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1. INTRODUCTION 

Memory speed increases rather slow as it is 
compared to the processor speed.  Outdated 
machines while slower at the processor speed have 
about the same memory performance.  That creates 
an opportunity to recycle older machines as a 
“smart” memory for newer ones.  Reusing of 
mechanically non-recyclable computers also helps to 
make computing to be environmentally aware or 
“green”.  

We propose the design of “Green” Multi-layered 
“Smart” (GMS) memory management system based 
on a simplified version of the percolation model 
originally proposed for the HTMT Petaflops design 
[1].  Our approach is application-centric. The 
problem with explicit memory management for 
adaptive and irregular application is that their 
computation and communication patterns are 
variable and unpredictable at runtime.  This results 
in using valuable memory space even if this means 
the system will remain idle. 

Our parallel execution model treats parallel 
applications as a set of “small” executable fragments 
(in the HTMT design are called parcels).  Parcel 
consists of a chunk of code and a number of input 
parameters.  An input parameter can hold an actual 
data or data dependency.  In this project, we assume 
SPMD model so we reduce the parcels to objects 
with a number of user-defined handlers attached to 
them.  The type, number, and arguments of the 
handlers are determined at runtime and they are 
input dependent.   

Our preliminary data indicate the maximum 
GMS overhead is 0.28% on the very fast machines, 

at the cost of 23.90% and 7.35% at the outdated 
machines of data servers and control unit 
respectively. In addition, we observe the same 
speedup as the traditional object-oriented, 
distributed computing approach. These are very 
encouraging data, considering the fact that the size 
of our test case is not sufficient to show the full 
potential of the GMS system. 
 

2. ARCHITECTURE  
The GMS system consist of three layers of 

hardware and software respectively:  (1) the Data 
Servers (DS), (2) Control Unit (CU) and (3) 
Computing Engine (CE).   

Fig. 1 depicts the GMS architecture. 
The DS runs on a number of relatively slow (i.e., 

outdated in terms of their processors speed), but still 
useful in terms of memory speed machines.  The DS 
plays the role of a “smart” storage subsystem.  It is 
independent from the rest of the subsystems.  This 
will allow the plug-and-play with different 
implementations in hardware and software.  In the 
DS layer, the sub-system holds the application data 
(i.e. objects) until all of the dependencies of their 
handlers are resolved.  Moreover, the DS layer 
stores all processed objects and the results of the 
application. For the current implementation of the 
DS, we use out-of-core scheme presented by Salmon 
et al [2].  In his paper, Salmon describes out-of-core 
way to do a parallel N-body simulation. He stores 
the data structures (arranged in the octrees) using the 
algorithm specific mapping between data objects 
and memory pages. Then, he uses the most recently 
used paging scheme with prioritized control. We 
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adopted the most recently used paging scheme with 
prioritized control from Salmon’s work. In our 
future implementations, we will also consider 
introducing the support detecting the effective 
mapping between the application data structures and 
memory pages. 
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Fig. 1 – Subcluster organization. 

The CU runs on big memory, fast network and 
faster than DS processors SMP machine (CU node 
should have very fast link, such as shared memory, 
to the application node) and controls the percolation 
flow and places the right application-defined 
handlers with the right data/objects in the right CE 
node at the right time. The CU is the most complex 
block of the system.  It consists of a single k-way 
shared memory machine. We design the CU as a 
multithreaded unit.  A directory in CU contains the 
information about the locations of all objects in the 
DS.  The pending objects/handlers queue contains 
references to the objects that have pending handlers, 
so it is a queue of ready-to-execute active messages.  
The Assembler prepares objects for execution and is 
responsible for delivering them into the input queue.  
The Terminator destroys the objects that are 
finished, and then it frees resources and stores the 
results (for a subsequent use or iteration) to slower 
but larger memory (DS).  The scheduler is not a 
separate block but its functionality is distributed 
between the Assembler, the Terminator, and the CE 
nodes.   

