
Kurosh Madani / Computing, 2004, Vol. 3, Issue 1, 8-20 

 8 

 
 

 

 

 
INDUSTRIAL APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS 

 
Kurosh Madani 

 
Intelligence in Instrumentation and Systems Laboratory (I2S/JE2353 Lab.) 

PARIS XII University, Senart-Fontainebleau Institute of Technology,   
Bât.A, Av. Pierre Point, F-77127 Lieusaint, France,   

{madani ;  malti ; chebira}@univ-paris12.fr  
 

Abstract: In a large number of real world dilemmas and related applications the modeling of complex behavior is the 
central point. Over the past decades, new approaches based on Artificial Neural Networks (ANN) have been proposed 
to solve problems related to optimization, modeling, decision making, classification, data mining or nonlinear functions 
(behavior) approximation. Inspired from biological nervous systems and brain structure, Artificial Neural Networks 
could be seen as information processing systems, which allow elaboration of many original techniques covering a large 
field of applications. Among their most appealing properties, one can quote their learning and generalization 
capabilities. The main goal of this paper is to present, through some of main ANN models and based techniques, their 
real application capability in real world industrial dilemmas. Several examples through industrial and real world 
applications have been presented and discussed. 
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1. INTRODUCTION 
In a large number of real world dilemmas and 

related applications the modeling of complex 
behavior is the central point. Difficulty could be 
related to several issues:  

- large number of parameters to be taken into 
account (influencing the behavior) making 
conventional mathematical tools inefficient,   

- strong nonlinearity of the system (or behavior), 
leading to unsolvable equations, 

- partial or total inaccessibility of system’s 
relevant features, making the model 
insignificant, 

- subjective nature of relevant features, 
parameters or data, making the processing of 
such data or parameters difficult in the frame of 
conventional quantification, 

- necessity of expert’s knowledge, or heuristic 
information consideration, 

- imprecise information or data leakage. 
Examples illustrating the above-mentioned 

difficulties are numerous and may concern various 
areas. As first example, one can emphasize 
difficulties related to economical and financial 
modeling and prediction, where the large number of 
parameters, on the one hand, and human related 
factors, on the other hand, make related real world 
problems among the most difficult to solve. Another 

example could be given in the frame of the industrial 
processes and manufacturing where strong 
nonlinearities related to complex nature of 
manufactured products affect controllability and 
stability of production plants and processes. Finally, 
one can note the difficult dilemma of complex 
pattern and signal recognition and analysis, 
especially when processed patterns or signals are 
strongly noisy or deal with incomplete data.  

Over the past decades, new approaches based on 
Artificial Neural Networks have been proposed to 
solve problems related to optimization, modeling, 
decision making, classification, data mining or 
nonlinear functions (behavior) approximation. 
Inspired from biological nervous systems and brain 
structure, Artificial Neural Networks could be seen 
as information processing systems, which allow the 
elaboration of many original techniques covering a 
large field of applications([1] to [13]). Among their 
most appealing properties, one can quote their 
learning and generalization capabilities 
(extrapolation of learned tasks to unknown or 
unlearned situation). 

The main goal of this paper is to present 
Artificial Neural Network potential, through main 
ANN models and based techniques, to solve real 
world industrial problems. Several examples through 
real world industrial applications have been shown 
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and discussed. The paper has been organized as 
follows: the next section will present the general 
principle of Artificial Neural Networks relating it to 
biological considerations. In the same section two 
classes of neural models will be introduced and 
discussed: Multi-layer Perceptron and Kernel 
Functions based Neural Networks. The section 3 and 
related sub-sections will illustrate real world 
examples of application of such techniques. Finally, 
the last section will conclude the paper. 

 
2. A BRIEF OVERVIEW OF SOME OF 

USUAL ANN MODELS 
The next sub-sections will give a very brief 

overview of the “Back-Propagation” (BP) based 
learning rule neural network, known also as “Multi-
Layer Perceptron and “Kernel Functions” based 
neural networks trough one of their particular cases 
which are “Restricted Coulomb Energy/Radial Basis 
Functions” (RCE/RBF-like neural networks). 
 

