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Abstract - In this paper, simple and complete asymptotical analysis is given for a piecewise uniform product polar 
quantizer (PUPPQ) with respect to mean-square error (MSE) i.e. distortion (D). PUPPQ is based on uniform product 
polar quantizers. PUPPQ consists of L different uniform product polar quantizers. Uniform product polar quantizer 
conditions for optimality and all main equations for number of phase divisions and optimal number of levels for each 
partition are presented. These systems, although not optimal, may have asymptotic performance close to the optimum. 
Furthermore, the analysis and implementation can be simpler than those of optimal systems. PUPPQ has 
implementation complexity between optimal nonuniform polar quantization (NPQ) and uniform product polar 
quantization (UPPQ). The gain of PUPPQ over  optimum uniform product polar quantization is also obtained (2 dB 
for  the rate of  8 bits/sample).  
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1 INTRODUCTION 
Quantization is the heart of analog-to-digital 

conversion. Quantizers play an important role in the 
theory and practice of modern-day signal 
processing. Extensive results have been developed 
on scalar quantization but much more on vector 
quantization. The simplest vector quantization is 
polar quantization. Several studies have considered 
the design of suboptimal polar vector quantizers. 
These schemes should have provided better 
performances than those of the rectangular–
coordinate-based quantizers, however with simpler 
implementation than optimal scalar quantizers. Polar 
quantization techniques as well as their applications 
in areas such as computer holography, discrete 
Fourier transform encoding, image processing and 
communications have been studied extensively in 
the literature. The solution of polar quantization 
problem is determination of decision and 
reproduction levels for every magnitude and phase 
value such that the distortion (MSE) is minimized. 
The resulting optimal quantizer is nonuniform. A 
special class of NPQ is a PUPPQ. Polar quantization 
consists of separate  magnitude and phase 
quantizations, in N levels, so that rectangular 
coordinates of the source (x, y) are transformed into 
the polar coordinates in form:  r=(x2+y2) 1/2, φ=tan-

1(y/x) where r represents magnitude and φ  is phase. 
In previous works that involve polar quantization [1-

3], uniform product polar quantization (UPPQ) was 
considered (N=M×L). Uniform product polar 
quantization was optimized numerically in [1] and 
analytically in [2]. However, the analysis in [2] 
assumed a fixed support region. In paper [3] UPPQ 
was optimized asymptotically by uniform scalar 
quantization support region. 

One of the most important results in polar 
quantization is due to Swaszek and Ku who derived 
the asymptotically optimal nonuniform polar 
quantization [4] (compressor-expander pair is 
needed). However, they didn’t consider the problem 
of finding the optimal maximum amplitude, so-
called, support region. The support region for scalar 
quantizers has been found in [5-6] by minimization 
of the total distortion D, which is a combination of 
granular (Dg) and overload (Do) distortion, 

og DDD += . In paper [7] only granular distortion 
was examined and although, arrangement of points 

iN  in L partitions was defined, cells type and their 
arrangement within partitions wasn’t considered. 
Paper [8] is an annex of paper [7], but the 
imperfection of this paper lies in using cubic cells 
for partitions and subpartitions. Due to this fact, 
optimal arrangement of points in a partition can’t be 
found.  The importance of using the optimal density 
of points (using rectangular cells) for product 
quantization and Gaussian source is considered in 
[9,10].  The goal of  this paper is to solve 
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quantization problem in a case of PUPPQ and to 
find corresponding support region.  It is performed 
by analytical optimization of the granular distortion 
and numerical optimization of the total distortion. If 
the distortion is measured by squared error, D 
becomes the mean squared error (MSE). Distortion 
mean-squared error (MSE i.e. quantization noise) is 
used as the criterion for optimization. The 
implementation is simple, and no compressor-
expander pair is needed. We improve the cell size 
and use more optimal cell division in each partition. 
PUPPQ consists of L uniform product polar 
quantizers. More precisely, our quantizer divides the 
input plane into L partitions and every partition is 
further subdivided into iL  ( Li ≤≤1 ) subpartitions. 
I-th partition in  signal plane is allowed to have iM  
( Li ≤≤1 )  cells in the phase quantizer. We perform 
two-steps optimization: 1) distortion optimization 
( iD ) in every partition under the constraint 

iii NxML =   and  2) optimization of the total 

granular distortion ∑
=

=
L

i
ig DD

1
 which achieves the 

optimal number of points iN  on each partition 

under the constraint ∑
=

=
L

i
i NN

1
. We also give an 

example of the quantizer construction for a Gaussian 
source. This case is of importance because using 
Gaussian quantizer on an arbitrary source we can 
take advantage of the central limit theorem and the 
known structure of an optimal scalar quantizer for a 
Gaussian random variable to code a general process 
by first filtering it to produce an approximately 
Gaussian density, scalar-quantizing the result, and 
then inverse-filtering to recover the original . 
Various processing techniques, when applied to 
non-Gaussian sources with memory, produce 
sequences, which are "approximately" independent, 
and Gaussian. 

