
J. Borkowski, M. Tudruj, D. Kopanski / Computing, 2003, Vol. 2, Issue 3, 12-20

 12

SYNCHRONIZATION BASED ON GLOBAL STATES AS A GENERAL
CONTROL METHOD IN PARALLEL PROGRAMS

J. Borkowski*, M. Tudruj* x, D. Kopanski*

*Polish-Japanese Institute of Information Technology,
86 Koszykowa Str., 02-008 Warsaw, Poland

xInstitute of Computer Science, Polish Academy of Sciences
21 Ordona Str. 01-237 Warsaw, Poland
{janb, tudruj, damian}@pjwstk.edu.pl

Abstract: New parallel program synchronization mechanisms are presented. A specialized synchronizer process, or a
hierarchy of such processes, gather information about process states and construct Strongly Consistent Global States,
using time interval timestamps. Global predicates evaluated by synchronizers can cause synchronization signals to be
sent to processes, the signals trigger asynchronous computation activation or cancellation. The proposed framework is
integrated with a message passing system - it is added to the GRADE graphical parallel programming environment to
enhance its message-passing based features. Architecture and implementation of the enhancement are discussed.

Keywords: distributed systems, global states, global predicates, parallel programming, programming tools, visual
programming.

1. INTRODUCTION
Message passing has become one of the most

popular and most successful parallel programming
paradigms, especially due to standardization enabled
by PVM and MPI libraries. Nevertheless, writing
programs based on message passing libraries is still
difficult since many technical details have to be
known by a programmer. To ease parallel
programming, program design tools are becoming
popular. Message passing is lacking a systematic
way for process synchronization. The code
responsible for synchronization is mixed with the
computational code and the synchronization
conditions are expressed in terms of low-level
operations (send/receive, barrier). In a program
organized in a better way, data transfer operations
should be separated from synchronization.
Synchronization primitives should be transformed
into a generalized system where synchronization is
used as a top-level factor that constitutes a
framework for general program execution control.
Some proposals in this direction have been already
published [TK98], however, they have not been
implemented yet in practice. De-coupled
implementation of synchronization in program
execution control is consistent with the current
tendencies of the systematic design of parallel
systems. Much work has been done on efficiency of

various forms of synchronization operations [CO94,
OL95, SC96]. However, these tendencies are very
scarcely supported by the design of adequate parallel
program design tools. This project is an attempt to
partially fill this gap.

An advanced synchronization environment for
parallel applications has been proposed in [B00,
B01]. To a big extent, the control in a parallel
application program is dependent on
synchronization, which is based on asynchronous
evaluation of high-level conditions defined on
application global states. The conditions are
specified explicitly in special fragments of the
program code. Processes react to a fulfilled
synchronization condition in a way that is another
novel feature. They can be temporally or
permanently suspended if higher priority or more
relevant actions are to be activated by a
synchronization condition. In such situation, a
process receives a synchronization message that
immediately activates a procedure, which is an
integral part of the application. In an alternative
case, computations can be cancelled. Due to this
some scarce computer resources can be liberated and
made available for other tasks. In the proposed
synchronization environment, synchronization-
driven program execution control can be specified.

In this paper we describe how the ideas
mentioned above can be combined with standard

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

J. Borkowski, M. Tudruj, D. Kopanski / Computing, 2003, Vol. 2, Issue 3, 12-20

13

message passing in the graphical parallel program
design environment GRADE [KDF97, KDFL99,
PGR]. GRADE is meant for programmers who want
to write parallel message passing programs without
learning details of message passing library
procedures. The programmer has only to draw a
graph representation of a program divided into
parallel processes, to fill the nodes with sequential C
code and to assign which variables should be
sent/received in which points of the program.
GRADE presents a high level approach to parallel
program design. However, it lacks more
sophisticated and structured synchronization features
that can be provided accordingly to above-
mentioned principles. We discuss problems, which
arise here and propose relevant solutions.