Finally, the CE runs on number of very fast, but 
“low” in memory nodes (independent workstations 
or processors) relative to aggregate memory one can 
put together by using older and slower machines 

with disks for the DS subsystem. The CE schedules 
and executes the application-defined handlers to 
completion. An open research issue is the 
optimization of resources (cycles and bandwidth) of 
the CE nodes. 

An important design issue is the scalability of our 
system using a large number of the semi-
independent sub-clusters whose workload is 
balanced automatically (see 

Fig. 2). However, in this paper we focus on the 
design of a single sub-cluster so that scalability will 
be possible with additional but minimal effort.  A 
single sub-cluster can use two different networks: a 
relatively outdated and slow network for the DS 
layer and a faster network to connect the CU with 
the CE layers.   

 
3. SOFTWARE IMPLEMENTATION 

We use the DMCS (Data Movement and Control 
Substrate) [3] and MOL (Mobile Object Layer) [4] 
as a low-level communication systems which 
support AMs (Active Messages) [5] in the context of 
object/data movement (i.e., up and down movement 
from a subsystem to a subsystem) during the 
percolation cycle.   

The DMCS provides single-sided 
communication, as get/put communication 
operations and remote procedure invocation or 
remote service requests (RSRs) DMCS’s RSRs and 
communication operations invoke user-defined 
handler functions like AMs on target processors. 
DMCS forms the basis for both data migration and 
computation invocation in the GMS system.  

The MOL extends the DMCS by providing a 
global namespace in the context of object mobility.  
Mobile objects are application-defined data objects 
and are not restricted to exist in contiguous memory.  
A mobile object may be referenced  by any  
processor in the  parallel system by  using its 
associated  mobile  pointer,  which  is  a  system-
wide  unique identifier.   
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Fig. 2 – Hardware organization of the GMS cluster. 
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The MOL's communication operations extend the 
DMCS RSRs by allowing applications to invoke 
transparently computation handlers at the location of 
a mobile object, regardless of where it is in the 
parallel system.   In this way, applications can deal 
directly with data objects without the tedious 
bookkeeping associated with maintaining up-to-date 
knowledge of each data object’s current location. 

 
4. PERCOLATION CYCLE  

At bootstrap, the GMS specifies the roles to the 
nodes of the parallel machine. It assigns: (i) exactly 
one CU node and one node to be the front-end of the 
application, which is used by the application to 
interact with the rest of the system, (ii) N CE nodes 
and M DS nodes, depending on the user preferences 
and total number of available nodes. 

The application node initially creates user objects 
and feeds the computation requests to the system. It 
is also responsible in resolving the object data-
dependencies (at the user level in this version of the 
GMS implementation). 

The percolation cycle has several stages: 
The application injects objects into the system for 

execution.  At this point, depending on the size of 
the objects and the load of the DS nodes, the system 
stores the object at the appropriate DS nodes. Their 
pending handlers are stored into the pending 
objects/handlers queue and the local directory is 
updated; 

Assembler picks the objects (in some order) from 
the pending objects/handlers queue.  It analyzes (in 
current implementation it just checks for the location 
of the object and any pending handlers ready for 
execution) the object and it queries the DS layer for 
the necessary data (e.g., an argument to object’s 
handler  might be another object),  and then it 
assembles the necessary parts and puts them into the 
input queue; 

Next the scheduler picks the now ready to 
execute objects  from the input queue and assigns 
them to the CE nodes where they run to completion 
all their pending handlers;  after completion the 
objects  and all of their associated data are sent to 
the output queue; 

Finally, the Terminator picks the objects from the 
output queue and it stores them in the DS layer. If, in 
the mean time, there are new Active Messages with 
pending handlers it stores all of them into the 
pending objects/handlers queue and updates the 
local directory in CU.   
 

5. PROGRAM EXECUTION  
Next, we describe the execution and the 

percolation for application objects within the GMS 
system. 

