
C. Hriţcu, I. Goriac, R. Mihaela Gordân, E. Erbiceanu / Computing, 2003, Vol. 2, Issue 3, 44-48

 44

DESIGNING A MULTI-PRECISION NUMBER THEORY LIBRARY

Cătălin Hriţcu, Iulian Goriac, Raluca Mihaela Gordân, Elena Erbiceanu

Faculty of Computer Science, “Al. I. Cuza” University of Iaşi, Romania

Email: mpnt@infoiasi.ro, Web address: www.infoiasi.ro/~mpnt

Abstract: The aim of this paper is twofold. First, we present the basic principles and point out the main difficulties in
writing a library supporting operations with arbitrarily large numbers. Aspects such as library structure, number
representation, algorithm selection, memory management, etc., are discussed and exemplified on the most efficient
libraries developed. Secondly, we present work in progress regarding the design of a new multi-precision library,
MpNT. Comparisons between our library and the existing ones show that it achieves high performance.

Keywords: large numbers, multiple precision, high performance, unlimited precision, library, design principles,
number theory algorithms, cryptography

1. INTRODUCTION
Cryptography applications and research require

multiple precision computations at high speed.
Internet security protocols, probabilities and
statistics and numerical calculus are other domains
where very large numbers are often involved.
Therefore, computations with large numerical data
(having more than 10 or 20 digits, for example) need
specific treatment.

Most programming languages, as C and C++,
provide only limited precision numerical data types.
This precision is architecture dependent and is often
not high enough. Recent programming languages,
like Java™ and Python, have build-in multi-
precision capabilities, but being highly portable
often also implies an unacceptable efficiency loss.

Mathematical software, such as Maple or
Mathematica, also offers the possibility to work with
unlimited precision. Such software can be used to
easily prototype algorithms or to compute constants
but it is usually neither very efficient nor portable.

The most efficient solution for multiple precision
computing is the use of a multi-precision library.
Several such libraries have been proposed, most of
them being free software released under the GNU
General Public License.

LIP [1] is one of the first libraries for arbitrary
length integer arithmetic. It was originally written by
Arjen K. Lenstra and was later maintained by Paul
Leyland. Being written in pure ANSI C, it is highly
portable but not very efficient.

LiDIA [2] is a library for computational number
theory, developed at the Technical University of

Darmstadt and organized by Thomas Papanikolau.
LiDIA provides a collection of highly optimized
implementations of various multi-precision data
types and time-intensive algorithms.

CLN [3] was written by Bruno Haible and is
currently maintained by Richard Kreckel. It is a C++
library that implements elementary arithmetical,
logical and transcendental functions and has a rich
set of classes. CLN is memory and speed efficient.

NTL [4] is written and maintained mainly by
Victor Shoup. It is portable and can be used in
conjunction with GMP for enhanced performance.

PARI [5] was developed at Bordeaux by a team
led by Henri Cohen and is capable of performing
formal computations on recursive types at high
speed. It is primarily aimed at number theorists and
has an extensive algebraic number theory module.

GMP [2] was developed by Törbjord Granlund
and the GNU free software group. GMP is a C
library for arbitrary precision arithmetic with a
general emphasis on speed. It uses highly optimized
assembly code for the most common inner loops for
a lot of CPUs. In fact GMP is generally faster than
any other multi-precision library.

MpNT is a multi-precision number theory
package developed at the Faculty of Computer
Science, "Al. I. Cuza" University of Iaşi under the
guidance of Professor, Ph.D. Ferucio Laurenţiu
Ţiplea. This new ISO C++ library was started as a
base for cryptographic applications. However, it
may be used in any other domain where efficient
large number computations are required. For the
time being the library supports integer, modular and
floating point arithmetic with practically unlimited

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

C. Hriţcu, I. Goriac, R. Mihaela Gordân, E. Erbiceanu / Computing, 2003, Vol. 2, Issue 3, 44-48

 45

precision. It is both speed efficient and highly
portable without disregarding code structure and
clarity. MpNT is freely available according to the
GNU Lesser General Public License. Therefore, any
criticism and suggestions are warmly welcomed.