The paper is composed of 3 parts. In the first
part, the idea of execution control in parallel
programs based on process synchronization is
explained. It includes verification of predicates
defined on elements of global states in asynchronous
systems and reactions on predicates as asynchronous
activation and cancellation of computations in
application programs. Next part contains a
description of new synchronization features added to
GRADE. In part 3, physical implementation issues
of communication and synchronization for the
proposed solution are discussed.

2. PROCESS SYNCHRONIZATION
BASED ON GLOBAL PREDICATES

Global application states are used in
parallel/distributed application monitoring and
debugging to see if the application execution fulfils
necessary conditions (global predicates) that
warranties correct execution [CM91, GW94, M95,
GW96, TG98, GM01]. We suggest using global
predicates to control directly program behaviour. In
this way, the control/synchronization scheme in a
program can be made correct by construction and
also immediately verifiable. Also, synchronization
conditions expressed separately as global predicates
will be easy to understand and modify.

The general idea of the proposed solution is
shown in Fig. 1. Application program processes send
messages on their states to special globally
accessible processes called synchronizers. Each state
message is labeled with a timestamp. A synchronizer
collects state messages and determines if a
consistent global state [CM91, G96, GW96, S00]
has been reached. On each global state reached, one
(or more) synchronization condition(s) (control
predicate(s)) is (are) computed. If a predicate value
is true, then a number of synchronization signals are
sent by the synchronizer to selected application
processes. On reception of these signals, application
processes break their standard computation and the
control in these processes is transferred to signal
handling procedures. The procedures perform
actions that constitute reactions to synchronization
of application process states that have been reached.

State message to
synchronizer

Signal to
process 1

…
Signals to

other
processes

Synchronizer

Process 1 Process n

State messages
from other
processes

…

Control predicate
evaluate and check

Signal to
process n

State message
to synchronizer

Consistent Global
State Computation

Signal
handling

procedure

Signal
handling

procedure

Fig. 1 – Computation of processes with a synchronizer

J. Borkowski, M. Tudruj, D. Kopanski / Computing, 2003, Vol. 2, Issue 3, 12-20

 14

In a parallel system without common clock and
without shared memory it is difficult to observe
global states of applications. To solve the problem,
logical vector clocks [M89, BM95] or partial
synchronization of processor local clocks [S97, S00]
can be used. Messages about process local states
with attached timestamps should be sent to a
synchronizer, and the synchronizer task is to
combine the received information to identify
consistent application global states. The actual
sequence of global states cannot be observed with
certainty; a synchronizer can only enumerate all the
possible alternative execution scenarios. It is not
possible to answer whether the actual application
execution has passed through a state satisfying a
given predicate, because we do not know which
scenario happened in real and so, what are the exact
states the application has passed through. This
difficulty has led to a definition of global predicate
modalities [CM91, GW94, FR95, GW96, S00].
Modalities give answers to questions concerning
global predicate satisfaction. We need to know on-
line, as early as possible, what is the actual
application state. So we need a modality, which
deals with real application states and with the actual
application execution history, which can be
evaluated on-line and which imposes low overhead.
These conditions are met best by modality Instantly
[S97, S00]. To be able to apply it, we need to
synchronize process local clocks with an assumed
tolerance ε. For a predicate ϕ, if Instantly(ϕ) is
satisfied then there was a period in real time (and
this period is known), when the application was in
such a state, that ϕ was satisfied. Such states are
called Strongly Consistent Global States (SCGS). It
is possible for an application to pass a state
satisfying ϕ, while Instantly(ϕ) is not detected, only
when such a state lasts less then 2ε. Because this
condition is clearly defined, a programmer can deal
with it reasonably. The cost of SCGS detection is
acceptable - O(E NlogN) [S97,S00], where E is the
number of events at one process and N is the number
of application processes. Other modalities have
higher costs (even exponential) for unrestricted
predicate forms. Instantly requires timestamps to be
attached only to messages sent to a synchronizer,
timestamps contain just two clock readouts.