The paper is organized as follows. In Section II 
we give simple general conditions for optimal 
product polar uniform quantization and prove its 
optimality. In Section III we apply the solution from 
section II on PUPPQ, give an equation for optimal 
number of points per partition and we derive Dg in a 
closed form. In Section IV we give simple 
construction procedure and present the Gaussian 
source example. Section V gives some conclusions. 

 
2. OPTIMAL UNIFORM PRODUCT 

POLAR QUANTIZATION 
We assume data to be encoded as a pair of zero-

mean , unit-variance, independent identically 

distributed Gaussian random variables. The data 
vector (x,y) has a joint density given by 
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+−
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π  
 
Uniform product polar quantization to N levels 

consists of transforming the rectangular coordinate 
representation of the source (x,y) to the polar 
coordinates of magnitude r and phase φ through: 
r=(x2+y2) 1/2, φ=tan-1(y/x) and quantizing r and φ 
separately by  uniform scalar quantizers with L and 
M levels (LxM=N), respectively. With this scheme 
the bivariate quantization pattern is a partitioning of 
the plane into L concentric rings around the origin, 
each divided angularly into M pieces. This is natural 
for circularly symmetric densities such as 
independent identically distributed Gaussian random 
variables. Transforming to polar coordinates, the 
phase is uniformly distributed on [0,2π) and the 
magnitude is distributed on [0,∞) with density 

function 2

2

2)( σ
r

rerf
−

= . Note that magnitude and 
phase are independent random variables. The 
transformed  joint density function for  the Gaussian 
source is  

ππ
φ

2
)(

2
1),( 2

2

rfrerf
r

=⋅=
−

  
 

 
Lets consider uniform product polar quantizer of 

L magnitude levels and M phase reproduction levels 
on a magnitude reproduction level mi, 1≤ i≤ L. 
Magnitude decision levels and reproduction levels 
are given as (see Fig.1): 

 
LiimLiir ii ≤≤∆−=+≤≤∆−= 1,)2/1( ;11,)1(   

where Lr /max=∆ .   
 
Further we divide a partition of each magnitude 

ring into M phase subpartitions. Let φi,j and φi,j+1 be 
two phase decision levels, and let  ψi,j be j-th phase 
reproduction level for the i-th magnitude ring, 1≤j≤
M. It follows that: Mjji /2)1(, πφ −=  and 

Mjji /)12(, πψ −= . We can define a quantizer 
consisting of a set of granular cells and a set of 
overload cells 

(2)

(1)
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[ ) [ ){ }MjLirrSS jijiii,jig ≤≤≤≤== ++ 1,1);,;,( 1,,1, φφ
 

[ ) [ ){ }MjrSS jLjL
o

jLo ≤≤∞== + 1);,;,( 1,,max, φφ
 

together with a set of reproduction vectors  
 

{ }MjLimC jii,ji ≤≤≤≤== 1,1);,( ,, ψc   
 
(see Fig.1). All of overload (granular) cells are 
called the overload region (granular region). 

The quality of a quantizer can be measured by 
the goodness of the resulting reproduction in 
comparison to the original. One way of 
accomplishing this is to define a distortion measure 

),( crd  that quantifies cost or distortion resulting 
from reproducing r as c and to consider the average 
distortion as a measure of the quality of a system, 
with smaller average distortion meaning higher 
quality. The most common distortion measure is the 
squared error  

 
)cos(2),( 222 ψφ −−+=−= rmmrd crcr .  

 
In practice, the average will be a sample average 

when the quantizer is applied to a data sequence. 
The theory views the data as sharing a common 
probability density function ),( φrf  corresponding 
to the average distortion per dimension becomes an 
expectation 
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If the distortion is measured by squared error, D 

becomes the mean squared error (MSE).  
In order to minimize the distortion we proceed as 

follows. D can be written as:
 

j 

ri+1 

ri 

1 

2 

M ri 

Φi,j 
Φi,j+1 

ri+1 

(mi,Ψi,j) 

Fig.1 - Magnitude and phase division in UPPQ and j-th cell 
on i-th level preview  
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After integration over φ  and reordering, D  

becomes 
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Wherein sinc(x)=sin(x)/x  and we use : 

 2

6
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x
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so that 
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After the approximation 
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Approximating sums by integrals ( dr≈∆ ), 

granular and overload distortions become  
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For large 2,1,max ≈≈ IPr
 

granular distortion 
becomes equal to the well-known distortion [1-3] 
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π+∆= . In order to optimize 

granular distortion, we substitute expressions 
M=N/L, LLr // 0max ∆==∆ ,  ( 110 rrL −=∆ + ) in  
(7) 
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After solving 0=
∂
∂

L
Di  we obtain  

4
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224/
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that gives 

N
PI

Dg
π0

6
1 ∆

=      (11)  

the minimum distortion opt
gD  because of 

02

2

>
∂

∂
L
Dg . 