In this paper we present some basic principles in
writing a multi-precision library. Three main goals
are to be achieved when implementing such a
library: efficiency, portability and functionality.
Developing involves making a series of choices and
tradeoffs that will essentially affect the
characteristics of the final product. For a number
theory library it is hard to completely satisfy all
these requirements. Thus, many products of this kind
have been developed, giving the user the possibility
to choose. There is no unanimously accepted
solution to this matter, and new approaches are still
found every day. Nevertheless, certain common
lines should be followed while designing such a
library.

The paper is organized into two parts. The first
part presents basic principles for designing a multi-
precision number theory library. The second part
provides comparisons between MpNT and four well-
known libraries: GMP, CLN, PARI and NTL.

2. PROGRAMMING LANGUAGE

A well-written program using only assembly
code is very fast, but lacks portability and is very
hard to maintain. On the other side, developing the
same program in a high-level language will make it
easily portable, easy to understand and maintain, but
some efficiency will be lost. Therefore, a
compromise solution is to use both. As a high-level
language, C++ makes a good choice because it
retains C’s ability to deal efficiently with the
fundamental objects of the hardware (bits, bytes,
words, addresses, etc.), while providing the
flexibility of an object-oriented language. Assembly
language should be used only for the most
frequently called functions.

Therefore, MpNT uses ISO C++ for the main
part of the library because it is highly portable and
the fastest high-level programming language
available. A clean and intuitive interface was built
using OOP. Classes provide data hiding, guaranteed
initialization of data, implicit type conversion for
user defined types and mechanisms for overloading
operators. We also took advantage of the superior
type checking, default arguments and inline
substitution of functions, and the reference type
provided by C++.

Assembly language is used only for the small
machine-dependent kernel that is intended to
increase the performance of the library, because it is
closest to what the hardware architecture really

provides. For portability purposes, this set of
routines is also available in plain C++.

3. LIBRARY STRUCTURE
Developing an easy to maintain and extend

library requires some sort of modular structure. The
best approach is to group the functions in layers,
each of them having a different level of abstraction.
It is desirable that only low-level functions have
direct access to number representation.

The MpNT library is structured into two layers:
the kernel and the C++ classes.

The MpNT kernel contains small, carefully
optimized routines that are easy to rewrite for
different architectures. Most of the kernel functions
operate on arrays of digits, such as: comparisons,
bitwise operations and basic arithmetical operations.
However, they are risky to use because they assume
that certain relations between operands hold and that
enough memory has been allocated for the results.
Special optimizations apply for the Intel IA-32 and
compatible processors under Windows and Linux.
Because of similarities in the number representation,
the capability of using the GMP [6] or even CLN [3]
kernel as an alternative may be easily added.

The application programming interface is
intended to be as intuitive, consistent, and easy-to-
use as possible. This can be achieved by providing
the classes that best model the mathematical
concepts, hiding the actual implementation. In our
case, the C++ classes, such as MpInt, MpMod and
MpFloat, provide a safe and easy to use interface.
These classes also hide the functions of the kernel;
therefore any code relying upon them will have a
high level of independence. Backward binary
compatibility throughout the library development is
more than desirable.

The MpInt class provides multi-precision integer
arithmetic: addition, subtraction, multiplication,
division, greatest common divisor, bit operations etc.
All available operators for the int type are also
defined for objects of the MpInt class; therefore
they can be regarded as normal integers, but with no
size restrictions.

The MpMod class provides multi-precision
modular arithmetic. Only one modulus can be used
at a specific time, and the numbers are automatically
reduced. Functions determining the multiplicative
inverse and performing modular multiplication and
exponentiation are provided along with other basic
modular operations (addition, subtraction etc.).

The MpModulus and MpLimLee classes offer
high performance modular reduction, multiplication
and exponentiation using pre-computed modulus or
base information.