Synchronizers observe application program states
and evaluate pre-defined predicates. Whenever a
predicate is satisfied, the synchronizer activates a
reaction in some parts of executed application
program. In a message passing system, it is done by
sending to them control messages – signals. We
want the processes to be able to react on signals
possibly immediately by clearly defined actions.
These goals are met by asynchronous activation and

cancellation [B01, BKT03]. In the code of a process,
designated regions are made sensitive to incoming
signals. If the process control is inside a region
sensitive to a signal of a given type a reaction is
triggered when such a signal arrives. The reaction
can be either activation or cancellation.
Synchronization driven activation makes the current
computation to be suspended and a reaction code
associated with the region to be executed. After
completion of the reaction code the suspended
computing resumes. Synchronization driven
cancellation makes the current computation to be
stopped and a cancellation handling procedure
associated with the region to be performed. The
program execution resumes just after the abandoned
region. Fig. 2. illustrates this concept.

An example of efficient program execution
control of this type can be a branch-and-bound
(B&B) algorithm [B00, BKT02]. The synchronizer
knows the best solution found so far in a parallel
B&B search. It can react immediately to prevent
search processes from solving subtasks if their
bounds are lower then the current best solution. A
load balancing scheme can be included to the
program implemented as an action activated by the
synchronizer, triggered in global states with
unbalanced load.

activated
procedure

continued
compu-
tations

cancellation
handling

cancelled
compu-
tations

signal signal

new
compu-
tations

compu-
tations

compu-
tations

Fig. 2 – Principle of asynchronous activation (left part)

and cancellation (right part)

3. IMPLEMENTATION OF PROPOSED
SYNCHRONIZATION FEATURES IN

GRADE
GRADE is a parallel programming environment

based strictly on message passing. It can be extended
by adding control and synchronization methods
based on application global state analysis. GRADE
allows a user to specify parallel processes, their
interconnection and the internal structure of each
process. The programmer specifies a program by the
use of a graphical user interface and does not need to
know any technical details of any communication
library. Fig. 3 shows application processes and

J. Borkowski, M. Tudruj, D. Kopanski / Computing, 2003, Vol. 2, Issue 3, 12-20

15

communication channels with three processes
connected by links through communication ports.
A separate window can be opened for each process,
to specify the process behavior, drawn as a flow
diagram, see Fig. 4. To create and modify such
diagrams a programmer is supported with GRED
graphical editor [KDFL99]. There are three main
types of nodes used in the algorithm design: control
statements (representing if, for, while,...), text blocks
(sequential C language code can be put there) and
communication nodes. Each communication node
has communication ports assigned. In such a way the
communication specified at the process level is
translated onto the application level. The text blocks
are filled with C code with the help of a text editor.
The completed graphical program specification is
translated into C language to be compiled and linked
with GRADE libraries [DK99]

Fig. 3 – Processes and their interconnections in

GRADE

loop begin

receive from port 0

send through port 1

sequential code in C

loop end

list of ports
defined at the
process

press to see/edit
process variable
declarations

Fig. 4 – Flow diagram fragment of a process

A synchronizer, as described above, is
represented as a special kind of a process. Using
dedicated channels, application processes send to it
messages about their local states, these messages are
properly time stamped. The synchronizer constructs
SCGSs using obtained information, evaluates
defined predicates on them and sends back
synchronization signals. We need here to specify
how process state is expressed. The synchronizer has
a number of input ports to receive state information
from processes. The values sent to the ports are
stored in arrays (after proper processing, see further
explanations), one array per port, messages from
process i are stored at array index i. So, the
synchronizer sees the process states abstracted as
values of array elements. Each array represents one
aspect of process states, e.g. one can hold
information about current workload, another about a

problem currently being solved. Whenever a process
wants to inform the synchronizer about a change in
its local state, it sends a message with a proper value
to a relevant synchronizer port. Synchronizer
operates as shown in Fig. 5.

A synchronizer is shown at application level as a
block similar to a standard computational process,
Fig. 6. It has ports and channels that connect it with
other processes. Its input ports accept process local
state information messages, while output ports send
synchronization signals. If we click on a
synchronizer block, we open a separate window that
shows its internal details, see Fig. 7. This window
shows predicates as separate blocks. Attached input
ports define the state information used by a
predicate. A predicate evaluation can cause signals
to be sent by attached output ports.

