
A. Kot, N. Chrisochoides / Computing, 2003, Vol. 2, Issue 3, 91-97

 91

“GREEN” MULTI-LAYERED “SMART” MEMORY MANAGEMENT
SYSTEM

Andriy Kot 1), Nikos Chrisochoides 2)

1) The College of William and Mary, PO Box 8795 Williamsburg VA 23187 USA, kot@cs.wm.edu,

http://www.cs.wm.edu/~kot
2) The College of William and Mary, PO Box 8795 Williamsburg VA 23187 USA, nikos@cs.wm.edu,

http://www.cs.wm.edu/~nikos

Abstract: In this project, we investigate the feasibility of using outdated machines with slow processors for tolerating
disk latencies for computation and data intensive parallel adaptive and irregular applications.

Keywords: - Runtime, Software, Petaflops, Architectures, Out-of-Core, Parallel and High Performance Computing

1. INTRODUCTION

Memory speed increases rather slow as it is
compared to the processor speed. Outdated
machines while slower at the processor speed have
about the same memory performance. That creates
an opportunity to recycle older machines as a
“smart” memory for newer ones. Reusing of
mechanically non-recyclable computers also helps to
make computing to be environmentally aware or
“green”.

We propose the design of “Green” Multi-layered
“Smart” (GMS) memory management system based
on a simplified version of the percolation model
originally proposed for the HTMT Petaflops design
[1]. Our approach is application-centric. The
problem with explicit memory management for
adaptive and irregular application is that their
computation and communication patterns are
variable and unpredictable at runtime. This results
in using valuable memory space even if this means
the system will remain idle.

Our parallel execution model treats parallel
applications as a set of “small” executable fragments
(in the HTMT design are called parcels). Parcel
consists of a chunk of code and a number of input
parameters. An input parameter can hold an actual
data or data dependency. In this project, we assume
SPMD model so we reduce the parcels to objects
with a number of user-defined handlers attached to
them. The type, number, and arguments of the
handlers are determined at runtime and they are
input dependent.

Our preliminary data indicate the maximum
GMS overhead is 0.28% on the very fast machines,

at the cost of 23.90% and 7.35% at the outdated
machines of data servers and control unit
respectively. In addition, we observe the same
speedup as the traditional object-oriented,
distributed computing approach. These are very
encouraging data, considering the fact that the size
of our test case is not sufficient to show the full
potential of the GMS system.

2. ARCHITECTURE
The GMS system consist of three layers of

hardware and software respectively: (1) the Data
Servers (DS), (2) Control Unit (CU) and (3)
Computing Engine (CE).

Fig. 1 depicts the GMS architecture.
The DS runs on a number of relatively slow (i.e.,

outdated in terms of their processors speed), but still
useful in terms of memory speed machines. The DS
plays the role of a “smart” storage subsystem. It is
independent from the rest of the subsystems. This
will allow the plug-and-play with different
implementations in hardware and software. In the
DS layer, the sub-system holds the application data
(i.e. objects) until all of the dependencies of their
handlers are resolved. Moreover, the DS layer
stores all processed objects and the results of the
application. For the current implementation of the
DS, we use out-of-core scheme presented by Salmon
et al [2]. In his paper, Salmon describes out-of-core
way to do a parallel N-body simulation. He stores
the data structures (arranged in the octrees) using the
algorithm specific mapping between data objects
and memory pages. Then, he uses the most recently
used paging scheme with prioritized control. We

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

A. Kot, N. Chrisochoides / Computing, 2003, Vol. 2, Issue 3, 91-97

 92

adopted the most recently used paging scheme with
prioritized control from Salmon’s work. In our
future implementations, we will also consider
introducing the support detecting the effective
mapping between the application data structures and
memory pages.

…

Local
directory

Global
directory Pending

objects /
handlers
queue

Assembler / Terminator

Input
queue

Output
queue

…

Scheduler

Application
input

Computing
Engine (CE)

Control
Unit (CU)

Data
Servers

(DS)

Fig. 1 – Subcluster organization.