 
3 PIECEWISE UNIFORM PRODUCT 

POLAR QUANTIZATION 
The most important results in polar quantization 

are ascribed to Swaszek and Ku who derived the 
asymptotically optimal unrestricted  polar 
quantization (NPQ) [4]. The nonlinear compressor 
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characteristic is used in paper [4]. Although the 
smooth and differentiable compressor characteristic 
is convenient for mathematical manipulations, there 
are problems of accurately implementing analog 
nonlinearities [11]. Today’s technology allows 
uniform quantizers or piecewise linear compressor 
characteristics implementation. 

 A piecewise uniform product polar quantizer 
consists of L different uniform product polar  
quantizers. Different quantizers, however, may have 

different step-sizes. In this paper, we give the 
simplest piecewise uniform quantization and show 
that it has approximately same performances as 
NPQ but it’s much simpler for application.  

Let  consider PUPPQ  of L partitions, each 
partition containing iL  subpartitions. In order to 
minimize the total distortion we proceed as follows: 
magnitude partition decision levels and reproduction 
subpartition levels are given as (see Fig.2) 
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where Lr /max=∆ . Let  kji ,,φ  be phase decision 

level, and let  kji ,,ψ  be k-th phase reproduction 
level for the i-th partition and j-th subpartition. Then 

ikji Mk /2)1(,, πφ −= ; 11 +≤≤ iMk  and 

ikji Mk /)12(,, πψ −= ; iMk ≤≤1 .  
The minimization of the function Dg(N,M,L) 

(vectors Liiii MLN ≤≤= 1),,(),,( MLN )  for a fixed 
number of magnitude levels L constrained by the 
total number of reproduction points N is formulated 
in this way: minimize Dg(N,M,L) under the 
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applied on each partition.  The i-th  partition 
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The granular distortion is a sum of partition 
distortions iD  : 
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Fig.2 - I-th partition of PUPPQ and k-th cell on j-th level 
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In a previous section, we pointed out that optimal 
values may be found by following equations: 
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The overload distortion is: 
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 Substituting (14) in equation for granular 

distortion we obtain  
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The optimization of granular distortion (16) can 

be formulated in this way: we use equation 

∑ =+= iL
j ig NDJ 1λ  where λ  represents 

Lagrangian multiplier and after solving 0=
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These are optimal values for iN  because 
),...,( 1 Lg NND  is convex function and constraint 

∑
=

=
L

j
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1
 forms convex set (Hessian matrix are 

positive semi definite).  
Finally, granular distortion becomes 
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The exact optimal value for maxr  is obtained 

repeating our optimization method for different 
maxr  and choosing the values for which 

og DDD +=  is minimal. 
 

4 DESIGN OF OPTIMAL PIECEWISE 
UNIFORM PRODUCT POLAR 

QUANTIZER 
In this section we will give step-by-step 

procedure for obtaining PUPPQ. For a fixed set 
number N we determine ( iN iL iM ) for a fixed 

maxr , Lr /max=∆  
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Step 3)     The exact optimal value for maxr  is 

obtained by repeating our optimization method for 
different maxr  and choosing the values for  which 

og DDD +=  is minimal. The optimum numbers 

Liiii MLN ≤≤1),,(  in each partition  were found by 
performing again the evaluation  taking the nearest 
integer values. If a specific value of N  is desired, 
the Liiii MLN ≤≤1),,(  values can be adjusted 
(rounded up or down) to sum to N  exactly or 
nearest N,  in order to minimize Dg.  

Step 4)       The decision levels and reproduction 
levels are: 
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    ikji Mk /2)1(,, πφ −= ; 11 +≤≤ iMk   
    ikji Mk /)12(,, πψ −= ; iMk ≤≤1 .  

