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Abstract: This paper presents an agent oriented approach for grid computing. As opposed to existing approaches, 
agent technology promises a more flexible approach, easier installation and management of the grid framework, and 
better ability to autonomously recover from failures. The semantically rich, ontological description of the grid 
applications, services and resources opens the possibility for better monitoring and resource management, and better 
user interfaces - both for customers and service providers. 
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1. INTRODUCTION 
Grid computing [4, 13] became the major 

approach towards scientific computing, and proved 
its utility in other domains, such as enabling scalable 
virtual organizations. While the original work on 
computational grids centered around the Globus 
system [14], currently the computational grid, as a 
research area, is a wide collection of efforts ranging 
from knowledge management and ontological 
descriptions such as the effort of the Semantic Grid 
or Grid Scheduling Ontology working groups, to 
groups dealing with security, low level architecture 
and so on. In fact the proliferation of the 
technologies labeled as grid architectures prompted 
the original authors of the term to write additional 
papers to clarify what can and what can not be 
considered grid computing [3]. 

  Our work, presented in this paper, fits in the 
general picture of grid applications, as one of the 
approaches which provides grid services at the 
application level, using a Java based, FIPA 
compliant agent system. Many grid frameworks 
operate at a middleware layer, because in the early 
days of grid, the performance penalty and the 
additional resource requirements were considered 
unacceptable. In the last years, however, many 
researchers have proposed application level 
approaches for grid computing, frequently involving 
technologies such as Java, peer-to-peer computing 
and agents. Efforts in this direction are projects like 
GridOneD, Symphony [7] or JavaGrid. 

  There are several reasons why an application 
level grid implementation is considered desirable: 
•  In many cases, the grid service provider is a 

temporarily available host, with the access 
limited to the application layer. In the (now 
traditional) "network of workstations" concept 
the access is limited to user space access, on 
restricted times, and potentially on restricted 
resources. 

•  Application level tools have access to a broader 
range of services provided by the lower levels of 
the operating system. 

•  One of the traditional arguments of 
implementing grid services at the low level is 
the efficiency in the terms of memory and 
processing power. As the performance of 
computers increases, this overhead becomes a 
lower and lower percentage of the total 
resources used by the application. For example, 
the roughly 20-30 MB consumed by an user 
space Java agent platform is of limited 
importance at the age of desktop computers with 
1GB of memory or more. 

It is our experience that the final performance of 
the grid is not affected by the overhead of the grid 
software. The overhead is easily compensated by 
qualitative improvements such as better scheduling 
decisions, more transparent recovery from failure, 
greater autonomy of operation and additional 
features and applications provided by the agent 
approach. The goal of this paper is to show a 
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collection of technologies developed for managing a 
grid application in an efficient and user-friendly 
manner. Our approach relies on a combination of 
technologies: 
•  ontological representation and knowledge 

management technologies 
•  mobile and mutable agent systems 
•  distributed management and remote installation 

The remainder of this article is organized as 
follows. The Bond framework, a FIPA compliant 
agent system is presented in Section 2. In Section 3, 
we discuss the support provided by the Bond 
framework to develop grid applications. In section 4, 
we present an ontology for grid applications. The 
Grid Control Center, a front-end used to manage 
grid applications in Bond grid framework is 
presented in section 5. We conclude in section 6. 
 

2. THE BOND AGENT SYSTEM 
The Bond agent system (currently at version 3) is 

a FIPA compliant agent development environment 
[12]. It is built on top of Java Agent Development 
Environment (JADE) framework [15] and extends 
its functionality in several ways including: ease of 
development using a declarative approach, better 
introspection capabilities, and support for mutability 
through agent surgery [1]. Every agent contains a 
knowledgebase, which contains the agent’s 
knowledge about the world and about itself, 
including its agenda. The Bond knowledgebase is 
implemented using the Protégé-2000 [16, 6] 
ontology framework. All Bond agents share a basic 
core ontology (BondCore). Individual agents can 
also use custom domain-specific and agent-specific 
ontologies. The salient features of the Bond system 
are: 
•  Support for development of behaviors (called 

strategies) for multi-plane state machine 
•  Support for creating and modifying the multi-

plane state machine using a declarative approach 
using the Python based Blueprint agent 
definition language 