2.1. BACK-PROPAGATION BASED MULTI-
LAYER PERCEPTRON 

Back-Propagation ([13], [18], [19]) based neural 
models, called also Back-Propagation based “Multi-
Layer Perceptron” (MLP) are sufficiently popular 
and known. That’s why only a very brief prompt 
will be given here. MLP ANN model is a multi-layer 
neural network. A neuron in this kind of neural 
network operates conformably to the general ANN’s 
operation frame described in [13]. The specificity of 
this class of neural network appears in the learning 
procedure, called “Back-Propagation of error 
gradient”. The principle of the BP learning rule is 
based on adjusting synaptic weights proportionally 
to the neural network’s output error. Examples 
(patterns from learning database) are presented to 
the neural network, then, for each of learning 
patterns, the neural network’s output is compared to 
the desired one and an “error vector” is evaluated. 
Then all synaptic weights are corrected (adjusted) 
proportionally to the evaluated output error. 
Synaptic weights correction is performed layer by 
layer from the output layer to the input layer. So, 
output error is back-propagated in order to correct 
synaptic weights. Generally, a quadratic error 
criterion, given by equation (1), is used. Synaptic 
weights are modified according to relation (2). This 
coefficient is decreased progressively during the 
learning process. The learning process stops when 
the output error reaches some acceptable value. 

 

( )2

2
1 d

iii SS −=ε ,   (1) 

( )εW
h
jidW gradз •−=, ,  (2) 

 
where Si – i-th output vector’s component, d

iS  – 

desired value of this component, h
jidW ,  – synaptic 

variation of the synaptic weight connecting the j-th 
neurone and i-th neuron between two adjacent 
layers, and η – real coefficient called also “learning 
rate”. This coefficient is decreased progressively 
during the learning process. The learning process 
stops when the output error reaches some acceptable 
value. 
 

2.2. KERNEL FUNCTION BASED NEURAL 
MODELS 

This kind of neural models belong to the class of 
“evolutionary” learning strategy based ANN ([12], 
[17], [21]). That means that the neural network’s 
structure is completed during the learning process. 
Generally, such kind of ANNs includes three layers: 
an input layer, a hidden layer and an output layer. 
Figure 3 represents the bloc-diagram of such neural 
net. The number of neurons in input layer 
corresponds to the processed patterns dimensionality 
e.g. to the problem’s feature space dimension. The 
output layer represents a set of categories associated 
to the input data. Connections between hidden and 
output layers are established dynamically during the 
learning phase. It is the hidden layer which is 
modified during the learning phase. 

A neuron from hidden layer is characterized by 
its “centre” representing a point in an N dimensional 
space (if the input vector is an N-D vector) and some 
decision function, called also neuron’s “Region Of 
Influence” (ROI). ROI is a kernel function, defining 
some “action shape” for neurons in treated 
problem’s feature space. In this way, a new learning 
pattern is characterized by a point and an influence 
field (shape) in the problem’s N-D feature space. In 
the other words, the solution is mapped thank to 
learning examples in problem’s N-D feature space. 
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Fig.1 - Radial Basis Functions based ANN’s bloc-

diagram. 
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Fig.2 - Example of learning process in 2-D 

feature space. 
 

The goal of the learning phase is to partition the 
input space associating prototypes with a categories 
and an influence field, a part of the input space 
around the prototype where generalization is 
possible. When a prototype is memorized, ROI of 
neighbouring neurons are adjusted to avoid conflict 
between neurons and related categories. The neural 
network’s response is obtained from relation (3) 
where Cj represents a “category”, 

[ ]T
NVVVV K21=  is the input vector,  

[ ]Tj
N

jjj pppP K21=  represents the j-th 
“prototype” memorized (learned) thanks to creation 
of the neuron j in the hidden layer, and λ j the ROI  
associated to this neuron (neuron j). 
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where, F(.) – neuron’s activation (decision) function. 
Usually, this function is a radial basis function (a 
Gaussian function for example).  

The choice of the distance calculation (choice of 
the used norm) is one of the main parameters in the 
case of the RCE-KNN like neural models (and 
derived approaches). The most usual function used 
to evaluate the distance between two patterns is the 
Minkowski function expressed by relation (3), where 
Vi  is the i-th component of the input vector and j

ip  
the i-th component of the j-th memorized pattern 
(learned pattern). Manhattan distance ( n = 1, called 
also L1 norm) and Euclidean distance ( n = 2 ) are 
particular cases of the Minkowski function and the 
most applied distance evaluation criterions. One can 
write relation (4) and (5). 
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3. NEURAL NETWORKS BASED REAL-
WORLD INDUSTRIAL SOLUTIONS 

If the problem’s complexity, appearing through 
theoretical tools (modeling or conceptual 
complexity) needing to solve it, is the central 
challenge of the applicability of issued concepts, 
another key points characterizing application design, 
especially in industrial environment, is related to 
implementation requirements. En fact, constraints 
related to production conditions, market (economical 
conditions), quality, etc. set the above-mentioned 
point as a chief purpose to earn solution’s viability. 
That is why in the next subsections, dealing with 
application of above-presented ANN models, the 
implementation issues will be of central 
considerations. Progress accomplished during the 
lasts decades concerning electrical engineering, 
especially in the microprocessors area, offers new 
perspectives in regard to the real time execution 
capabilities and enlarges the field in solution 
implementation ability. 