 
As an illustration of the PUPPQ performance, we 

show the signal-to-quantization noise ratio 
)/1log(10 DSNR =  as a function of the number of 

bits per sample R ( NR 2log= ). 
In  order to see advantages of  PUPPQ we 

performed numerical calculations of  total distortion 
for  L=1, 4, 8 and rates R=(4-8) bits/sample.  
PUPPQ gain compared to UPPQ is up to 2dB (L=8) 
(Fig.3). 
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By exceeding L, better performances may be 
achieved but complexity becomes greater. 
Theoretical bound for the optimal NPQ is 

109.2)3/(2 −== NND π  which is for only 0.17dB 
worse than for the case of optimal two-dimensional 
vector quantization 1016.2)39/(10 −== NND π  
[4,9]. The available design algorithms have very 
slow convergence unless the rate-dimension product 

is small [4, 9], and implementation of the optimum 
vector quantizer is a computationally burdensome 
full search procedure. The comparison of PUPPQ 
(L=8) with theoretical distortion is shown on Fig.4. 
Theoretical bound for polar quantization is possible 
to achieve for large L ( 50≥L ) which is impractical 
because of negligible gain and increased complexity 
in regard to L=8.  
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Fig. 3 - PUPPQ performances (SNR) versus rate for  different numbers of partitions 
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Fig.4. PUPPQ performances (SNR) versus rate for L=8 compared to theoretical NPQ bound [4] 
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Application of NPQ requires nonlinear 
compressor, expander and lookup table of number 
phase divisions. For R=8 lookup table has 

1812/ == NL  elements, while PUPPQ for L=8 
requires: lookup table of 17 memory elements 
( ),( ii ML , maxr ) and no nonlinear compressor. 

It is obvious that our results are very close to the 
best. However, if  we compare PUPPQ results for 
L=14 with those given in paper [4] we have 
DPUPPQ=2.149N=1 while D[4]=2.153 N=1, which 
means that for greater L our results would be better 
than best known. The reason of obtaining better 
results lies in a fact that the method we proposed 
defines optimal support region.  

For L=8 and rates R=(4, 6, 8) optimal integer 
values of (Li, Mi) are given in Table 1.  

Table 1.  

L
=8 

R=4, 
rmax=3.666 

R=6, 
rmax=4.465 

R=8, 
rmax=5.054 

i L
I 

M
i 

L
i 

M
i 

L
i 

M
i 

1 2 6 9 4
1 

4
0 

1
76 

2 2 1
5 

9 9
1 

3
9 

3
83 

3 2 2
1 

8 1
22 

3
3 

5
08 

4 1 4
7 

6 1
41 

2
5 

5
29 

5 1 4
4 

5 1
15 

1
7 

4
68 

6 1 3
6 

3 1
06 

1
1 

3
42 

7 1 2
6 

2 7
2 

6 2
37 

8 1 1
8 

1 5
5 

3 1
45 

 
If we compare our results for R=4 (L=8) to those 

from paper [8] gain is 0.375dB. Greater gain can be 
achieved for greater L and R.  

Application of  Polar Quantization: 
Short-time pdf of speech segments are described 

by Gaussian pdf [13]. This paper addresses potential 
improvements achievable by means of joint 
quantization of two consecutive samples (x, y), 
referred to as a two-dimensional quantization (2-D 
quantization), over the scalar quantization. 
Transform coding scheme known as spectral phase 
coding (SPC), is a robust technique for coding a 
nonstationary or large dynamic range discrete-time 
series into digital form. SPC is, essentially, a polar 
format representation of a random phase time series 
discrete Fourier transform (DFT).  SPC utilizes DFT 

and a two-dimensional quantizer to obtain its robust 
characteristics.  

The design of optimal uniform polar quantization 
method is presented in image processing applying it 
on complex reflectivity function in SAR systems 
[14]. Application of optimal polar quantization in 
SAR systems will provide better results for about 
0.5dB. Optimal polar quantization may be applied to 
Adaptive Differential Pulse Code Modulation 
(ADPCM). In ADPCM systems it utilizes uniform 
scalar quantization [15]. Optimal uniform scalar 
quantization for R=4 (bit/sample) has 
SNR=19.38dB [16] until optimal polar quantization 
has SNR=20.76. Optimal PUPPQ may achieve gain 
of about 1.38dB in regard to Optimal Scalar 
Quantization. 

 
5. CONCLUSION 

In this paper, simple general conditions for 
optimal product polar  uniform quantization that 
prove its optimality are presented. The simple 
asymptotical analysis is given for piecewise uniform 
product  polar  quantizer with  an algorithm for its 
construction, for any number of points N (Fixed-
Rate). The algorithm is demonstrated on the 
Gaussian source example. For the fixed number of 
partitions, we give equations for optimal number of 
levels iL  and optimal number of phase divisions 

iM . We also give optimal number of points iN  for 
each partition, while optimal support region is 
obtained numerically. For L=8, PUPPQ 
performances are very close to NPQ theoretical 
bound, while the gain is up to 2dB (for L=8) in 
regard to optimal product polar quantization. The 
PUPPQ method achieves nearly theoretical NPQ 
performances with less complexity.    

Polar Quantization has a great application 
nowadays and we predict that it would have greater 
application in future.   
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