The CU runs on big memory, fast network and
faster than DS processors SMP machine (CU node
should have very fast link, such as shared memory,
to the application node) and controls the percolation
flow and places the right application-defined
handlers with the right data/objects in the right CE
node at the right time. The CU is the most complex
block of the system. It consists of a single k-way
shared memory machine. We design the CU as a
multithreaded unit. A directory in CU contains the
information about the locations of all objects in the
DS. The pending objects/handlers queue contains
references to the objects that have pending handlers,
so it is a queue of ready-to-execute active messages.
The Assembler prepares objects for execution and is
responsible for delivering them into the input queue.
The Terminator destroys the objects that are
finished, and then it frees resources and stores the
results (for a subsequent use or iteration) to slower
but larger memory (DS). The scheduler is not a
separate block but its functionality is distributed
between the Assembler, the Terminator, and the CE
nodes.

Finally, the CE runs on number of very fast, but
“low” in memory nodes (independent workstations
or processors) relative to aggregate memory one can
put together by using older and slower machines

with disks for the DS subsystem. The CE schedules
and executes the application-defined handlers to
completion. An open research issue is the
optimization of resources (cycles and bandwidth) of
the CE nodes.

An important design issue is the scalability of our
system using a large number of the semi-
independent sub-clusters whose workload is
balanced automatically (see

Fig. 2). However, in this paper we focus on the
design of a single sub-cluster so that scalability will
be possible with additional but minimal effort. A
single sub-cluster can use two different networks: a
relatively outdated and slow network for the DS
layer and a faster network to connect the CU with
the CE layers.

3. SOFTWARE IMPLEMENTATION

We use the DMCS (Data Movement and Control
Substrate) [3] and MOL (Mobile Object Layer) [4]
as a low-level communication systems which
support AMs (Active Messages) [5] in the context of
object/data movement (i.e., up and down movement
from a subsystem to a subsystem) during the
percolation cycle.

The DMCS provides single-sided
communication, as get/put communication
operations and remote procedure invocation or
remote service requests (RSRs) DMCS’s RSRs and
communication operations invoke user-defined
handler functions like AMs on target processors.
DMCS forms the basis for both data migration and
computation invocation in the GMS system.

The MOL extends the DMCS by providing a
global namespace in the context of object mobility.
Mobile objects are application-defined data objects
and are not restricted to exist in contiguous memory.
A mobile object may be referenced by any
processor in the parallel system by using its
associated mobile pointer, which is a system-
wide unique identifier.

Data Servers

…

…

Control
Unit

Switch 1

Switch 2

Subcluster 1

Computing Engine

…

Switching Network

Fig. 2 – Hardware organization of the GMS cluster.

A. Kot, N. Chrisochoides / Computing, 2003, Vol. 2, Issue 3, 91-97

 93

The MOL's communication operations extend the
DMCS RSRs by allowing applications to invoke
transparently computation handlers at the location of
a mobile object, regardless of where it is in the
parallel system. In this way, applications can deal
directly with data objects without the tedious
bookkeeping associated with maintaining up-to-date
knowledge of each data object’s current location.

4. PERCOLATION CYCLE

At bootstrap, the GMS specifies the roles to the
nodes of the parallel machine. It assigns: (i) exactly
one CU node and one node to be the front-end of the
application, which is used by the application to
interact with the rest of the system, (ii) N CE nodes
and M DS nodes, depending on the user preferences
and total number of available nodes.

The application node initially creates user objects
and feeds the computation requests to the system. It
is also responsible in resolving the object data-
dependencies (at the user level in this version of the
GMS implementation).