When an object is registered with the system, the 
corresponding GMS object consists of the two parts: 
the object itself as the user created it (to the system it 
is just a pointer to some data) and the meta data. 
Meta data contains object specific information (e.g., 
user functions for moving the object from one node 
to another) and the mobile pointer to the user data. 
After the object being created it is “released”, which 
is the object data are transferred to some of the DS 
node and the meta data are transferred to the CU 
node. The mobile pointer that user gets after the 
object’s creation points to the meta data rather than 
to the object’s data itself. 

After user created all needed (at present) objects, 
he/she calls objects functions. The call request (from 
now on, we will call it a message as in MOL) will be 
delivered by the underlying communication layer to 
the node where the meta data is residing. Meta data 
should be located on the CU node, since system 
transferred it there upon the “release” of the object. 

Upon receiving the message, the CU checking 
whether the targeted object was involved in other 
computation already. If the object is not involved the 
CU issues an order for the data of that object to 
migrate from the DS node to the CE node (system 
picks the CE depending on scheduling policy). Then 
the CU stores the handler in a queue. Scheduler can 
also delay the message depending on its specific 
policy and parameters (it will not order a migration 
of the object in such case). 

Upon receiving the order for migration from the 
CU, the DS node packs an object data (using user-
registered packing routines) and sends it to the 
selected CE node. It also sends an ack to the CU to 
acknowledge that the object has left the DS and has 
moved (or is still moving) to the CE. 

Upon receiving the ack, the CU extracts the 
delayed handler (or handlers) from the queue and 
sends them to the data object on the CE node. CU 
also picks a new storage node for the object and 
issue a request for migration to this object. Because 
the MOL messages are causal, this request will not 
reach the object until all previously issued handlers 
were executed. 

Upon receiving the migration request, the CE 
node sends an ack to the CU after it uninstalls the 
object, then sends packed object to the DS node. 
Upon receiving the ack, the CU may try to schedule 
any delayed messages. 

 
6. PERFORMANCE EVALUATION 

In this section, we present preliminary 
performance evaluation data using dense matrix-
matrix multiplication (MMM) algorithm. We have 
implemented the MMM using both the GMS and 
MOL in order to compare the performance of the 
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GMS percolation based approach with the traditional 
message passing approach. The algorithm we use is 
not the most efficient MMM algorithm. GMS 
performs not as good as implicit implementations of 
matrix-matrix multiplication; it works reasonably 
well, with overhead much smaller than actual 
computation. For the testing purposes, we use 
object-oriented implementation using the MOL.  
However, the MOL implementation is also far from 
the best parallel MMM implementation, MOL and 
the object-oriented model it implies showed to be 
very good at solving adaptive problem we are most 
interested. Since we do not have the GMS 
implementation of an adaptive problem, we want to 
compare GMS with the system that uses the same 
programming model. 

Our experimental set up consists of the following 
hardware: 

1 Dell PowerEdge 6600 with 4 Hyperthreaded 
Pentium III Xeon 1.4GGz processors and 16GB of 
RAM (seen as 8 processors under MPI) for the CE 
layer; 

2 Dell PowerEdge 2450(2 processors per node) 
Pentium III 933MGz processors with 1GB of RAM 
for the DS layer; 

1 Dell PowerEdge 6450 with 4 (only 2 used) 
Pentium  III 733 MHz processors and 2GB of RAM 
for CU and application node; 

the accumulative secondary storage of the DS 
nodes is 18Gb RAID; 

1Gb Gigabit Ethernet network connection, single 
switch. 

In our implementation, we use ( )3nΟ  matrix-
matrix multiplication algorithm: 

 
[ ]∑ ×=

k
ikkjji BAC ,

   (1) 

 
where A  and B  are the multipliers, C  is the 

product and i , j  and k indexes from 0  to n where 
n  is the number of rows/columns in the matrix. 

Because of the object-oriented nature of the 
system, we rearrange the multiplications that though 
do not affect the time (actual computing time) or 

correctness of the execution. For every jiA , , 
 

kjjiki BAC ,,, ×=+     (2) 
 
where A  and B  are the multipliers, C  is the 

product and i , j  and k indexes from 0  to n where 
n  is the number of rows/columns in the matrix. 

