MPI libraries. Nevertheless, writing 
programs based on message passing libraries is still 
difficult since many technical details have to be 
known by a programmer. To ease parallel 
programming, program design tools are becoming 
popular. Message passing is lacking a systematic 
way for process synchronization. The code 
responsible for synchronization is mixed with the 
computational code and the synchronization 
conditions are expressed in terms of low-level 
operations (send/receive, barrier). In a program 
organized in a better way, data transfer operations 
should be separated from synchronization. 
Synchronization primitives should be transformed 
into a generalized system where synchronization is 
used as a top-level factor that constitutes a 
framework for general program execution control. 
Some proposals in this direction have been already 
published [TK98], however, they have not been 
implemented yet in practice. De-coupled 
implementation of synchronization in program 
execution control is consistent with the current 
tendencies of the systematic design of parallel 
systems. Much work has been done on efficiency of 

various forms of synchronization operations [CO94, 
OL95, SC96]. However, these tendencies are very 
scarcely supported by the design of adequate parallel 
program design tools. This project is an attempt to 
partially fill this gap. 

An advanced synchronization environment for 
parallel applications has been proposed in [B00, 
B01]. To a big extent, the control in a parallel 
application program is dependent on 
synchronization, which is based on asynchronous 
evaluation of high-level conditions defined on 
application global states. The conditions are 
specified explicitly in special fragments of the 
program code. Processes react to a fulfilled 
synchronization condition in a way that is another 
novel feature. They can be temporally or 
permanently suspended if higher priority or more 
relevant actions are to be activated by a 
synchronization condition. In such situation, a 
process receives a synchronization message that 
immediately activates a procedure, which is an 
integral part of the application. In an alternative 
case, computations can be cancelled. Due to this 
some scarce computer resources can be liberated and 
made available for other tasks. In the proposed 
synchronization environment, synchronization-
driven program execution control can be specified.  

In this paper we describe how the ideas 
mentioned above can be combined with standard 
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message passing in the graphical parallel program 
design environment GRADE [KDF97, KDFL99, 
PGR]. GRADE is meant for programmers who want 
to write parallel message passing programs without 
learning details of message passing library 
procedures. The programmer has only to draw a 
graph representation of a program divided into 
parallel processes, to fill the nodes with sequential C 
code and to assign which variables should be 
sent/received in which points of the program. 
GRADE presents a high level approach to parallel 
program design. However, it lacks more 
sophisticated and structured synchronization features 
that can be provided accordingly to above-
mentioned principles. We discuss problems, which 
arise here and propose relevant solutions. 

The paper is composed of 3 parts. In the first 
part, the idea of execution control in parallel 
programs based on process synchronization is 
explained. It includes verification of predicates 
defined on elements of global states in asynchronous 
systems and reactions on predicates as asynchronous 
activation and cancellation of computations in 
application programs. Next part contains a 
description of new synchronization features added to 
GRADE. In part 3, physical implementation issues 
of communication and synchronization for the 
proposed solution are discussed. 

 

2. PROCESS SYNCHRONIZATION 
BASED ON GLOBAL PREDICATES 

Global application states are used in 
parallel/distributed application monitoring and 
debugging to see if the application execution fulfils 
necessary conditions (global predicates) that 
warranties correct execution [CM91, GW94, M95, 
GW96, TG98, GM01]. We suggest using global 
predicates to control directly program behaviour. In 
this way, the control/synchronization scheme in a 
program can be made correct by construction and 
also immediately verifiable. Also, synchronization 
conditions expressed separately as global predicates 
will be easy to understand and modify.  