When we click on a predicate block, we get
another window, in which we can specify the
predicate details. The specification takes form of a
control flow diagram. Execution of a predicate starts
when the synchronizer reaches a SCGS. In the
predicate control flow diagram, there are input
statements which read in relevant values of a SCGS
array bound to specified input ports. Predicates are
calculated according to included definition. Output
statements contained in the block dispatch
synchronization signals. The signals are messages
handled by processes in a special way.

 Start

Receive process state
information message

A SCGS reached?

Predicate 1
fulfilled? ...

Update state for
synchronisation

predicates

Send sync
signals to
process

No

Yes

Predicate 2
fulfilled?

Predicate K
fulfilled?

Yes Yes Yes

No No No

Send sync
signals to
process

Send sync
signals to
process

...

Fig. 5 – Control flow diagram of a synchronizer

Synchronization signals arriving at application
processes can provoke a procedure activation or

J. Borkowski, M. Tudruj, D. Kopanski / Computing, 2003, Vol. 2, Issue 3, 12-20

 16

computation cancellation. GRADE process control
flow diagram had been extended to express the new
functionality. A simplified example of a control flow
diagram made sensitive to synchronization signals is
presented in Fig. 8. The normal execution flow goes
along the path marked by a dotted line. If a signal
arrives on ports 1 or 3 when the process execution is
within a dashed rectangle, then the control is
transferred to the right-hand side block.

Sync 1

SR SR

Proc 1

SS
Proc 2

SS Proc 3

SS

1

standard message passing channels

local state info transfer channels

siganl transfer channels

Fig. 6 – Application level window – three processes

with a synchronizer

 Synchronizer sync 1

SR2

SR1
1

Predicate
block 1

SR1 SR2

Predicate
block 2

SR1

Free text predicate description

1 2

2

available
input ports

available
output ports
(signals)

defined
predicates

Current
SCGS

To state
information
receive and

SCGS checking

Fig. 7 – A synchronizer window

For a large number of processes, and for complex
predicates, the amount of computations and
communication a synchronizer have to perform can
be problematic. There is a simple way to
decentralize the synchronization control and to
improve efficiency. It is by introduction of many
synchronizers, each one responsible for a separate
synchronization task. Moreover, synchronizers can
be organized into hierarchies. Application processes
can be split into groups. Each group can cooperate
with its own synchronizer that can be connected to a
higher-level synchronizer, Fig.9. There can be many
levels in the hierarchy. Higher-level synchronizers
act in the same way as low-level synchronizers.
Lower level synchronizers send state messages to
their higher lever synchronizers. A state message is
send up in the hierarchy as a result of a predicate

evaluation by a lower level synchronizer. A higher-
level synchronizer computes SCGSs of subordinate
synchronizers. It can know which predicates at the
subordinate synchronizers are satisfied. Higher-level
predicates can be constructed based on that
knowledge and their evaluation can produce
synchronization signals. The signals can be
propagated to lower levels until they reach
application processes. In such a way predicate
evaluation and synchronization signal
communication are performed in a parallel and
distributed way.

31

synchronization
signal handling
procedure

start of a signals
sensitive region

end of a signals
sensitive region

region is
sensitive to
signals arriving
at ports 1 and 3

Code
Code

Activations

and
cancelations

Fig. 8 – Flow diagram sensitive to synchronization

signals.

GRADE produces C programs based on standard
PVM/MPI libraries. In general, such programs
cannot be asynchronously interrupted to run a
procedure and then to resume previous actions
[BKT03]. MPI, PVM, and numerous standard C
library procedures are not re-entrant. An application
process cannot always react instantaneously on
incoming signals. We propose to mark sections of
the GRADE process control flow diagram as freely
interruptible, uninterruptible or interruptible at
defined points only. If an interruption cannot take
place right away, a flag is set, and the signal is to be
handled at the first opportunity in the future.

4. PRACTICAL IMPLEMENTATION

SOLUTIONS
Practical implementation of the proposed system
implies the following additions to existing GRADE.

a) synchronization of clocks in processors
which execute application programs

b) state message exchange with timestamps
c) detection of consistent global states in

processors
d) programming asynchronous process reaction

to synchronization signals
e) extension of the graphical interface in

existing GRADE.