The percolation cycle has several stages:
The application injects objects into the system for

execution. At this point, depending on the size of
the objects and the load of the DS nodes, the system
stores the object at the appropriate DS nodes. Their
pending handlers are stored into the pending
objects/handlers queue and the local directory is
updated;

Assembler picks the objects (in some order) from
the pending objects/handlers queue. It analyzes (in
current implementation it just checks for the location
of the object and any pending handlers ready for
execution) the object and it queries the DS layer for
the necessary data (e.g., an argument to object’s
handler might be another object), and then it
assembles the necessary parts and puts them into the
input queue;

Next the scheduler picks the now ready to
execute objects from the input queue and assigns
them to the CE nodes where they run to completion
all their pending handlers; after completion the
objects and all of their associated data are sent to
the output queue;

Finally, the Terminator picks the objects from the
output queue and it stores them in the DS layer. If, in
the mean time, there are new Active Messages with
pending handlers it stores all of them into the
pending objects/handlers queue and updates the
local directory in CU.

5. PROGRAM EXECUTION
Next, we describe the execution and the

percolation for application objects within the GMS
system.

When an object is registered with the system, the
corresponding GMS object consists of the two parts:
the object itself as the user created it (to the system it
is just a pointer to some data) and the meta data.
Meta data contains object specific information (e.g.,
user functions for moving the object from one node
to another) and the mobile pointer to the user data.
After the object being created it is “released”, which
is the object data are transferred to some of the DS
node and the meta data are transferred to the CU
node. The mobile pointer that user gets after the
object’s creation points to the meta data rather than
to the object’s data itself.

After user created all needed (at present) objects,
he/she calls objects functions. The call request (from
now on, we will call it a message as in MOL) will be
delivered by the underlying communication layer to
the node where the meta data is residing. Meta data
should be located on the CU node, since system
transferred it there upon the “release” of the object.

Upon receiving the message, the CU checking
whether the targeted object was involved in other
computation already. If the object is not involved the
CU issues an order for the data of that object to
migrate from the DS node to the CE node (system
picks the CE depending on scheduling policy). Then
the CU stores the handler in a queue. Scheduler can
also delay the message depending on its specific
policy and parameters (it will not order a migration
of the object in such case).

Upon receiving the order for migration from the
CU, the DS node packs an object data (using user-
registered packing routines) and sends it to the
selected CE node. It also sends an ack to the CU to
acknowledge that the object has left the DS and has
moved (or is still moving) to the CE.

Upon receiving the ack, the CU extracts the
delayed handler (or handlers) from the queue and
sends them to the data object on the CE node. CU
also picks a new storage node for the object and
issue a request for migration to this object. Because
the MOL messages are causal, this request will not
reach the object until all previously issued handlers
were executed.

Upon receiving the migration request, the CE
node sends an ack to the CU after it uninstalls the
object, then sends packed object to the DS node.
Upon receiving the ack, the CU may try to schedule
any delayed messages.

6. PERFORMANCE EVALUATION

In this section, we present preliminary
performance evaluation data using dense matrix-
matrix multiplication (MMM) algorithm. We have
implemented the MMM using both the GMS and
MOL in order to compare the performance of the

A. Kot, N. Chrisochoides / Computing, 2003, Vol. 2, Issue 3, 91-97

 94

GMS percolation based approach with the traditional
message passing approach. The algorithm we use is
not the most efficient MMM algorithm. GMS
performs not as good as implicit implementations of
matrix-matrix multiplication; it works reasonably
well, with overhead much smaller than actual
computation. For the testing purposes, we use
object-oriented implementation using the MOL.
However, the MOL implementation is also far from
the best parallel MMM implementation, MOL and
the object-oriented model it implies showed to be
very good at solving adaptive problem we are most
interested. Since we do not have the GMS
implementation of an adaptive problem, we want to
compare GMS with the system that uses the same
programming model.

Our experimental set up consists of the following
hardware:

1 Dell PowerEdge 6600 with 4 Hyperthreaded
Pentium III Xeon 1.4GGz processors and 16GB of
RAM (seen as 8 processors under MPI) for the CE
layer;

2 Dell PowerEdge 2450(2 processors per node)
Pentium III 933MGz processors with 1GB of RAM
for the DS layer;

1 Dell PowerEdge 6450 with 4 (only 2 used)
Pentium III 733 MHz processors and 2GB of RAM
for CU and application node;

the accumulative secondary storage of the DS
nodes is 18Gb RAID;

1Gb Gigabit Ethernet network connection, single
switch.