 In our implementation, we store matrix blocks 

within objects, jiA , , jiB ,  and jiC ,  are stored within 

single object. The implementation contains several 
steps as following: 

for every block A , compute a list of pairs of 
pointer to the objects that contain appropriate B  and 
C (as in equation 2); 

for every block A , call a process handler on the 
object where that block is stored in with the list as an 
argument; 

on a call to process handler, go thru the list and 
call multiply handlers on the objects that contain 
appropriate B  ‘s, giving the content of  object’s A  
and appropriate C pointer from the list as the 
arguments; 

on a call to multiply handler, multiply the 
incoming A  block with the B  block of the object, 
call append handler on the object, pointer to which 
comes as the second argument with the result as the 
argument; 

on a call to append handler add the argument to 
the C block, increase counter of updates, if counter 
becomes equal to the number of the blocks in 
row/column send a notification to the node 0 that the 
C block of the object is ready; 

on receiving of the confirmations for all the C  
blocks save the resulting C matrix and terminate the 
application. 

We used this very implementation to test 
performance of both MOL and GMS (with few 
system specific changes).  

In 
Fig. 3 we show the MOL timing for multiplying 

matrices of size 6250000 doubles (50000000 bytes) 
that divided in 25 (5 by 5) blocks. 
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Fig. 3 – MOL timing. 

Every bar shows the time that it takes to execute 
the test with some number of processors (1 through 
14), it is wall clock time, the longest that it takes to 
execute among all the nodes. The bottom part of a 
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bar is the actual computation time – the time that 
processors actually spend in computing. The middle 
part is the MOL overhead. The top part is the other 
overheads, such as communication, not directly 
related to the MMM computations, lower level 
communication library overhead, etc., that time 
processors performs tasks that are not directly 
related to computing. 

We can see that the overhead (mean all the 
additional computation and communication) is 
almost constant except for the single processor 
where no data movement is performed. The 
computing time is changing proportionally to the 
number of processors for the first eight and then we 
see some slow down. It is because first eight 
processors are fast processors we will later use in CE 
layer and the later four are the slower ones we will 
use for supporting tasks (DS, CU and application 
node). 

In Fig. 4 we show the GMS CE timing for 
multiplying matrices of size 6250000 doubles 
(50000000 bytes) that divided in 25 (5 by 5) blocks. 
There are 14 logical processors in the system 
however only eight of them are used for the 
computation (1 though 8). The bottom bar is the 
actual computing time (max among all nodes). The 
middle bar is the overhead in the CE node; these are 
the computations that are not directly related to the 
application’s computations. The bottom part is the 
idle time, it include the time CE receiving data from 
the network, send data to the network and just stays 
idle waiting for data. 

In Fig. 5 we show the GMS all timing: total time 
versus the average time DS nodes spend computing, 
versus the time CU node spends computing. From 
this data, we can see that CU spends very few cycles 
comparing to the others, this gives us further 
flexibility to enhance and improve the control 
mechanisms for the system in the future versions. 
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Fig. 4 – GMS CE timing. 

Fig. 6 shows the speedup curves for MOL and 

GMS. We can see the perfect speedup as the straight 
line. The MOL speedup present for all 14 
processors. Both GMS speedups are the same, the 
difference is that GMS (CE) only considers CE 
processors and GMS (all) considers all processors. 

We can see that with eight computing processors 
GMS beats MOL with all processors and comes very 
close to MOL with fourteen processors. It shows that 
the supporting processors can indeed decrease the 
time we have to spend in the computing processors. 