J. Borkowski, M. Tudruj, D. Kopanski / Computing, 2003, Vol. 2, Issue 3, 12-20

17

S

Sync 1

S S

Proc 1
S

Proc 2
S Proc 3

S
1

Sync 1

S S

Proc 1
S

Proc 2
S Proc 3

S
1

Sync 1

S S

Proc 1
S

Proc 2
S Proc 3

S
1

Sync 1

1

S

S

S

top-level synchronizer

Fig. 9 – A hierarchic structure of synchronizers

For clock synchronization the Network Time
Protocol [RFC] will be used, as immediately
available. Fast Ethernet is used in our platform and
we expect to synchronize the clocks with tolerance
about 50 µs, so to be able to detect SCGS lasting at
least twice that long. Given current CPU speeds,
much can happen within that time period. Another
solution is planned to be used in the future. It is the
RBS protocol [EGE02] or hardware counters based
on PCI counter cards controlled in a global way.
Then clock tolerance of few microseconds can be
achieved.

The timestamps can be easily introduced within
GRADE communication library. A SCGS detection
algorithm planned to be used is described in [S97,
S00]. The algorithm waits for current process state
termination before taking it into account. We want to
eliminate waiting for state termination. A watch-dog
mechanism in a synchronizer can solve the problem.
When a process state starts (after a change), the
synchronizer sets a timer. If no message with the
state termination arrives soon, the timer triggers a
dummy state termination. When the real termination
comes, a dummy one is simply replaced by the real.
Timer delay is set to 2ε+Dmax-Dmin, where ε is the
accuracy of clock synchronization, Dmax and Dmin
are the maximal and minimal message transfer
times, respectively. This way dummy termination
will be issued only for states lasting at least 2ε, i.e.
considered stable enough to be considered. Dmin

and Dmax are determined experimentally.
Synchronizer monitors current transfer times and it
can adjust the Dmax value.

Signals arriving at a process should trigger the
handling procedure immediately. Standard message
passing does not offer relevant mechanisms. The
functionality of Active Messages [M98] is useful,
but they provide a low-level implementation and
need advanced network hardware (e.g. Myrinet).
PVM message handlers [G97] are at a higher level,
however, they are not triggered immediately upon a
message arrival and they are not helpful for
cancellation implementation, either. UNIX Real-
Time signals can provide necessary features [B01,
BKT03]. Within one system they can be delivered
and handled within a few microseconds, while
message passing and dispatcher processes can be
used to transfer them between computers. The time
between a process reports its new state to a
synchronizer and receives a synchronization signal
can be then estimated as twice the message transfer
time + watch-dog timer delay + SCGS detection
algorithm runtime. This value determines parallel
task synchronisation granularity, which can be
managed effectively by a synchronizer in our
environment. In a FastEthernet cluster based on
LAM MPI VIA [BPR01] the transfer time for a
message up to 32 byte long is below 70 µs. In this
environment, we expect the average synchronisation
response time to be around 450 µs. The granularity

J. Borkowski, M. Tudruj, D. Kopanski / Computing, 2003, Vol. 2, Issue 3, 12-20

 18

becomes much finer with an introduction of a faster
network. The use of GigaBitEthernet network based
on zero-copy MPI EMP [ACP01] provides latency
of 23 µs for transfers of messages of 1.5 KB. In this
case the obtained reaction time will be shorter than
180 µs. The use of Myrinet 2000 network with MPI
provides short-message latency (up to 100 bytes
long) of 8.5 µs [My03]. In this case, we expect the
synchronisation response time with MPI
communication to be below 100 µs i.e. much better
than that of GigaBitEthernet. The use of very fast
DIMNET network [Tal02] can provide the net short
message transfer time of less than 1.2 µs. One can
expect to be able to decrease the MPI
synchronisation response time to around 10 µs. An
ideal solution here would be to use a separate
network dedicated for synchronization and control
purposes, as in CRAY T3E system [SC96]. In this
case, one can expect the synchronisation response
time decreased below 2 µs. A more up-to-date
dedicated controller for synchronisation/
communication in cluster systems has been proposed
in [HS00]. It enables hardware implementation of
fuzzy synchronization [RG89] inside code regions in
parallel application programs with a latency of 1.2
µs for 16 processes. An example of implementation
of the distributed synchronization as a dedicated
hardware has been described in [SW95]. With 100
MHz processors, it provides 200 ns latency for 256
processes in a barrier. It shows the potential of
hardware distributed implementation of
synchronization primitives.