In our implementation, we use ()3nΟ matrix-
matrix multiplication algorithm:

[]∑ ×=

k
ikkjji BAC ,

 (1)

where A and B are the multipliers, C is the

product and i , j and k indexes from 0 to n where
n is the number of rows/columns in the matrix.

Because of the object-oriented nature of the
system, we rearrange the multiplications that though
do not affect the time (actual computing time) or

correctness of the execution. For every jiA , ,

kjjiki BAC ,,, ×=+ (2)

where A and B are the multipliers, C is the

product and i , j and k indexes from 0 to n where
n is the number of rows/columns in the matrix.

 In our implementation, we store matrix blocks

within objects, jiA , , jiB , and jiC , are stored within

single object. The implementation contains several
steps as following:

for every block A , compute a list of pairs of
pointer to the objects that contain appropriate B and
C (as in equation 2);

for every block A , call a process handler on the
object where that block is stored in with the list as an
argument;

on a call to process handler, go thru the list and
call multiply handlers on the objects that contain
appropriate B ‘s, giving the content of object’s A
and appropriate C pointer from the list as the
arguments;

on a call to multiply handler, multiply the
incoming A block with the B block of the object,
call append handler on the object, pointer to which
comes as the second argument with the result as the
argument;

on a call to append handler add the argument to
the C block, increase counter of updates, if counter
becomes equal to the number of the blocks in
row/column send a notification to the node 0 that the
C block of the object is ready;

on receiving of the confirmations for all the C
blocks save the resulting C matrix and terminate the
application.

We used this very implementation to test
performance of both MOL and GMS (with few
system specific changes).

In
Fig. 3 we show the MOL timing for multiplying

matrices of size 6250000 doubles (50000000 bytes)
that divided in 25 (5 by 5) blocks.

0

100

200

300

400

500

600

1 2 4 8 10 14

Number of processors

Ti
m

e
(s

)

max comp time mol overhead

other overheads

Fig. 3 – MOL timing.

Every bar shows the time that it takes to execute
the test with some number of processors (1 through
14), it is wall clock time, the longest that it takes to
execute among all the nodes. The bottom part of a

A. Kot, N. Chrisochoides / Computing, 2003, Vol. 2, Issue 3, 91-97

 95

bar is the actual computation time – the time that
processors actually spend in computing. The middle
part is the MOL overhead. The top part is the other
overheads, such as communication, not directly
related to the MMM computations, lower level
communication library overhead, etc., that time
processors performs tasks that are not directly
related to computing.

We can see that the overhead (mean all the
additional computation and communication) is
almost constant except for the single processor
where no data movement is performed. The
computing time is changing proportionally to the
number of processors for the first eight and then we
see some slow down. It is because first eight
processors are fast processors we will later use in CE
layer and the later four are the slower ones we will
use for supporting tasks (DS, CU and application
node).

In Fig. 4 we show the GMS CE timing for
multiplying matrices of size 6250000 doubles
(50000000 bytes) that divided in 25 (5 by 5) blocks.
There are 14 logical processors in the system
however only eight of them are used for the
computation (1 though 8). The bottom bar is the
actual computing time (max among all nodes). The
middle bar is the overhead in the CE node; these are
the computations that are not directly related to the
application’s computations. The bottom part is the
idle time, it include the time CE receiving data from
the network, send data to the network and just stays
idle waiting for data.

In Fig. 5 we show the GMS all timing: total time
versus the average time DS nodes spend computing,
versus the time CU node spends computing. From
this data, we can see that CU spends very few cycles
comparing to the others, this gives us further
flexibility to enhance and improve the control
mechanisms for the system in the future versions.