 
3.1 MULTI-LAYER PERCEPTRON BASED 

INTELLIGENT ADAPTIVE CONTROL 
Two meaningful difficulties characterize the 

controller dilemma, making controllers design one 
of the most challenging tasks: the first one is the 
plant parameters identification, and the second one 
is related to the consideration of interactions 
between real world (environment) and control 
system, especially in the case of real-world 
applications where controlled phenomena and 
related parameters deal with strong nonlinearities. 
Beside these two difficulties, another chief condition 
for conventional or unconventional control is related 
to the controller’s implementation which deals with 
real-time execution capability. Neural models offer 
original perspectives to overcome the two firsts 
difficulties. On the other hand, availability of 
powerful microprocessors, offers new perspectives 
for software or hardware implementation, 
overcoming real time execution constraints.  

Before analyzing relationship between the neural 
network learning and the control dilemma, let us 
reconsider the case of the conventional control 
dilemma. 

 
3.1.1 CONTROL DILEMMA: GENERAL 

FRAME AND FORMALIZATION 
Figure 3 gives the general bloc-diagram of two 

control strategies: open-loop controller and feed-
back loop controller (known also as feed-back loop 
regulation). Ek is the “input vector” (called also 
“order” vector), ( )T

mkkkk yyyY −−= L1  is 
the “output vector” (plant’s or system’s state or 
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response) and ( )T
nkkkk uuuU −−= L1  is the 

“command vector”, where k is the discrete time 
variable. The output vector is defined as a vector 
which components are the m last system’s outputs. 
In the same way, the command vector is defined as a 
vector which components are the n last commands. 
Such vectors define output and command feature 
spaces of the system. Taking into account the 
general control bloc diagram (figure 3), the goal of 
the command is to make converge the system’s 
output with respect to some “desired output” noted 
Yd. Associating two above mentioned feature spaces, 
it is usual to consider a hybrid representation called 
“command-output”vector:  

( )T
nkkkmkkkk uuuyyy −−−−= LL 11 ,χ . 

So, considering the above-mentioned 
formalization, if the command vector is a subject of 
some modifications, then the output vector will be 
modified. The output modification will be performed 
with respect to the system’s (plant, process or 
system under control) characteristics according to 
equation (6), where J represents the Jacobean matrix 
of the system. 

kk ddy χJ=  (6) 
 

 

ORDER 
CONTROLLER 

SYSTEM  
or PLANT 

Y(t)E(t) U(t)

 
 

ORDER 
CONTROLLER 

SYSTEM 
or PLANT

Y(t)E(t) U(t) 

- 
+ 

 
Fig.3 - General bloc-diagrams of control strategies 

showing open-loop controller (up) and feed-back loop 
controller (bottom) principles. 

 
So, considering that the actual instant is k, it 

appears that to have an appropriated output (Y k+1 = 
Y d), the output should be corrected according to the 
output error defined by: dYk = Yk – Yd. In the frame 
of such formulation, supposing that one could 
compute the system’s reverse Jacobean the 
command correction making system’s output to 
converge to the desired state (or response) will be 
conform to relation (7). System’s Jacobean is related 
to plant’s features (parameters) involving difficulties 
mentioned before. Moreover, system’s reverse 
Jacobean computation is not a trivial task. In the real 
world applications, only in very few cases (as linear 
transfer functions) the system’s reverse Jacobean is 
available. So, typically a rough approximation of 
this matrix is obtained.  

kk dyd 1−= Jχ  (7)  

3.1.2 ARTIFICIAL NEURAL NET BASED 
INTELLIGENT CONTROLLER 

Let us consider a neural network 
approximating (learning) a given system (process or 
plant). Let Y be the system’s output, U be the 
system’s command (U becomes also the neural 
network’s output), Wij be synaptic weights of the 
neural network and  ε be the output error 
representing some perturbation occurring on output. 
The part of output perturbation (output error) due to 
the variation of a given synaptic weight (Wij) of the 
neural network noted as 

ijW∂
∂ε  could be written 

conformably to relation (8). One can remark that 

u
y

∂
∂ is the system’s Jacobean element and 

ijW
u

∂
∂ could be interpreted as the “neural network’s 

Jacobean” element. As the output error is related to 
the system’s controller characteristics (represented 
by system’s Jacobean), so the modification of 
synaptic weights with respect to the measured error 
(e.g. the neural network appropriated training) will 
lead to the correction of the command (dU) 
minimizing the output error. 
 

ijij W
u

u
y

yW ∂
∂

∂
∂

∂
∂

=
∂
∂ εε  (8) 