•  Graphical User interface for monitoring state 
machine's current status 

•  Support for the Belief, Desire, Intention (BDI) 
model 

A high level architecture of the Bond system is 
shown in Fig.1. The input provided to the Bond 
system is a description of a state machine in the 
blueprint agent description language. Each state of 
this state machine has an associated strategy from 
strategy database. To enable automatic runtime 
assembly or mutability, Bond strategies extend the 
Jade behaviors with metadata concerning their roles, 
resource utilization, pre- and post-conditions, and 

other data. The Bond strategy database is an indexed 
and machine searchable collection of strategies. The 
multi-plane state machine of an individual agent is 
assembled from strategies pre-existent in the 
strategy database based on a description in the 
blueprint. 
 
3. SUPPORT FOR GRID APPLICATIONS 

IN BOND 
The Bond framework supports development of a 
grid [5] application by providing a set of predefined 
strategies. These strategies can then be assembled 
into custom agents, which participate in the 
execution of the application. The strategies are based 
on the principles of BDI (Belief-Desire-Intention) 
model. Actions such as executing an application 
locally or remotely, or performing data transfers are 
seen as the executions of intentions. The execution 
of a grid application is seen as a high-level goal or 
desire. Operations such as static scheduling or 
planning are generating low-level intentions from 
the higher-level goals. The current execution status 
is modeled as the beliefs of the agent. 

LocalApplicationExecution is a simple strategy 
that fulfills the agent’s intention to execute an 
application on the local machine. It waits for the 
application termination and places the results in the 
intention status accordingly. 

RemoteApplicationExecution is a strategy that 
sends a message to a remote agent to start up a given 
application. The remote agent notifies back once the 
application execution has completed on remote 
machine. 

ApplicationManager is a strategy that runs on 
every node of the grid. It keeps waiting for a 
message from control agent and upon receiving a 
message it places the application execution intention 
in the agent's knowledgebase. 

The FileTransfer strategy picks up a file transfer 
intention from agent's knowledgebase and transfers 
the file(s) accordingly. 

The scheduler strategy works by selecting a grid 
application (modeled as a desire in the BDI model) 
and creates atomic intentions corresponding to the 
immediately executable components of the 
application. The actual scheduling algorithm is 
implemented as a plugin, and it can range from a 
simple greedy application scheduler to dynamic and 
static scheduling algorithms of arbitrary complexity. 
A user can design its own scheduling strategy, using 
as data structure the grid application ontology 
(presented in the next section). 

The RemoteInstallation strategy allows installing 
and configuring agents remotely on the grid. 
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Fig. 1 - The design of the Bond system

4. ONTOLOGICAL REPRESENTATION 
OF GRID APPLICATIONS 

An ontology defines a common vocabulary for 
the information in a specific domain. It includes 
definitions of basic concepts in the domain and 
relations among them, which should be interpretable 
both by machines and humans. Recently, significant 
research effort went into the development of an 
ontology for representing grid applications and grid 
services. For the computational grid, with its large 
collection of grid services, resources and 
applications which needs to coexist with a set of 
legacy applications, the existence of a coherent 
ontology is important not only for the services and 
the agents participating in the grid but also for the 
human users who need to understand and manage 
the framework. 

The Bond framework defines a domain specific 
ontology for grid applications. This ontology builds 
upon the BondCore ontology, and is defined in the 
Protégé-2000 ontology editor. This ontology is 
ofcourse a work in progress and needs to be 
considered in the context of the work of the relevant 
Global Grid Forum working groups. The Bond core 
ontology will continue to track the progress and 
contribute to these standardization efforts. 

A subset of the grid ontology together with the 
classes from BondCore directly referred from them 
is presented in Fig.2. Although for a better 
visualization, we have presented this picture in a 
UML format, the classes presented in this diagram 
are not classes in the sense of Java programming 
sense, but frames in the CLIPS sense, which is the 
native format of the Protégé-2000 editor. 

A grid application can be defined as a directed, 
usually acyclic, graph. The nodes of the graph 
represent the tasks (i.e programs) that need to be 

executed, while the edges represent data staging 
operations (i.e file transfers). 