0

100

200

300

400

500

600

700

1 2 4 6 8

Number of processors

Ti
m

e
(s

)

CE comp CE overhead

other overheads

Fig. 4 – GMS CE timing.

Fig. 6 shows the speedup curves for MOL and

GMS. We can see the perfect speedup as the straight
line. The MOL speedup present for all 14
processors. Both GMS speedups are the same, the
difference is that GMS (CE) only considers CE
processors and GMS (all) considers all processors.

We can see that with eight computing processors
GMS beats MOL with all processors and comes very
close to MOL with fourteen processors. It shows that
the supporting processors can indeed decrease the
time we have to spend in the computing processors.

As one of the goal in this research we plan to
improve the performance of the GMS by controlling
the percolation depending on the execution flow,
which includes the order of the percolation, the
postponement of the promotion (percolation to the
CE) or the retirement (percolation to the DS),
grouping the objects for percolation etc. We do not
know yet how exactly we will implement each of the
features, but we can try to “fake” the support of the
system for some of them. From the description of
our implementation of matrix-matrix multiplication
reader can see that we send n (which is number of
blocks in the row/column) messages with A block
and n messages with update for C to every object.
According to the description of the GMS, every time
there is a message for execution, the object must
promote to execute it (of course if there are more
than one message they all will be executed in one
promotion). So far, we have very simple control
over the promotion/retirement policy thus the object
will promote as soon as the first message is
available. This means that in the worst case every
object have to percolate 12 +n times instead of only
3 in the best case.

In Table 1 we present the timing results on which
the Fig. 3, Fig. 4 and Fig. 5 are build upon (there are
no results for GMS for 10 and 14 processors as only
up to 8 processors can be involved into the
computation).

0

100

200

300

400

500

600

700

1 2 4 6 8

Number of processors

Ti
m

e
(s

)

total time DS average time CU time

Fig. 5 – GMS all timing.

A. Kot, N. Chrisochoides / Computing, 2003, Vol. 2, Issue 3, 91-97

 96

0

2

4

6

8

10

12

14

16

0 5 10 15

Number of processors

Ti
m

e
(s

)

perfect MOL

GSM(CE) GSM(all)

Fig. 6 – Speedup.

We changed the GMS code in order for it to
“know” the matrix block object and be aware of
number of messages it still needs to receive before it
can promote. Of course, this approach is very
application specific and we cannot use it in a general
case, the only reason for it is to see whether we will
get any improvement out of this.

Here is the timing for both GMS and “tweaked”
GMS system (Fig. 7).

0

100

200

300

400

500

600

0 2 4 6 8 10

number of processors

Ti
m

e
(s

)

GSMS tweaked GSMS original

Fig. 7 – GMS vs. GMS tweaked.

We can see that, though the tweaked version is
faster, the difference is very small. It is easy to
explain. We do decrease the number of percolations;
however, the number of messages is the same. In our
problem (matrix-matrix multiplication), the
messages are roughly of the same size as the object
and the total size of the all messages is order of
magnitude bigger than the total size of all objects.
Thus, we do not get much improvement here. Still,
we believe that for problems with bigger size of
objects such optimization (we do not now how we
will do it yet though) might be very beneficial.

7. CONCLUSION

The Green “Smart” Memory Management
System (GMS) system handles and processes
requests for handlers’ execution at least as effective
as the conventional systems (like MOL). Additional
knowledge of data dependencies and the ability to
change the execution flow based on that data allow
that the GMS system can exploit execution patterns
that programmer by himself might not be able to
discover.

As the results, the speedup for 8 processor is 2.56
versus 2.29 in the traditional implementation
(though the implementation we used is object-
oriented and thus not the most optimal for test
problem) implementation with 8 processors (2.67 for
traditional with 14 processors; there are 8 computing
processors in our GMS test system, though 6
additional ones are allocated for the serving
purposes, which makes total of 14).