 
Several Neural Network based adaptive control 

architectures have still been proposed. However, the 
most effective scheme is the hybrid neuro-controller 
([7] to [11]). This solution operates according to the 
Neural Network based correction of a conventional 
controller. Figure 4 shows the bloc diagram of such 
approach. As one can see in our ANN based control 
strategy, the command U(t) is corrected thanks to the 
additional correction dU, generated by neural device 
and added to the conventional command component. 
The Neural Network’s learning could be performed 
on-line or off-line. Several advantages characterize 
the proposed strategy. The first one is related to the 
control system stability. En fact, in the worst case 
the controlled plant will operate according to the 
conventional control loop performances and so, will 
ensure the control system’s stability. The second 
advantage of such strategy is related to the fact that 
the proposed architecture acts as a hybrid control 
system where usual tasks are performed by a 
conventional operator and unusual operations (such 
as highly non linear operations or those which are 
difficult to be modelled by conventional approaches) 
are realized by neural network based component. 
This second advantage leads to another main welfare 
which is the implementation facility and so, the real-
time execution capability. Finally, the presented 
solution takes into account industrial environment 
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reality where most of control problems are related to 
existent plant dealing with an available (still 
implemented) conventional controller. This last 
advantage of the proposed solution makes it a viable 
option in industrial environment. 

 

 
Fig. 4 - Bloc-diagram of hybrid neuro-controller. 

We have applied the above-exposed neural based 
adaptive controller to enhance the conventional 
vector-control driving a synchronous 3-phased 
alternative motor. The goal of a vector control or 
field-oriented control is to drive a 3-phased 
alternative motor like an independent excitation D.C 
motor. This consists to control the field excitation 
current and the torque generating current separately 
[23]. The input currents of the motor should provide 
an electromagnetic torque corresponding to the 
command specified by the velocity regulator. For 
synchronous motor, the secondary magnetic flux 
(rotor) rotates at the same speed and in the same 
direction as the primary flux (stator). To achieve the 
above-mentioned goal, the three phases must be 
transformed into two equivalent perpendicular 
phases by using the Park transformation which needs 
the rotor position, determined by a transducer or a 
tachometer. In synchronous machine, the main 
parameters are Ld (inductance of d-phase), Lq 
(inductance of q-phase), and Rs (statoric resistor), 
which vary in relation with currents (Id and Iq), 
voltages (Vd and Vq), mechanical torque and speed 
(of such machine). The relations between voltages or 
currents depend on these three parameters defining 
the motor’s model. However, these parameters are 
not easily available because of their strongly 
nonlinear dependence to the environment conditions 
and high number of influent conditions. 

The neural network is able to identify these 
parameters and to correct the machine’s reference 
model, feeding back their real values through the 
control loop. Parameters are related to voltages, 
currents, speed and position. The command error 
(measured as voltage error) could be linked to the 
plant’s parameters values error. In the first step, the 
command is computed using nominal theoretical 
plant parameters. The neural network learns the 
plant’s behaviour comparing outputs voltages (Vd 
,Vq), extracted from an impedance reference model, 
with measured voltages (Vdm,Vqm). 

 
Fig. 5 - A zoom view of the main plant and the coupled 
load to that plant (up). Implementation block diagram 

(down). 

In the second step when the system is learned, the 
neural network gives the estimated plant’s 
parameters to the controller [23]. 

- The complete system, including the intelligent 
neuro-controller, a power interface and a 
permanent synchronous magnet motor (plant), 
has been implemented according to the bloc 
diagram of figure 5. Our intelligent neuro-
controller has been implemented on a DSP 
based board.  In this board, the main processor 
is the TMS C330 DSP from Texas 
Instruments. The learning data base includes 
675 different values of measurement extracted 
motor’s parameters (Ld and Lq).  

 

 
Fig. 6 - Plant parameters identification by neural 

net. 

Different values of measurable parameters 
(currents, voltages, speed and position), leading to 
motor’s parameters extraction, have been obtained 
for different operation modes of the experimental 
plant, used to validate our concepts. 
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Fig. 7 - Experimental plant’s speed measured when 

the plant is unloaded. 

The ANN learning is shifted for 4 seconds after 
power supply application to avoid unstable data in 
the starting phase of the motor. Figures 6 and 7 give 
experimental results relative to the motor’s internal 
parameter evolution and the plant’s measured speed, 
respectively. One can remark from those figures 
that:  

- Internal plant model’s parameters are 
identified by the neural network, 

Such neural based controller compensates the 
inefficiency of the classical control loop (achieving a 
74 rad/sec angular speed). 