A GridNode consists of a node name, a task that 
needs to be executed when the node is fired, and two 
set of edges. EdgesIn is a list of edges that come into 
the node while EdgesOut is a list of edges that go 
out of the node. The boolean IsFirstNode indicates 
whether this is the starting node of the grid or not. A 
grid application has only one starting node. The task 
is an instance of Program and represents the 
executable that will run at the remote host. 

A GridEdge consists of an edge name, a file 
transfer instance and the names of two nodes. 
FromNode indicates the node from where this edge 
starts and ToNode indicates the node where this edge 
ends. 

The FileTransfer class represents a file transfer 
action. It consists of general file transfer information 
like server name, login id and password.  
LinkDirection indicates whether the file is to be 
uploaded or downloaded. LocalResource represents 
the local file while RemoteResource represents 
remote file. While downloading RemoteResource 
file is downloaded and saved as LocalResource. For 
uploading, the LocalResource file is read and 
uploaded as RemoteResource. Both LocalResource 
and RemoteResource, in turn, are instances of File 
which represents an actual file name and its location 
on the machine. 

The Intention class represents the intentions of 
the agent (in the BDI sense). The action slot is an 
instance of Action class and specifies the action that 
needs to be taken when the intention is executed. 
The status slot provides the current status of the 
intention. 
The Action class represents the action that is to be 
taken by the agent. For the case of a grid application, 
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Fig. 2 - The ontology of Grid

the ActionDescription can be an instance of 
Program or FileTransfer. Program specifies the task 
that needs to be run on remote machine while 
FileTransfer specifies the transfer of data between 
two machines. 
 

5. CONTROL CENTER 
The front-end of the Bond grid package is 

implemented by the Grid Control Center as shown 
in Fig.3. It has been designed to provide the 
following grid services: 
•  Installing and configuring the Bond system and 

applications on grid nodes 
•  Designing or editing grid application visually 
•  Running applications on both local and remote 

machines 
•  Data staging support 
•  Managing distributed grid applications remotely 

Our experience has shown that one of the biggest 
obstacles in the deployment of Grid applications is 
the difficulty of deploying the required applications 
on the remote locations. In case of distributed grid 
applications, both the grid framework and the actual 

scientific computation code need to be deployed and 
its versions managed on a large number of nodes. 
The remote installation panel in the grid Control 
Center offers services to install and run the Bond 
grid package on remote machines.  

 Fig. 3 - Grid Control Center 
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Fig. 4 - A deployed generic grid framework

The user needs to provide the list of hosts on 
which the Bond grid package needs to be installed or 
upgraded, together with the relevant access 
information (login, password etc). The installation is 
performed using a collection of Python scripts and it 
relies on standard system utilities such as secure 
shell (ssh) and secure copy (scp). Besides installing 
the package, the user can also start-up the grid 
package remotely on any node of the grid using the 
Grid Control Center. This enables the user to 
manage different versions of the grid package 
remotely. 

The grid application editor panel provides a user 
interface for the user to edit the grid application. The 
grid application is represented as a directed acyclic 
graph where the nodes represent the application 
nodes of the grid and the edges represent data 
dependencies between the node applications. If the 
nodes will be ultimately scheduled to different hosts, 
the edges will represent data staging operations. This 
representation is very similar to workflow editors. 
The grid editor serves as a composition and control 
environment. It is used both for the assembly and 
configuration of the description of a grid application 
to control and supervise the execution of an instance 
of the application. 

After designing the grid application, the user can 
select to schedule the grid application from grid 
application panel. The scheduler creates remote 

application execution intentions in the agent's 
knowledgebase. The remote application execution 
strategy picks up these intentions and dispatches a 
message to respective remote agent(s) for executing 
given programs. Each remote agent has an 
application manager strategy that receives the 
message and places a local application execution 
intention. The local application execution strategy 
on that agent then executes the program. The control 
center agent is notified of the results once execution 
completes. The control center then updates the status 
of that intention in its knowledgebase. The intention 
status is then used by the scheduler to schedule 
further nodes or edges. 