5. CONCLUSIONS

A parallel programming environment which
combines the standard message-passing paradigm
with an advance synchronization and control model
based on application global state predicates has been
presented in this paper. Global predicates are used to
control application program execution together with
asynchronous activation and cancellation
mechanism. Data transmissions are de-coupled from
synchronization and relevant control infrastructure
in programs. The synchronization and control code
is well separated from the proper application
computational code and is easy to understand and
verify. Global predicates can implement application
control and synchronization, which is correct by
construction. The paper contains a discussion of the
implementation problems and gives viable solutions.

The proposed programs execution control method
will be implemented as a user-friendly parallel
program graphical design system. Such a system is
currently under work by enhancing an existing
GRADE graphical parallel programming
environment. This project is implemented within a

co-operation with the SZTAKI Institute in Budapest
who has been a designer of the GRADE system.
Some of proposed elements do not exist in current
software environments, e.g. asynchronous
activation/cancellation, and will constitute an
original extension of current programming
methodology. Structural design of the control
interface in our proposal is close to GRADE user
interface philosophy, which will facilitate their
integration. We hope the integrated system will be
easily understandable to a programmer and will
enable to him a new more useful style of parallel
program design. An operational system that we will
have completed soon will let us practical evaluation
of all proposed solutions.

This work has been sponsored by the KBN Grant
N.4T11C007 22. and by internal grants of the PJIIT.

6. REFERENCES

[ACP01] M. Apte, S. Chakravarthi, J. Padmanabhan
and A. Skjellum, A Synchronized Real-Time Linux
Based Myrinet Cluster for Deterministic High
Performance Computing and MPI/RT, Ninth
International Workshop on Parallel and Distributed
Real-Time Systems (WPDRTS 2001), April 2001,
San Francisco.
[B00] J. Borkowski, Towards More Powerful and
Flexible Synchronization Primitives, in Proc. of
Inter. Conf. on Parallel Computing in Electrical
Engineering PARELEC 2000, August 2000, Trois-
Rivieres, Canada. IEEE PR00759, pp.18-22.
[B01] J. Borkowski, Interrupt and Cancellation as
Synchronization Methods, in Proc of 4th Int. Conf.
Parallel Processing and Applied Mathematics
PPAM 2001, Nałęczów, Poland, LNCS 2328,
Springer 2001.
[BKT02] J. Borkowski, D. Kopański, M. Tudruj,
„Adding Advanced Synchronization to Processes in
GRADE”, in Proceedings of the Int. Conf. on
Parallel Processing and Electrical Engineering
PARELEC 2002, Warsaw, Poland, IEEE 2002.
[BKT03] J. Borkowski, D. Kopański, M. Tudruj,
Implementing Control in Parallel Programs by
Synchronization-Driven Activation and Cancelation,
Proc. of the 11-th Euromicro PDP ‘03, Feb. 2003,
Genova, Italy, IEEE 2003.
[BPR01] M. Bertozzi, M. Panella, M. Reggiani,
Design of a VIA Based Communication Protocol for
LAM/MPI Suite, Ninth Euromicro Workshop on
Parallel and Distributed Processing (PDP '01)
,February 07 - 09, 2001, pp. 27-33.
[CM91] R. Cooper and K. Marzullo, "Consistent
detection of global predicates, "Proceedings
ACM/ONR Workshop on Parallel Distributed
Debugging, pages 163-173, 1991.