 
3.2 KERNEL ANN BASED IMAGE 
PROCESSING FOR INDUSTRIAL 

APPLICATIONS 
As a result of their adaptability, artificial neural 

networks present also good solutions for image 
processing and related problems which became 
during the last decades central points of an ever-
increasing range of industrial applications. 
Moreover, these solutions may take advantage from 
the power given by the high degree of parallelism 
provided, on the one hand by image’s parallel 
nature, and on the other hand, by parallelism issued 
from hardware implementation of ANN. This 
section and related subsections will focus the 
hardware implementation and use of such neural 
image processing technique to improve two different 
classes of applications in two different industrial 
domains: media-movie industry and VLSI 
production industry. Before presenting those two 
industrial dilemmas, let focus the next section on 
ZISC-036 neuro-processor from IBM. 

 
 
 

3.2.1 IBM ZISC-036 NEURO-PROCESSOR 
The IBM ZISC-036 ([21], [22]) is a parallel 

neural processor based on the RCE and KNN 
algorithms. Each chip is capable of performing up to 
250 000 recognitions per second. Thanks to the 
integration of an incremental learning algorithm, this 
circuit is very easy to program in order to develop 
applications; a very few number of functions (about 
ten functions) are necessary to control it. Each 
ZISC-036 like neuron implements two kinds of 
distance metrics called L1 and LSUP respectively. 
Relations (9) and (10) define the above-mentioned 
distance metrics were Pi represents the memorized 
prototype and Vi is the input pattern. The first one 
(L1) corresponds to a polyhedral volume influence 
field and the second (LSUP) to a hyper-cubical 
influence field. 

 

L1: dist = Vi − Pi
i= 0

n

∑  (9) 

  
LSUP: dist = max

i = 0...n
Vi − Pi  (10) 

 
ZISC-036 is composed of 36 neurons. This chip 

is fully cascadable which allows the use of as many 
neurons as the user needs (a PCI board is available 
with a 684 neurons). A neuron is an element, which 
is able to:  

• memorize a prototype (64 components coded 
on 8 bits), the associated category (14 bits), an 
influence field (14 bits) and a context (7 bits), 

• compute the distance, based on the selected 
norm (norm L1 given by relation or LSUP) 
between its memorized prototype and the input 
vector (the distance is coded on fourteen bits), 

• compare the computed distance with the 
influence fields, 

• communicate with other neurons (in order to 
find the minimum distance, category, etc.), 

• adjust its influence field (during learning 
phase). 

 
Figures 8 and 9 give the ZISC-036 chip’s bloc 

diagram and an example of input feature space 
mapping in a 2-D space, respectively.  A 16 bit data 
bus handles input vectors as well as other data 
transfers (such as category and distance), and chip 
controls.  Within the chip, controlled access to 
various data in the network is performed through a 
6-bit address bus. 
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Fig. 8 - IBM ZISC-036 chip’s bloc diagram.  

 

 
Fig. 9 - Example of input feature space mapping in a 
2-D space using ROI and 1-NN modes, using norm. 

 
3.2.2 IMAGE CORRECTION AND 

COLORATION IN MEDIA AND MOVIE 
PRODUCTION INDUSTRY 

The first class of application concerns image 
enhancement in order to: restore old movies (noise 
reduction, focus correction, etc.), improve digital 
television, or handle images which require adaptive 
processing (medical images, spatial images, special 
effects, etc.). 

The used principle is based on an image's 
physics phenomenon which states that when looking 
at an image through a small window, there exist 
several kinds of shapes that no one can ever see due 
to their proximity and high gradient (because, the 
number of existing shapes that can be seen with the 
human eye is limited). ZISC-036 is used to learn as 
many shapes as possible that could exist in an image, 
and then to replace inconsistent points by the value 
of the closest memorized example. The learning 
phase consists of memorizing small blocks of an 
image (as an example 5x5) and associating to each 
the middle pixel’s value as a category. These blocks 
must be chosen in such a way that they represent the 
maximum number of possible configurations in an 
image. To determine them, the proposed solution 
consists of computing the distances between all the 
blocks and keeping only the most different.  

The learning algorithm used here incorporates a 

threshold and learning criteria (Learn_Crit (V)). The 
learning criteria is the criteria given by relation (11) 
where Vl

k  represents the l-th component of the input 
vector V k , Pl

j  represents the l-th component of the 
j-th memorized prototype, Ck  represents the 
category value associated to the input vector V k , C j  
is the category value associated to the memorized 
prototype Pj and, α and β are real coefficients 
adjusted empirically. 
 