The general idea of the proposed solution is 
shown in Fig. 1. Application program processes send 
messages on their states to special globally 
accessible processes called synchronizers. Each state 
message is labeled with a timestamp. A synchronizer 
collects state messages and determines if a 
consistent global state [CM91, G96, GW96, S00] 
has been reached. On each global state reached, one 
(or more) synchronization condition(s) (control 
predicate(s)) is (are) computed. If a predicate value 
is true, then a number of synchronization signals are 
sent by the synchronizer to selected application 
processes. On reception of these signals, application 
processes break their standard computation and the 
control in these processes is transferred to signal 
handling procedures. The procedures perform 
actions that constitute reactions to synchronization 
of application process states that have been reached. 
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Fig. 1 – Computation of processes with a synchronizer 
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In a parallel system without common clock and 
without shared memory it is difficult to observe 
global states of applications. To solve the problem, 
logical vector clocks [M89, BM95] or partial 
synchronization of processor local clocks [S97, S00] 
can be used. Messages about process local states 
with attached timestamps should be sent to a 
synchronizer, and the synchronizer task is to 
combine the received information to identify 
consistent application global states. The actual 
sequence of global states cannot be observed with 
certainty; a synchronizer can only enumerate all the 
possible alternative execution scenarios. It is not 
possible to answer whether the actual application 
execution has passed through a state satisfying a 
given predicate, because we do not know which 
scenario happened in real and so, what are the exact 
states the application has passed through. This 
difficulty has led to a definition of global predicate 
modalities [CM91, GW94, FR95, GW96, S00]. 
Modalities give answers to questions concerning 
global predicate satisfaction. We need to know on-
line, as early as possible, what is the actual 
application state. So we need a modality, which 
deals with real application states and with the actual 
application execution history, which can be 
evaluated on-line and which imposes low overhead. 
These conditions are met best by modality Instantly 
[S97, S00]. To be able to apply it, we need to 
synchronize process local clocks with an assumed 
tolerance ε. For a predicate ϕ, if Instantly(ϕ) is 
satisfied then there was a period in real time (and 
this period is known), when the application was in 
such a state, that ϕ was satisfied. Such states are 
called Strongly Consistent Global States (SCGS). It 
is possible for an application to pass a state 
satisfying ϕ, while Instantly(ϕ) is not detected, only 
when such a state lasts less then 2ε. Because this 
condition is clearly defined, a programmer can deal 
with it reasonably. The cost of SCGS detection is 
acceptable - O(E NlogN) [S97,S00], where E is the 
number of events at one process and N is the number 
of application processes. Other modalities have 
higher costs (even exponential) for unrestricted 
predicate forms. Instantly requires timestamps to be 
attached only to messages sent to a synchronizer, 
timestamps contain just two clock readouts.  

Synchronizers observe application program states 
and evaluate pre-defined predicates. Whenever a 
predicate is satisfied, the synchronizer activates a 
reaction in some parts of executed application 
program. In a message passing system, it is done by 
sending to them control messages – signals. We 
want the processes to be able to react on signals 
possibly immediately by clearly defined actions. 
These goals are met by asynchronous activation and 

cancellation [B01, BKT03]. In the code of a process, 
designated regions are made sensitive to incoming 
signals. If the process control is inside a region 
sensitive to a signal of a given type a reaction is 
triggered when such a signal arrives. The reaction 
can be either activation or cancellation. 
Synchronization driven activation makes the current 
computation to be suspended and a reaction code 
associated with the region to be executed. After 
completion of the reaction code the suspended 
computing resumes. Synchronization driven 
cancellation makes the current computation to be 
stopped and a cancellation handling procedure 
associated with the region to be performed. The 
program execution resumes just after the abandoned 
region. Fig. 2. illustrates this concept.  

An example of efficient program execution 
control of this type can be a branch-and-bound 
(B&B) algorithm [B00, BKT02]. The synchronizer 
knows the best solution found so far in a parallel 
B&B search. It can react immediately to prevent 
search processes from solving subtasks if their 
bounds are lower then the current best solution. A 
load balancing scheme can be included to the 
program implemented as an action activated by the 
synchronizer, triggered in global states with 
unbalanced load. 
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Fig. 2 – Principle of asynchronous activation (left part) 

and cancellation (right part) 

 