J. Borkowski, M. Tudruj, D. Kopanski / Computing, 2003, Vol. 2, Issue 3, 12-20

19

[CO94] Cohen W.E., Dietz H.G., Sponaugle,
Dynamic Barrier Architecture for Multi-Mode Fine-
Grain Parallelism Using Conventional Processors,
1994 Int. Conf. on Parallel Processing, pp. I 93-
96.
[DK99] D. Drótós, P. Kacsuk, GRAPNEL To C
Translation in the GRADE Environment, Computers
and Artificial Intelligence, Vol. 18, No. 4. pp. 415-
424, 1999.
[EGE02] J. Elson, L. Girod and D. Estrin, Fine-
grained network time synchronization using
reference broadcasts, Proceedings of the Fifth
Symposium on Operating System Design and
Implementation (OSDI 2002), Boston,
Massachussetts, USA, December 2002.
[FR95] Eddy Fromentin and Michel Raynal,
Characterizing and detecting the set of global states
seen by all observers of a distributed computation,
Proceedings of the Fifteenth International
Conference on Distributed Computing Systems, pp.
431-438, 1995.
[G97] Al Geist Advanced Tutorial on PVM 3.4 New
Features and Capabilities,
http://www.csm.ornl.gov/pvm/EuroPVM97/
[GM01] V. K. Garg and N. Mittal. On Slicing a
Distributed Computation, Proceedings of the 21st
IEEE International Conference on Distributed
Computing Systems (ICDCS), pages 322-329,
Phoenix, Arizona, April 2001.
[GW94] Detection of weak unstable predicates in
Distributed programs, V.K Garg, B. Waldecker,
IEEE Transactions on Parallel and Distributed
Systems, 5(3), pp. 299--307, March 1994.
[GW96] V. K. Garg, B. Waldecker, Detection of
Strong Unstable Predicates in Distributed
Programs, IEEE Trans. on Parallel and Distrib.
Systems, Vol. 7, No. 12, December 1996, pp. 1323-
1333.
[HS00] K. Hyakawa, S. Sekiguchi, Design and
Implementation of a Synchronization and
Communication Controller for Cluster Computing
Systems, 4-th Int. Conference on High Performance
Computing in Asia-Pacific Region, Vol. 1, May
2000, pp. 76- 81.
[KDF97] Kacsuk, P., Dózsa, G. and Fadgyas, T.,
GRADE: A Graphical Programming Environment
for PVM Applications Proc. of the 5th Euromicro
Workshop on Parallel and Distributed Processing,
London, 1997, pp. 358-365.
[KDFL99] The GRED Graphical Editor for the
GRADE Parallel Program Development
Environment P .Kacsuk, G. Dózsa, T. Fadgyas and
R. Lovas Future Generation Computer Systems, No.
15 (1999), pp. 443-452.
[M89] F. Mattern. "Virtual Time and Global States
in Distributed Systems". Proc. Workshop on Parallel
and Distributed, Algorithms, Chateau de Bonas,