The MpFloat class provides floating point

C. Hriţcu, I. Goriac, R. Mihaela Gordân, E. Erbiceanu / Computing, 2003, Vol. 2, Issue 3, 44-48

 46

arithmetic with user-selectable precision. Each
object has its own precision limited only by
available memory.

4. NUMBER REPRESENTATION

Number representation highly depends on the
features provided by the hardware architecture,
including: registers’ dimensions, instruction set,
cache sizes, parallelism level provided etc.

MpNT uses signed-magnitude representation for
its multi-precision integers (members of the MpInt
class). The current implementation of the class
includes four private attributes:
- a field that uses every bit independently to store a
logical value (a flag). One bit stores the sign of the
number. Two more bits keep special status
information to avoid unnecessary copying by the
overloaded operators. The other bits are yet unused.
- the magnitude of the number, an array of digits
stored “little-endian”. For best performance digits
have the size of the microprocessor’s word.
- the number of digits used for the magnitude. The
number zero is represented by setting this field to
zero.
- the number of digits allocated for the magnitude.

This representation provides quick access to class
information and is easily extendible; the yet unused
flag bits may also store other information regarding
a multi-precision integer.

Floating point numbers (MpFloat class) currently
have three private attributes:
- the mantissa of the number, a multi-precision
integer.
- the precision of the number, a simple-precision
integer, determining the location of the radix point.
- the virtual precision of the number, a simple-
precision integer, determining the number of digits
past the radix point used for further computations.

This allows us to change the precision of the
number very fast and without truncation. The use of
whole digits also facilitates fast floating point
computations.

5. ALGORITHM SELECTION

In many cases several algorithms may be used to
perform the same operation depending on the length
of the operands. Of course, the ones with the best O-
complexity are preferred when dealing with huge
numbers, but on smaller operands a simpler, highly
optimized algorithm may perform much better. This
is why careful performance testing is required to
find out the limits of applicability.

Even though in MpNT we implemented more
than one algorithm for some operations, the interface
functions will use only the routines or the

combination of routines proved to be most efficient.
A detailed correctness and complexity analysis of
the implemented algorithms can be found in [7].

Usually, while looking for efficient
implementations various tricks are used and a new
problem arises: the correctness of implementation.
This can be regarded as an instance of a more
general problem, the software validation problem.
Much work has been devoted to this problem,
especially to find automatic procedures for
validation. The Coq proof assistant [8] is one such
tool. It has been used, for instance, to validate the
GMP implementation of the Zimmermann’s square
root algorithm [9]. Proofs are developed using the
correctness tool to deal with imperative features of
the program. The formalization is rather large (more
than 13000 lines) and requires some advanced
techniques for proof management and reuse (see
[10] for other attempts of GMP procedure
validations).

6. MEMORY MANAGEMENT

The most frequently used memory allocation
policy is on-demand allocation (allowing the user to
explicitly allocate memory). Additional space may
be transparently allocated whenever a variable does
not have enough (e.g., GMP, NTL). This is easy to
implement but the user has responsibilities in
managing memory. This drawback may be
eliminated by using a garbage collector (e.g., CLN),
but the speed overhead could be unacceptable.
Memory leaks may also be prevented by the use of
class destructors. Some libraries give the user the
possibility to choose the allocation technique that
best suits his application or even to use his/her own
memory management routines (e.g., LiDIA).

The memory management policy adopted in
MpNT is based on explicit allocation of memory. To
avoid frequent reallocation, when the exact amount
of necessary memory is known, the user may make
such a request. For the same reason, whenever
reallocation occurs, we provide a little more space
than needed. Memory may be released either on
demand or automatically by the class destructors.

7. ERROR HANDLING

The desirable approach is to signal the occurred
errors, allowing the user to choose the actual
handling policy. This involves supplementary
checking, it is time consuming and can make the
code harder to read and maintain. Therefore a
frequent approach is to ignore errors, which surely
involves some risks, but eliminates the overhead.

We chose not to ignore errors so MpNT uses the
throw-try-catch mechanism provided by C++ to

C. Hriţcu, I. Goriac, R. Mihaela Gordân, E. Erbiceanu / Computing, 2003, Vol. 2, Issue 3, 44-48

 47

signal exceptions to the user.