3. IMPLEMENTATION OF PROPOSED 
SYNCHRONIZATION FEATURES IN 

GRADE 
GRADE is a parallel programming environment 

based strictly on message passing. It can be extended 
by adding control and synchronization methods 
based on application global state analysis. GRADE 
allows a user to specify parallel processes, their 
interconnection and the internal structure of each 
process. The programmer specifies a program by the 
use of a graphical user interface and does not need to 
know any technical details of any communication 
library. Fig. 3 shows application processes and 
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communication channels with three processes 
connected by links through communication ports. 
A separate window can be opened for each process, 
to specify the process behavior, drawn as a flow 
diagram, see Fig. 4. To create and modify such 
diagrams a programmer is supported with GRED 
graphical editor [KDFL99]. There are three main 
types of nodes used in the algorithm design: control 
statements (representing if, for, while,...), text blocks 
(sequential C language code can be put there) and 
communication nodes. Each communication node 
has communication ports assigned. In such a way the 
communication specified at the process level is 
translated onto the application level. The text blocks 
are filled with C code with the help of a text editor. 
The completed graphical program specification is 
translated into C language to be compiled and linked 
with GRADE libraries [DK99] 

 

 
Fig. 3 – Processes and their interconnections in 

GRADE 

loop begin

receive from port  0

send through port 1

sequential code in C

loop end 

list  of ports 
defined at the 
process 

press to see/edit  
process variable 
declarations 

 
Fig. 4 – Flow diagram fragment of a process  

A synchronizer, as described above, is 
represented as a special kind of a process. Using 
dedicated channels, application processes send to it 
messages about their local states, these messages are 
properly time stamped. The synchronizer constructs 
SCGSs using obtained information, evaluates 
defined predicates on them and sends back 
synchronization signals. We need here to specify 
how process state is expressed. The synchronizer has 
a number of input ports to receive state information 
from processes. The values sent to the ports are 
stored in arrays (after proper processing, see further 
explanations), one array per port, messages from 
process i are stored at array index i. So, the 
synchronizer sees the process states abstracted as 
values of array elements. Each array represents one 
aspect of process states, e.g. one can hold 
information about current workload, another about a 

problem currently being solved. Whenever a process 
wants to inform the synchronizer about a change in 
its local state, it sends a message with a proper value 
to a relevant synchronizer port. Synchronizer 
operates as shown in Fig. 5. 

A synchronizer is shown at application level as a 
block similar to a standard computational process, 
Fig. 6. It has ports and channels that connect it with 
other processes. Its input ports accept process local 
state information messages, while output ports send 
synchronization signals. If we click on a 
synchronizer block, we open a separate window that 
shows its internal details, see Fig. 7. This window 
shows predicates as separate blocks. Attached input 
ports define the state information used by a 
predicate. A predicate evaluation can cause signals 
to be sent by attached output ports. 

When we click on a predicate block, we get 
another window, in which we can specify the 
predicate details. The specification takes form of a 
control flow diagram. Execution of a predicate starts 
when the synchronizer reaches a SCGS. In the 
predicate control flow diagram, there are input 
statements which read in relevant values of a SCGS 
array bound to specified input ports. Predicates are 
calculated according to included definition. Output 
statements contained in the block dispatch 
synchronization signals. The signals are messages 
handled by processes in a special way. 
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Fig. 5 – Control flow diagram of a synchronizer 

Synchronization signals arriving at application 
processes can provoke a procedure activation or 
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computation cancellation. GRADE process control 
flow diagram had been extended to express the new 
functionality. A simplified example of a control flow 
diagram made sensitive to synchronization signals is 
presented in Fig. 8. The normal execution flow goes 
along the path marked by a dotted line. If a signal 
arrives on ports 1 or 3 when the process execution is 
within a dashed rectangle, then the control is 
transferred to the right-hand side block. 
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Proc 1 
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SS

1 

standard message passing channels 

local state info transfer channels 

siganl transfer channels 

 
Fig. 6 – Application level window – three processes 

with a synchronizer 
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Fig. 7 – A synchronizer window 