( ) jk

l

j
l

k
l

k CCPVVCritLearn −+−= ∑ βα_          (11) 

 
An example (pattern) from the learning base is 

chosen and the learning criterion for that example is 
calculated.  If the value of the learning criteria is 
greater than the threshold, then a neuron is engaged 
(added). If the learning criteria’s value is less than 
the threshold, no neuron is engaged. For each 
iteration, the aforementioned threshold is decreased.  
Once learning database is learned the training phase 
is stopped. Figure 10 shows two learning examples 
on the basis of pattern-to-category association and 
region-to-region association (bloc-diagram of a 
typical learning phase). 

The image enhancement or noise reduction 
principles are the same as described above. The 
main difference lies in the pixel value associated to 
each memorized example. In noise reduction, the 
learned input of the neural network is a noisy form 
of the original image associated with the correct 
value (or form). For example, in the figure 10, for 
each memorized example (a block of 5x5) from the 
input image (degraded one), the middle pixel of the 
corresponding block from the output image (correct 
one) is used as the "corrected pixel value" and is 
memorized as the associated category. After having 
learned about one thousand five hundred examples, 
the ZISC-036 based system is able to enhance an 
unlearned image. Figure 11 and figure 12 give 
results corresponding to noise filtering and movie 
sequences coloration, respectively. 

 
Fig. 10 - Learning process examples: associating a 
pixel to a category (left) and association of regions 

from the degraded and correct images (right). 
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Fig. 11 - Result concerning restoration of a noisy 
unlearned image: input image (left) and restored 

image (right). 
 

 
Fig.12 - Result concerning movie coloration. Image 
used for the learning phase (left). Coloration result 

obtained for an unlearned image (right). 
 
In the case of image restoration and coloration it 

has been shown ([24], [25]) that the same neural 
concept could perform different tasks as noise 
reduction, image enhancement and image coloration 
which are necessary to restore a degraded movie. 
Quantitative comparative studies established and 
analysed in above-mentioned references show 
pertinence of such techniques. Figure 13 gives a 
quantitative comparison between colours in 
reconstructed images and those in the original image 
(which has been used as learning reference). 

 

 
Fig.13 – Comparison of the colored (reconstructed) 

image with the original image in generalization phase. 
 
 
 

3.2.3 VISUAL PROBE MARK DETECTION 
AND CATEGORIZATION IN VLSI 

PRODUCTION 
One of the main steps in VLSI circuit production 

is the testing step. This step verifies if the final 
product (VLSI circuit) operates correctly or not. The 
verification is performed thank to a set of 
characteristic input signals (stimulus) and associated 
responses obtained from the circuit under test. A set 
of such stimulus signals and associated circuit’s 
responses are called test vectors. Test vectors are 
delivered to the circuit and the circuit’s responses to 
those inputs are catch through standard or test 
dedicated Input-Output pads (I/O pads) called also 
vias. As in the testing step, the circuit is not yet 
packaged, the test task is performed by units, which 
are called probers including a set of probes 
performing the communication with the circuit.  

Figure 14 shows a picture of probes relative to 
such probers. The problem is related to the fact that 
the probes of the prober may damage the circuit 
under test. So, an additional step consists of 
inspecting the circuit’s area to verify vias (I/O pads) 
status after circuit’s testing: this operation is called 
Probe Mark Inspection (PMI). Figure 15 shows two 
examples of probe impacts produced during the 
circuit’s test phase. The first one (left) corresponds 
to a correct impact (circuit hasn’t been damaged) 
and the second one (right) to a damaged circuit.  

Many prober constructors had already developed 
Probe Mark Inspection (PMI) software based on 
conventional pattern recognition algorithms with 
little success [20]. The difficulty lies in the response 
time (real time execution with production speed 
constraints) and method reliability compromise. 
Even sophisticated hardware using DSPs and ASICs 
specialized in image processing has not performed 
sufficiently well to convince industrials to switch 
from human visual defects recognition to 
electronically automatic PMI. 
 

 
Fig.14 - Photograph giving an example of probes in 

industrial prober. 
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Fig.15 – Example of probes impacts corresponding to 
a correct (left) and damaged (right) vias, respectively. 

So as reader could guess, the second kind of 
applications concerned the visual probe mark 
inspection dilemma in VLSI production. A neural 
network based solution has been developed and 
implemented on ZISC-036 neuro-processor, for the 
IBM Essonnes plant. The main advantages of 
developed solutions are real-time control and high 
reliability in detection and classification tasks. Our 
PMI application, presented in [22] and [24], consists 
of software and a PC equipped with this neural 
board, a video acquisition board connected to a 
camera and a GPIB control board connected to a 
wafer prober system. Its goal is image analysis and 
prober control. Figure 16 represents the bloc 
diagram of the application. 

The process of analyzing a probe mark can be 
described with the following steps: 

• the PC commands the prober to move the chuck 
so that the via to inspect is precisely located 
under the camera. 