Oct. 1988, M. Cosnard et al. (eds.), Elsevier / North
Holland, pp. 215-226, 1989.
[M95] Mark Minas, Detecting Quantified Global
Predicates in Parallel Programs, Europar 95 ,
Stockholm, Sweden. Proceedings. Lecture Notes in
Computer Science, Vol. 966, Springer, pp. 403-414.
[M98] P. J. Mucci, "An Efficient Transport
Independent Active Messaging Implementation for
PVM", Technical Report UT-CS-98-399, 1998,
http://citeseer.nj.nec.com/93955.html
[My03] Myricom Corp. GM 1.6.4 API Performance
with PCI64B and PCI64C Myrinet/PCI Interfaces,
April 2003,
http://www.myri.com/myrinet/performance/index.ht
ml
[OL95] Olnovitch, H.T., ALLNODE Barrier
Synchronization Network, 9-th Int. Parallel
Processing Symposium, April, 1995, pp. 265-269.
[PGR] The P-GRADE Visual Parallel Programming
Environment,
http://www.lpds.sztaki.hu/teaching_materials/P-
GRADE/index.htm
[RFC] Request for Comment RFC1305 Network
Time Protocol (Version 3) Specification,
Implementation and Analysis.
[RG89] R. Gupta, The Fuzzy Barrier: A Mechanizm
for High Speed Synchronization of Processors, Proc.
of the 3rd ASPLOS Conference, April 1989, pp. 54-
63.
[S00] Scott D. Stoller: “Detecting Global Predicates
in Distributed Systems with Clocks”. Distributed
Computing, Volume 13 Issue 2 (2000) pp 85-98.
[S97] S.D. Stoller, "Detecting Global Predicates in
Distributed Systems with Clocks". Proc. 11th
International Workshop on Distributed Algorithms
(WDAG 97). Lecture Notes in Computer Science,
Springer-Verlag, 1997.
[SC96] Scott S. L., Synchronization and
Communication in the T3E Multiprocessor,
Proceedings of the 7-th ASPLOS Conference, 1996,
pp. 26-36.
[SW95] S. Shang, K. Hwang, Distributed Hardwired
Barrier Synchronization for Scalable Multiprocessor
Clusters, IEEE Trans. On Parallel and Distributed
Systems, vol. 6, June 1995, pp. 591 – 605.
[SWP01] P. Shivam, P. Wyckoff, D. Panda, EMP:
Zero-copy OS-bypass NIC-driven Gigabit Ethernet
Message Passing, Proceedings of Conference on
High Performance Networking and Computing,
Denver, Colorado, Nov. '01,pp. 57 - 57
[Tal02] N. Tanabe et al., Low Latency
Communication on DIMMnet-1 Network Interface
Plugged into a DIMM Slot, Proceedings of the Int.
Conf. on Parallel Computing in Electrical Eng.,
Warsaw, Sept. 2002, pp. 9 – 14.
[TG98] A. Tarafdar and V.K. Garg. Predicate
Control for Active Debugging of Distributed

J. Borkowski, M. Tudruj, D. Kopanski / Computing, 2003, Vol. 2, Issue 3, 12-20

 20

Programs. Symposium on Distributed and Parallel
Debugging, 1998.
[KT98] M. Tudruj, P. Kacsuk, Extending Grade
Towards Explicit Process Synchronization in
Parallel Programs, Computers and Artificial
Intelligence, vol 17, 1998, No. 5 pp 507-516.

Janusz Borkowski is a PhD
candidate and an assistant in the
Chair of Parallel Computing in
the Polish-Japanese Institute of
Information Technology in
Warsaw. He has got a MSc
degree from the Department of
Mathematics, Mechanics and
Informatics of Warsaw University

in 1995. He teaches parallel programming methods,
network programming, system programming. His
research interests cover control and synchronization
methods in parallel programs, parallel simulation,
computation result visualization in parallel system.
He is the author or co-author of 15 research papers
published in proceedings of scientific conferences.

Marek Tudruj is a professor
and a head of the Chair of
Parallel Computing in the Polish-
Japanese Institute of Information
Technology in Warsaw. He is
also an associate professor and a
head of the Computer
Architecture Group in the Institute
of Computer Science of the
Polish Academy of Sciences in
Warsaw. He graduated in 1967 from Electronics
Department of the Warsaw University of
Technology. He has got a PhD and DSc degrees
from the Institute of Computer Science of the Polish
Academy of Sciences in Warsaw in 1979 and 1992,
respectively. He teaches computer architecture,
parallel computing systems methodology, parallel
systems modeling methods. His current research
interests cover parallel systems architecture,
execution control in parallel programs, parallel
program optimization, support tools for parallel
programming. He is the author or co-author of more
than 70 research papers published in journals and
proceedings of scientific conferences.

Damian Kopanski is the

systems administrator and a
MSc student in the Chair of
Parallel Computing in the Polish-
Japanese Institute of Information
Technology in Warsaw. He
studied at the Faculty of
Electronics and Information
Technology of Warsaw

University of Technology. In 2001 he graduated with
the Engineer Degree from the Polish-Japanese

Institute of Information Technology. His thesis is
concerned with the implementation of the graphical
parallel program design system GRADE with
synchronization primitives based on application
program global states. He is a co-author of 4
research papers published in proceedings of
scientific conferences.