For a large number of processes, and for complex 
predicates, the amount of computations and 
communication a synchronizer have to perform can 
be problematic. There is a simple way to 
decentralize the synchronization control and to 
improve efficiency. It is by introduction of many 
synchronizers, each one responsible for a separate 
synchronization task. Moreover, synchronizers can 
be organized into hierarchies. Application processes 
can be split into groups. Each group can cooperate 
with its own synchronizer that can be connected to a 
higher-level synchronizer, Fig.9. There can be many 
levels in the hierarchy. Higher-level synchronizers 
act in the same way as low-level synchronizers. 
Lower level synchronizers send state messages to 
their higher lever synchronizers. A state message is 
send up in the hierarchy as a result of a predicate 

evaluation by a lower level synchronizer. A higher-
level synchronizer computes SCGSs of subordinate 
synchronizers. It can know which predicates at the 
subordinate synchronizers are satisfied. Higher-level 
predicates can be constructed based on that 
knowledge and their evaluation can produce 
synchronization signals. The signals can be 
propagated to lower levels until they reach 
application processes. In such a way predicate 
evaluation and synchronization signal 
communication are performed in a parallel and 
distributed way. 

31

synchronization 
signal handling 
procedure 

start of a signals 
sensitive region 

end of a signals 
sensitive region 

region is 
sensitive to 
signals arriving 
at ports 1 and 3

Code 
Code 

 
Activations 

and 
cancelations 

 
Fig. 8 – Flow diagram sensitive to synchronization 

signals. 

GRADE produces C programs based on standard 
PVM/MPI libraries. In general, such programs 
cannot be asynchronously interrupted to run a 
procedure and then to resume previous actions 
[BKT03]. MPI, PVM, and numerous standard C 
library procedures are not re-entrant. An application 
process cannot always react instantaneously on 
incoming signals. We propose to mark sections of 
the GRADE process control flow diagram as freely 
interruptible, uninterruptible or interruptible at 
defined points only. If an interruption cannot take 
place right away, a flag is set, and the signal is to be 
handled at the first opportunity in the future.  

 
4. PRACTICAL IMPLEMENTATION 

SOLUTIONS  
Practical implementation of the proposed system 
implies the following additions to existing GRADE. 

a) synchronization of clocks in processors 
which execute application programs 

b) state message exchange with timestamps  
c) detection of consistent global states in 

processors  
d) programming asynchronous process reaction 

to synchronization signals  
e) extension of the graphical interface in 

existing GRADE. 
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Fig. 9 – A hierarchic structure of synchronizers

For clock synchronization the Network Time 
Protocol [RFC] will be used, as immediately 
available. Fast Ethernet is used in our platform and 
we expect to synchronize the clocks with tolerance 
about 50 µs, so to be able to detect SCGS lasting at 
least twice that long. Given current CPU speeds, 
much can happen within that time period. Another 
solution is planned to be used in the future. It is the 
RBS protocol [EGE02] or hardware counters based 
on PCI counter cards controlled in a global way. 
Then clock tolerance of few microseconds can be 
achieved.  

The timestamps can be easily introduced within 
GRADE communication library. A SCGS detection 
algorithm planned to be used is described in [S97, 
S00]. The algorithm waits for current process state 
termination before taking it into account. We want to 
eliminate waiting for state termination. A watch-dog 
mechanism in a synchronizer can solve the problem. 
When a process state starts (after a change), the 
synchronizer sets a timer. If no message with the 
state termination arrives soon, the timer triggers a 
dummy state termination. When the real termination 
comes, a dummy one is simply replaced by the real. 
Timer delay is set to 2ε+Dmax-Dmin, where ε is the 
accuracy of clock synchronization, Dmax and Dmin 
are the maximal and minimal message transfer 
times, respectively. This way dummy termination 
will be issued only for states lasting at least 2ε, i.e. 
considered stable enough to be considered. Dmin 

and Dmax are determined experimentally. 
Synchronizer monitors current transfer times and it 
can adjust the Dmax value.  