As one of the goal in this research we plan to 
improve the performance of the GMS by controlling 
the percolation depending on the execution flow, 
which includes the order of the percolation, the 
postponement of the promotion (percolation to the 
CE) or the retirement (percolation to the DS), 
grouping the objects for percolation etc. We do not 
know yet how exactly we will implement each of the 
features, but we can try to “fake” the support of the 
system for some of them. From the description of 
our implementation of matrix-matrix multiplication 
reader can see that we send n (which is number of 
blocks in the row/column) messages with A  block 
and n  messages with update for C to every object. 
According to the description of the GMS, every time 
there is a message for execution, the object must 
promote to execute it (of course if there are more 
than one message they all will be executed in one 
promotion). So far, we have very simple control 
over the promotion/retirement policy thus the object 
will promote as soon as the first message is 
available. This means that in the worst case every 
object have to percolate 12 +n  times instead of only 
3 in the best case. 

In Table 1 we present the timing results on which 
the  Fig. 3, Fig. 4 and Fig. 5 are build upon (there are 
no results for GMS for 10 and 14 processors as only 
up to 8 processors can be involved into the 
computation). 
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Fig. 5 – GMS all timing. 
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Fig. 6 – Speedup. 

We changed the GMS code in order for it to 
“know” the matrix block object and be aware of 
number of messages it still needs to receive before it 
can promote. Of course, this approach is very 
application specific and we cannot use it in a general 
case, the only reason for it is to see whether we will 
get any improvement out of this. 

Here is the timing for both GMS and “tweaked” 
GMS system (Fig. 7). 
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Fig. 7 – GMS vs. GMS tweaked. 

We can see that, though the tweaked version is 
faster, the difference is very small. It is easy to 
explain. We do decrease the number of percolations; 
however, the number of messages is the same. In our 
problem (matrix-matrix multiplication), the 
messages are roughly of the same size as the object 
and the total size of the all messages is order of 
magnitude bigger than the total size of all objects. 
Thus, we do not get much improvement here. Still, 
we believe that for problems with bigger size of 
objects such optimization (we do not now how we 
will do it yet though) might be very beneficial. 

 
7. CONCLUSION 

The Green “Smart” Memory Management 
System (GMS) system handles and processes 
requests for handlers’ execution at least as effective 
as the conventional systems (like MOL).  Additional 
knowledge of data dependencies and the ability to 
change the execution flow based on that data allow 
that  the GMS system can  exploit execution patterns 
that programmer by himself  might not be able to 
discover.   

As the results, the speedup for 8 processor is 2.56 
versus 2.29 in the traditional implementation 
(though the implementation we used is object-
oriented and thus not the most optimal for test 
problem) implementation with 8 processors (2.67 for 
traditional with 14 processors; there are 8 computing 
processors in our GMS test system, though 6 
additional ones are allocated for the serving 
purposes, which makes total of 14). 

The GMS does its job at least as effective as 
MOL, for in-core problems. Though the GMS 
system and its variation of the percolation model 
were design for very big out-of-core problems, the 
size of our benchmark is much better suited for the 
traditional in-core computations. Despite this GMS 
shows comparable results and we expect much better 
for large out-of-core problems. 

 
 
 
 
 

Table 1. Computation time, traditional (MOL) and GMS overheads 

 

Number of processors 1 2 4 8 10 14
Max comput ing t ime (t radit ional) 458.304272 412.9528054 234.1910059 117.5811551 117.5398148 79.17232673
MOL overhead (t radit ional) 0 0.68387587 2.0874521 1.70181793 1.96689483 2.10051155
Other overheads (t radit ional) 28.17318115 137.0629688 129.3840101 81.86200218 91.13373348 90.26528372
Max CE comput ing t ime (GMS) 498.2381 307.7264 169.2926 130.6417
Max CE overhead (GMS) 1.3685 0.8267 0.4690 0.3693
Other CE overheads (GMS) 74.1713 78.6442 68.7073 48.1216
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8. FUTURE WORK 
We will focus on the applications with variable 

and unpredictable data access pattern and/or the 
applications that require support for out-of-core 
execution.  Our challenge is to minimize the 
overhead introduced by the percolation execution 
model and GMS in order to realize the benefit of: (1) 
lower overhead for memory reads compared to 
overheads of disk reads, and (2) the utilization of 
slow but additional free nodes that perform the 
memory management (including disk I/O and 
caching).   
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