• an image of the via is taken through the video 
acquisition board. 

• the application, using the ZISC-036, then: 
• finds the via on the image. 
• check the integrity of the border (for damage) of 

via. 
• locates the impact in the via and estimates its 

surface for statistics. 
The application then moves on to the next via. At 

the end of the process, the system shows a wafer 
map which presents the results and statistics on the 
probe quality and its alignment with the wafer. All 
the defects are memorized in a log file. In summary, 
the detection and classification tasks of our PMI 
application are done in two steps: localization the via 
on the acquired image, then, mark size estimation 
and probe impact classification (good, bad or none). 
 

 
Fig.16 - Bloc-diagram of developed kernel neural 

networks based solution. 
 

 
Fig.17 - Example of profiles extraction after via  

centring process. 
 

 
Fig.18 - Example of profiles to category association      

during the learning. 

The method, which was retained, is based on 
profiles analysis using kennel functions based ANN. 
Each extracted profile of the image (using a square 
shape, figure 17) is compared to a reference learned 
database in which each profile is associated with its 
appropriated category. Different categories, related 
to different needed features (as: size, functional 
signature, etc). Figure 18 chows profile-to-fault 
association example. Finally, figure 19 shows 
impact’s size’s related profile (left picture) and a 
faulty via detected by the implemented intelligent 
visual probe mark inspector (right picture). 
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Fig.19 - Profiles extraction for size and localization of 
the probe mark (left). Experimental result showing a 
fault detection and its localization in the via (right). 

Experiments on different kinds of chips and on 
various probe defects have proven the efficiency of 
the neural approach to this kind of perception 
problem. The developed intelligent PMI system 
outperformed the best solutions offered by 
competitors by 30%: the best response time per via 
obtained using other wafer probers was about 600 
ms and our neural based system analyzes one via 
every 400 ms, 300 of which were taken for the 
mechanical movements. Measures showed that the 
defect recognition neural module’s execution time 
was negligible compared to the time spent for 
mechanical movements, as well as for the image 
acquisition (a ratio of 12 to 1 on any via). This 
application is presently inserted on a high 
throughput production line. 
 
3.2.4 PRODUCTION YIELD PREDICTION IN 

VLSI IDUSTRY 
Process behaviour prediction and modelling are 

known as difficult classes of problems, especially 
when the dilemma trades with real world and real 
complexity constraints (industrial production 
systems, highly non linear systems, systems with a 
large number of parameters to be taken into account, 
etc.).  Among these classes of problems, the 
industrial manufacturing production yield prediction 
dilemma is of major interest. It is important to 
discern the prediction from modelling (referring to 
the manufacturing) by the fact that the prediction 
concerns short term behaviour evolution estimation 
whereas the modelling expresses the long term 
behaviour evolution knowledge [26]. Of course, 
both of them are essential in the case of the 
industrial manufacturing production yield estimation 
dilemma. The prediction concerns the production 
lines logistics, whereas the modelling is used to 
understand the correlation between physical 
parameters to enhance the product quality. 

We have employed on RCE-RBF neural network 
to solve the proposed problem. Among interests of 
this approach is the ZISC-O36 implementation of 
this kind of neural model, leading to a real time 
execution possibility.  

 
 
DATA RCE - RBF 

Yield Predictor 

DATA AFTER  
VALIDATION EstimationPreprocessing

& 
Data Validation  

Fig.20 - General bloc diagram of proposed solution. 

In a more general point of view, the problem on 
which we are interested, deals with sampled 
information processing (the information here is 
collected sampling the production process output 
information). One of the key points in above 
mentioned class of problems is the "data pre-
processing". The main goal of the data pre-
processing step is to validate pertinent data 
(significant data) and to eliminate insignificant data. 
The figure 20 shows the block diagram of the 
proposed approach including two process stages. 
The first stage performs a data "pre-processing" 
leading to a validation of considered data. The 
second stage, a neural based processing stage, is a 
data classifier. The goal here is to use this classifier 
to construct some representation of the production 
yield evolution function (measuring the production 
yield during the production process). It is important 
to emphasize that such function is supposed to vary 
softly. 

To validate our approaches, we use a data base of 
measurements consisting of 322 sets of 25 wafers 
(approximately). These measurements correspond to 
different characteristics during the manufacturing 
process including production yield after circuits on-
site testing, electrical characterisation of produced 
circuits, etc.. So, in this way, for each set of wafers, 
data corresponding to approximately 30 parameters, 
including the final production yield for this set, is 
available. The goal here is to model the production 
yield short term evolution by learning the mentioned 
data base. For the learning process we used a part of 
the complete database. Then, the complete data base 
has been used for generalization and performance 
evaluation of such concepts. 
 