Signals arriving at a process should trigger the 
handling procedure immediately. Standard message 
passing does not offer relevant mechanisms. The 
functionality of Active Messages [M98] is useful, 
but they provide a low-level implementation and 
need advanced network hardware (e.g. Myrinet). 
PVM message handlers [G97] are at a higher level, 
however, they are not triggered immediately upon a 
message arrival and they are not helpful for 
cancellation implementation, either. UNIX Real-
Time signals can provide necessary features [B01, 
BKT03]. Within one system they can be delivered 
and handled within a few microseconds, while 
message passing and dispatcher processes can be 
used to transfer them between computers. The time 
between a process reports its new state to a 
synchronizer and receives a synchronization signal 
can be then estimated as twice the message transfer 
time + watch-dog timer delay + SCGS detection 
algorithm runtime. This value determines parallel 
task synchronisation granularity, which can be 
managed effectively by a synchronizer in our 
environment. In a FastEthernet cluster based on 
LAM MPI VIA [BPR01] the transfer time for a 
message up to 32 byte long is below 70 µs. In this 
environment, we expect the average synchronisation 
response time to be around 450 µs. The granularity 
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becomes much finer with an introduction of a faster 
network. The use of GigaBitEthernet network based 
on zero-copy MPI EMP [ACP01] provides latency 
of 23 µs for transfers of messages of 1.5 KB. In this 
case the obtained reaction time will be shorter than 
180 µs. The use of Myrinet 2000 network with MPI 
provides short-message latency (up to 100 bytes 
long) of 8.5 µs [My03]. In this case, we expect the 
synchronisation response time with MPI 
communication to be below 100 µs i.e. much better 
than that of GigaBitEthernet. The use of very fast 
DIMNET network [Tal02] can provide the net short 
message transfer time of less than 1.2 µs. One can 
expect to be able to decrease the MPI 
synchronisation response time to around 10 µs. An 
ideal solution here would be to use a separate 
network dedicated for synchronization and control 
purposes, as in CRAY T3E system [SC96]. In this 
case, one can expect the synchronisation response 
time decreased below 2 µs. A more up-to-date 
dedicated controller for synchronisation/ 
communication in cluster systems has been proposed 
in [HS00]. It enables hardware implementation of 
fuzzy synchronization [RG89] inside code regions in 
parallel application programs with a latency of 1.2 
µs for 16 processes. An example of implementation 
of the distributed synchronization as a dedicated 
hardware has been described in [SW95]. With 100 
MHz processors, it provides 200 ns latency for 256 
processes in a barrier. It shows the potential of 
hardware distributed implementation of 
synchronization primitives. 

 
5. CONCLUSIONS 

A parallel programming environment which 
combines the standard message-passing paradigm 
with an advance synchronization and control model 
based on application global state predicates has been 
presented in this paper. Global predicates are used to 
control application program execution together with 
asynchronous activation and cancellation 
mechanism. Data transmissions are de-coupled from 
synchronization and relevant control infrastructure 
in programs. The synchronization and control code 
is well separated from the proper application 
computational code and is easy to understand and 
verify. Global predicates can implement application 
control and synchronization, which is correct by 
construction. The paper contains a discussion of the 
implementation problems and gives viable solutions. 

The proposed programs execution control method 
will be implemented as a user-friendly parallel 
program graphical design system. Such a system is 
currently under work by enhancing an existing 
GRADE graphical parallel programming 
environment. This project is implemented within a 

co-operation with the SZTAKI Institute in Budapest 
who has been a designer of the GRADE system. 
Some of proposed elements do not exist in current 
software environments, e.g. asynchronous 
activation/cancellation, and will constitute an 
original extension of current programming 
methodology. Structural design of the control 
interface in our proposal is close to GRADE user 
interface philosophy, which will facilitate their 
integration. We hope the integrated system will be 
easily understandable to a programmer and will 
enable to him a new more useful style of parallel 
program design. An operational system that we will 
have completed soon will let us practical evaluation 
of all proposed solutions. 

This work has been sponsored by the KBN Grant 
N.4T11C007 22. and by internal grants of the PJIIT. 
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