Grid environments need to assure that the 
resources are available to the component 
applications locally even if the nodes are distributed 
geographically, an operation usually referred to as 
data staging [8, 9, 10]. The data staging operation 
for Bond grid framework is quite similar to 
application execution. The scheduler, while 
scheduling an edge, places a remote execution 
intention for file transfer. The remote execution 
strategy dispatches a message to the remote agent to 
transfer a resource to remote machine(s) (i.e. to the 
set of node(s) that will eventually need that data). 
This ensures that updated data is available with a 
node before it is scheduled to run. 

In the current version of the Bond grid 
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framework the data staging is relying on the 
standard FTP protocol. In the future we plan to 
allow the use of the Globus specific services through 
the Globus Commodity Toolkit for Java (CoG) [11]. 

Fig.4 presents a deployed grid framework. A 
typical deployment of a grid framework involves 
running the Grid Control Center and a series of grid 
executor agents running on the hosts providing the 
services. These agents are providing control and file 
transfer services. They also contain the Monitorable 
plane which allows the control center, or external 
monitoring agents to check the status of the system, 
including liveliness and the status of execution of 
the requested services. The role of scheduler is to 
schedule the applications on the nodes and the 
transportation of data between nodes. It schedules 
the node(s) for execution of the application and then 
schedules edge(s) to transfer the data from one 
resource to the other. The user can monitor the 
execution of the grid application using the visual 
editor. The scheduling strategies can be either static 
or dynamic [2]. For static strategies, the schedule is 
computed before the grid application is started. 
During execution, a very simple execution engine 
enforces the decisions made during scheduling. For 
dynamic schedules, all the scheduling decisions are 
made during runtime. In our prototype we are using 
a simple greedy dynamic scheduling algorithm. 
More complex algorithms can be readily plugged in 
the framework.  
  Our group is working to deploy an agent 
framework for a computational biology application 
(virus structure reconstruction) on a 32 node 
Beowulf cluster at the University of Central Florida. 
 
6. CONCLUSIONS AND FUTURE WORK 

In this paper we have presented our work towards 
building a computational grid using agent 
techniques. We have found that agent technology 
(and generally application level implementations) 
offer many advantages in terms of ease of 
deployment, usage and the ability to control the 
scheduling and data staging of grid applications at a 
higher level. We found that the (relatively 
heavyweight) Java agents have a non-negligible 
overhead, which however, can be easily justified 
with the advantages of the method. 

The work presented in this paper is just a 
snapshot of our ongoing work in the direction of grid 
computing. We will continue working on developing 
a ontological representation of the computational 
grid, implement better scheduling approaches and 
failure recovery systems, and continuously align our 
system to the standards proposed to the Global Grid 
Forum as they become available. 

 

7. ACKNOWLEDGEMENTS 
The research reported in this paper was partially 

supported by National Science Foundation grants 
MCB9527131, DBI0296107, ACI0296035, and 
EIA0296179. 
 

8. REFERENCES 
[1]      L. Bölöni and D. C. Marinescu. Agent 
surgery: The case for mutable agents. Proceedings 
of the ThirdWorkshop on Bio-Inspired Solutions to 
Parallel Processing Problems (BioSP3), Cancun, 
Mexico, May 2000. 
[2]      T. D. Braun, H. J. Siegel, N. Beck, L. Bölöni, 
M. Maheswaran, A.I. Reuther, J. P. Robertson, M. 
D. Theys, B. Yao, D. A. Hensgen, and R. F. Freund. 
A comparison of eleven static heuristics for mapping 
a class of independent tasks onto heterogeneous 
distributed computing systems. Journal of Parallel 
and Distributed Computing, 6(61):810.837, June 
2001. 
[3]      I. Foster. What is the grid? a three point 
checklist. URL http://www-
fp.mcs.anl.gov/.foster/Articles/WhatIsTheGrid.pdf. 
[4]      I. Foster and C. Kesselman, editors. The 
Computational Grid: Blueprint to a New Computer 
Infrastructure. Morgan-Kauffman, 1998. 
[5]     I. Foster, C. Kesselman, and S. Tuecke. The 
anatomy of the grid: Enabling scalable virtual 
organizations. International Journal of 
Supercomputer Applications, 15(3), 2001. 
[6]     W. E. Grosso, H. Eriksson, R. W. Fergerson, 
J. H. Gennari, S. W. Tu, and M. A. Musen. 
Knowledge modeling at the millennium (the design 
and evolution of Protégé-2000). Technical report, 
Stanford Medical Informatics Institute, 1999. 
[7]     M. Lorch and D. Kafura. Symphony - a java-
based composition and manipulation framework for 
computational grids. In Proceedings of the 2nd 
IEEE/ACM International Symposium on Cluster 
Computing and the Grid (CCGrid2002), pages 
136.143, May 2002. 
[8]   The Globus Project White Paper. GridFTP: 
Universal data transfer for the grid. URL 
http://www.globus.org/datagrid/deliverables/C2WP
draft3.pdf, 2000. 
[9]    M. Tan, M. Theys, H. Siegel, N. Beck, and M. 
Jurczyk. A mathematical model, heuristic, and 
simulation study for a basic data staging problem in 
a heterogeneous networking environment, 1998. 
[10]    M. Theys, N. Beck, H. Siegel, and M.Jurczyk. 
Evaluation of Expanded Heuristics in a 
Heterogeneous Distributed Data Staging Network. 
In Proceedings of the 9th Heterogeneous 
ComputingWorkshop (HCW'00), pages 75.89. IEEE 
Press, 2000. 