8. COMPARISONS
The comparisons were performed on a small set

of basic functions: multiplication (Fig.1), greatest
common divisor (Fig.2), modular reduction (Fig.3)
and modular exponentiation (Fig.4). The time versus
operand size (measured in 32 bits digits) graphs
below illustrate that the best results belong to GMP
and CLN immediately followed by our library.

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70 80 90 100

Fig.1 – Multiplication

NLC
PMG
TNpM

LTN
IRAP

operand size

tim
e

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60 70 80 90 100

Fig.2 – Greatest Common Divisor

operand size

tim
e

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100

Fig.3 – Modular Reduction

operand size

tim
e

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100

Fig.4 – Modular Exponentiation

operand size

tim
e

The versions of the libraries compared were:

CLN 1.1.5, GMP 4.1, MpNT 0.1pre1, NTL 5.2 and
PARI 2.2.4.alpha. Default options were used for
building and installing these libraries from sources.
The test system had an 800MHz AMD processor
and was running Linux (Mandrake 9.0).

9. REFERENCES

[1] A. Lenstra. LIP – Long Integer Package,
Bellcore, http://usr/spool/ftp/pub/lenstra/LIP.
[2] LiDIA Group. LiDIA: A C++ Library for
Computational Number Theory, Darmstadt
University of Technology, http://www.informatik.tu-
darmstadt.de/TI/LiDIA/.
[3] B. Haible, R. Kreckel. CLN – Class Library for
Numbers, http://www.ginac.de/CLN/.
[4] V. Schoup. NTL: A Library for Doing Number
Theory, http://www.shoup.net/ntl/
[5] PARI-GP Group. PARI-GP, http://www.parigp-
home.de/.
[6] GMP Group. GMP – The GNU Multiple
Precision Arithmetic Library, www.swox.com/gmp/.
[7] F.L. Ţiplea, S. Iftene, C. Hriţcu, I. Goriac, R.M.
Gordân, E. Erbiceanu. MpNT: A Multi-precision
Number Theory Package. Number-Theoretic
Algorithms (I), Faculty of Computer Science, “Al. I.
Cuza” University of Iaşi, Technical Report TR03-02
(2003), http://thor.info.uaic.ro/~tr/tr.pl.cgi
[8] Coq Site. The Coq Proof Assistant,
http://pauillac.inria.fr/coq/
[9] P. Zimmermann. A Proof of the GMP Square
Root Using the Coq Assistant, Rapport de recherche
4475, INRIA, 2002.
[10] P. Zimmermann. A Proof of the GMP Fast
Division and Square Root Implementations, Rapport
de recherche, INRIA, 2000.

C. Hriţcu, I. Goriac, R. Mihaela Gordân, E. Erbiceanu / Computing, 2003, Vol. 2, Issue 3, 44-48

 48

Cătălin Hriţcu was born in 1982
in Suceava, România. He is
currently a student in Computer
Science at the “Al. I. Cuza”
University of Iaşi. His research
interests include mathematics of
computation, compiling techniques,

distributed operating systems, peer-to-peer networks
and software development.

Iulian Goriac was born on July
11th, 1978 in Suceava, România.
He is currently a student of the
Faculty of Computer Science of “Al.
I. Cuza” University of Iaşi. His
areas of interests include artificial
intelligence, cryptography, software
engineering and software validation
techniques.

 Raluca Mihaela Gordân was
born in 1982 in Paşcani, România.
She is currently a student of the
Faculty of Computer Science of “Al.
I. Cuza” University of Iaşi. Her areas
of interests are cryptography,
software development and the
design of algorithms.

Elena Erbiceanu was born on

May 23rd, 1982, in Paşcani,
România, and is currently a third
year student at the Faculty of
Computer Science, “Al. I. Cuza”
University of Iaşi. Her areas of
interests include coding theory and
cryptography, graphic interfaces
design, algorithm design and software development.