3.2.4.1 PREPROCESSING AND DATA 
VALIDATION 

The technique we propose [24] is based on the 
analysis of the production yield, expressed as a 
"category variation" (∆Cat), as function of the 
distance variation (∆dist). Such representation is 
obtained by computing the distance between each 
pairs (couples) of measurement (of the data base) 
and the variation of associated production yield. 
Figure 21 shows the corresponding diagram in the 
case of the considered data base. Our data validation 
technique is based on the physical phenomena 
continuity hypothesis: two near states of the system 
(in the representative future space of the system) 
lead to the same short term behaviour. This 
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hypothesis is applied here to validate the used data. 
In fact, some of the low values of the production 
yield could be due to external parameters (events): 
for example broken wafers due to operators, etc.. In 
our case, data validation is performed according to 
the previous hypothesis, and so, points belonging to 
a close neighbourhood with a large production yield 
variation (large variation of ∆cat) should be rejected: 
such cases correspond to circles in figure 21. 
 

 
Fig.21 - Production yield variation (∆cat) versus 

distances variation (∆dist). The circles indicate the      
rejected data from data base. 

 
3.2.4.2 YIELD ESTIMATION STAGE 

As it has been mentioned previously, our 
technique is based on the analysis of the production 
yield variation, expressed as a "category variation" 
(∆Cat), as function of the distance variation (∆dist). 
So, the second processing stage performs a category 
classification (where the category is production yield 
related information) on the basis of a distance 
evaluation. Several parameters should be considered 
for an efficient learning phase: 

 
• choice of the prototypes to be memorised, 
• number of prototypes used for the learning 

phase (as small as possible), 
• choice of the learning strategy. 
 
In the learning strategy we used, the hidden 

layer's neural connections are performed according 
to Grow And Learn (GAL) rule. This rule can be 
typified by adding a Winner Take All (WTA) 
decision stage between the hidden layer and the 
output one. The main advantage related to such 
learning strategy is to cover all problem’s feature 
space, insuring response stability: which is one of 
key conditions for industrial applications. After a 
preliminary data validation (based on the previous 
hypothesis), the most efficient strategy is to learn the 
furthest points in feature space (i.e. the space 
characterized by ∆cat as a function of ∆dist). For 
that, the learning process starts with a threshold TH 
with a high value which decreases during the 
learning phase. All prototypes for which the 
condition ∆dist > TH is satisfied are memorised. The 
figure 22 shows the global error evolution (during 

the learning phase) with respect to the number of 
learned neurones (neurone in the hidden layer). In 
this first technique, the system learns (memorises) as 
many prototypes as are necessary to reach an 
acceptable global error. 

 

 
Fig.22 - Global error evolution (learning phase) versus 

number of connected neurones (in hidden layer). 
 

 
Fig.23 - Experimental results comparing the estimated 
production yield obtained from our technique (a), with 
the estimation of this yield by an expert operator (b). 

The figure 23 compares the estimated production 
yield obtained using the neural based technique with 
the estimation of this yield obtained from a human 
expert operator. This figure shows the production 
yield predicted by neural system ("X" marks) and 
the corresponded estimation performed by a human 
expert ("+" marks). The continuous line "—" 
indicates the true prediction. Results represented by 
the figure 23 have been obtained sing a data base 
relative to 322 sets of 25 wafers. Because of 
industrial confidentiality related to the process data, 
the graduations of the figure 23 are "symbolic". 

The remark which could be formulated 
concerning this results is related to the fact that 
spatial distributions (around the continuous line) of 
points representing expert based yield prediction and 
neural based one are comparable. That shows that 
the neural and human systems, in this case, are 
comparable. However, these results are not 
sufficient to determine if the neural based solution 
leads to better estimation. 
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4. CONCLUSIONS 
Advances accomplished during last decades in 

Artificial Neural Networks area and issued 
techniques made possible to approach solution of a 
large number of difficult problems related to 
optimization, modeling, decision making, 
classification, data mining or nonlinear functions 
(behavior) approximation. Inspired from biological 
nervous systems and brain structure, these models 
take advantage from their learning and 
generalization capabilities, overcoming difficulties 
and limitations related to conventional techniques. 
Today, conjunction of these new techniques with 
recent computational technologies offers attractive 
potential for designing and implementation of real-
time intelligent industrial solutions. The main goal 
of the present paper was focused on ANN based 
techniques and their application to solve real-world 
and industrial problems. Of course, the presented 
models and applications don’t give an exhaustive 
state of art concerning huge potential offered by 
such approaches, but they could give, through 
above-presented ANN models and related 
applications, a good idea of promising capabilities of 
ANN based solutions to solve difficult future 
industrial changes. 
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