M. Ali Khan, S. K. Vaithianathan, K. Sivoncik, L. Bölöni / Computing, 2003, Vol. 2, Issue 3, 56-62 

 

 62 

[11]     G. V. Laszewski, I. Foster, J. Gawor, and P. 
Lane. A Java commodity grid kit. Concurrency and 
Computation: Practice and Experience, 
13(8.9):645.662, /2001. 
[12]     Bond webpage. URL http://bond.cs.ucf.edu. 
[13]     Global grid forum webpage. URL 
http://www.gridforum.org 
[14]     Globus webpage. URL 
http://www.globus.org 
[15]     Jade webpage. URL 
http://sharon.cselt.it/projects/jade/ 
[16]     Protégé-2000 webpage. URL 
http://protege.stanford.edu 
 

 
Majid Khan is a PhD student at 

the Computer Engineering 
Department of University of Central 
Florida. He recevied his Bachelor’s 
Degree in Computer System 
Engineering from Ghulam Ishaq 
Khan Institute of Engineering 

Sciences and Technology, Pakistan in May 1997. 
He worked for several leading software development 
companies in Pakistan including Network Solution 
Pvt. Ltd., Etrango Pvt. Ltd. and Cressoft Pvt. Ltd. He 
received a fellowship from School of Electrical 
Engineering and Computer Science for the year 
2002-2003 and a graduate merit fellowship for year 
2003-2004. His research interests include distributed 
systems, autonomous agents and machine learning. 
 

Shankar K. Vaithianathan is a 
graduate student at the Computer 
Science department of University of 
Central Florida. He received a 
B.Tech (B.S) degree from the 
Computer Science and Engineering 
Department of Pondicherry 
University, Pondicherry India in May 2001. His 
research interests include distributed object 
systems, software engineering and autonomous 
agents. 
 

Kresimir Sivoncik recived PhD 
degree in Robotics from University 
of Zagreb, Croatia in December 
1983, MSc degree and BSc 
degrees from Faculty of Mechanical 
Engineering and Naval 
Architecture, University of Zagreb 

Croatia in 1981 and 1978 respectively. He received 
research fellowship from University of Tokyo, Japan 
in 1985-1987. His research interests include 
distributed systems, autonomous agents and parallel 
computing. 
 
 
 
 

Ladislau L Bölöni is an 
assistant professor at the Computer 
Engineering department of 
University of Central Florida. He 
received a PhD degree from the 
Computer Sciences Department of 
Purdue University in May 2000. He 
received a Master of Science 
degree from the Computer Sciences department of 
Purdue University in 1999 and Diploma Engineer 
degree in Computer Engineering with Honors from 
the Technical University of Cluj-Napoca, Romania in 
1993. He received a fellowship from the Hungarian 
Academy of Sciences for the 1994-95 academic 
year. He is a member of ACM and the Upsilon Pi 
Epsilon honorary society. His research interests 
include distributed object systems, autonomous 
agents and parallel computing.  
 