The GMS does its job at least as effective as
MOL, for in-core problems. Though the GMS
system and its variation of the percolation model
were design for very big out-of-core problems, the
size of our benchmark is much better suited for the
traditional in-core computations. Despite this GMS
shows comparable results and we expect much better
for large out-of-core problems.

Table 1. Computation time, traditional (MOL) and GMS overheads

Number of processors 1 2 4 8 10 14
Max comput ing t ime (t radit ional) 458.304272 412.9528054 234.1910059 117.5811551 117.5398148 79.17232673
MOL overhead (t radit ional) 0 0.68387587 2.0874521 1.70181793 1.96689483 2.10051155
Other overheads (t radit ional) 28.17318115 137.0629688 129.3840101 81.86200218 91.13373348 90.26528372
Max CE comput ing t ime (GMS) 498.2381 307.7264 169.2926 130.6417
Max CE overhead (GMS) 1.3685 0.8267 0.4690 0.3693
Other CE overheads (GMS) 74.1713 78.6442 68.7073 48.1216

A. Kot, N. Chrisochoides / Computing, 2003, Vol. 2, Issue 3, 91-97

 97

8. FUTURE WORK
We will focus on the applications with variable

and unpredictable data access pattern and/or the
applications that require support for out-of-core
execution. Our challenge is to minimize the
overhead introduced by the percolation execution
model and GMS in order to realize the benefit of: (1)
lower overhead for memory reads compared to
overheads of disk reads, and (2) the utilization of
slow but additional free nodes that perform the
memory management (including disk I/O and
caching).

9. REFERENCES
G. Gao, K. Theobald, A. Marquez, and T.

Sterling. The HTMT program execution model,
CAPSL Technical Memo 09, University of
Delaware, July 1997.

K. Barker, N. Chrisochoides, J. Dobbelaere, D.
Nave, and K. Pingali. Data Movement and Control
Substrate, Concurrency and Computation Practice
and Experience, Vol 14, pp 77-101, 2002.

 N. Chrisochoides, K. Barker, D. Nave, and
C. Hawblitzel. Mobile Object Layer: A Runtime
Substrate for Parallel Adaptive and Irregular
Computations, Advances in Engineering Software,
Vol 31 (8-9), pp. 621-637, August 2000.

J. Salmon, M. Warren. Parallel Out-of-core
Methods for N-body Simulation, Proceedings of the
Eighth SIAM Conference on Parallel Processing for
Scientific Computing, 1997.

Thorsten von Eicken, David E. Culler, Seth
Copen Goldstein and Klaus Erik Schauser. Active
Messages: A Mechanism for Integrated
Communication and Computation, 19th
International Symposium on Computer Architecture,
pp. 256-266, 1992.

Andriy Kot received his B.S.
and M.S. degrees in Computer
Engineering from the Ternopil
Academy of National Economy,
Ternopil Ukraine. He received his
M.S. in Computer Science from
The College of William and Mary,
Williamsburg VA. Since 2002 he is
working in parallel experimental

system research group with Dr. Chrisochoides at
The College of William and Mary (Department of
Computer Science). His research interests include
parallel, distributed and large scale "out-of-core"
computing, systems and networking.

 Nikos Chrisochoides
received the B.Sc. degree in
Math form Aristotle University,
Thessaloniki Greece. He
received his M.Sc. in Math and
Ph.D degree in CS from Purdue
University, W. Lafayette, IN. In
1997 he joined the faculty at the
University of Notre Dame (Dept.
of Computer Science and Engineering) as an
Assistant Professor. In 2000 he joined as an
Associate Professor the faculty of the Computer
Science Department in the College of William and
Mary. He has been a member of the JPL’s HTMT
Petaflop team responsible for large scale "out-of-
core" scientific applications focusing on runtime
issues like data transfer and synchronization
patterns. He received a number of research
fellowships and Awards, among them the NSF
Career Award. His research in parallel and
distributed computing, "green" computing, and
parallel mesh generation is application driven.

