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Abstract: 2D-slope and sinusoidal shape detection are application specific tasks which are widely discussed in the 
literature. A neural network is presented which is able to learn a set of different slopes or a set of sinusoids of different 
frequencies and to detect test patterns after the training stage. The neural net is composed of input neurons, delay 
neurons and output neurons. The delay neurons form a set of tapped delay lines. Each delay line adapts to its specific 
signal propagation velocity. The signal propagation velocity vector field of the delay lines is learned by collectively 
tuning the signal propagation velocities. The neural net is fed with a set of spatiotemporal training patterns, such as 
bars of different slopes or sinusoids of different frequencies. After training, the net is tested with a random set of 2D-
patterns. Unsupervised learning with a Boltzmann temperature term is assumed.  
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1. INTRODUCTION 
Orientation selectivity is discussed by 

demonstrating the detection of bars of different 
slopes e.g. in [1], [2], [3]. The structure of a neural 
net which detects bars or sinusoids is outlined in the 
second section. The elements of the neural net, like 
tapped delay lines and dendritic tree output neurons, 
are introduced. The matrix-like interconnectivity 
patterns between the tapped delay lines and the 
output neurons are given. The dynamics of the 
neural net are described in the third section. The 
fourth section explains how the net self-learns the 
patterns for different net sizes by unsupervised 
learning with a Boltzmann temperature term. In the 
fifth section the solution found by the neural net is 
compared to mathematically derived solutions which 
are computed by Hough transform space-time 
equations for straight lines and sinusoids.  

 
2. THE STRUCTURE OF THE NEURAL 

NET 
The neural net learns to detect a set of training 

patterns like bars or sinusoids. The neural net is 
trained with a set of n different bars or n sinusoids of 
different frequencies. The training and test patterns 
are 2D binary pixel images of size n × n. A typical 
set of training patterns in an image of size 9 × 9 is 

displayed in fig. 3 and fig. 4. The neural net 
discriminates n different patterns after training.  

The structure of the neural net is shown in fig. 1. 
It consists of n input neurons, n × n delay neurons 
and n output neurons. The neural net is composed of 
two structuring elements: tapped delay lines con-
sisting of concatenating delay neurons, and dendritic 
tree output neurons. The dendritic tree output 
neurons are equidistantly interspaced and 
perpendicular to the parallel delay lines. Between 
two adjacent output neurons a segment of the signal 
conducting pathways is confined as displayed in fig. 
2.  

The spatiotemporal input patterns are 
transformed to a time and place code where the 
firing of an output neuron signals the presence of a 
bar or sinusoid at time t. Each firing output neuron i 
signals a bar with a specific slope or a sinusoid with 
a specific frequency at time t, i.e. output neuron n 
codes a bar with a slope of 45°. The output neurons 
are linearly aligned with ascending slopes from 
slope 0 (neuron #1) up to slope 45° (output neuron 
#n). The n output neurons form a feature vector 
consisting of the state of the output neurons at time t. 
The feature vector is recomputed every time step t. 
The neural net collectively tunes the signal 
propagation velocities of the delay lines.  
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3. DYNAMICS OF THE NEURAL NET 

Spatiotemporal processing takes place by shifting 
the image into the net row by row. Each time step an 
image row is clamped to the input neurons. Each 
input neuron triggers a signal propagating through 
its dedicated delay line upon activation by a clamped 
input pixel. The neural net operates in parallel on n 
spatiotemporal input data streams. Coordinated 
volleys of neural discharges are happening just-in-
time at certain layers where the volleys are summed 
up by the corresponding output neurons. Output 
neuron k sums up the synaptic activity in its layer at 
each time step t. A spatiotemporal input pattern, i.e. 
a bar with slope a gives rise to a characteristic 
activation wave front. This wave front propagates 
through the delay lines. Due to the specific signal 
propagation velocity field the activation wave front 
forms a planar wave front at a specific layer k and 
for a specific time t. The output neuron spikes upon 
registration of the planar wave front. The activation 
wave front rapidly dissolves before or behind that 
layer due to the different signal propagation 
velocities.  

 
4. THE LEARNING PROCESS 

The net learns to collectively tune the signal 
propagation velocities in the delay lines. The input 
layer feeds the subsequent layers with the 
spatiotemporal input patterns and triggers the signal 
propagation through the associated delay lines. The 
delays of the delay neurons are equal and are set for 
the sake of simplicity to 1 (the duration of a clock 
step). Each delay line consists of the signal 
conducting pathway as displayed in fig. 1 and fig. 2. 
Each pathway branches at a signal path bifurcation 
into a signal delay path and a direct path [fig. 2]. 
Both paths recombine at a signal junction [fig. 2]. 
The path selection and therefore the signal 
propagation velocity is regulated by two weights 
wij,delay and wij,direct [fig. 2]. By adjusting these 
weights according to the applied learning rule the 
signal propagation velocities in the delay lines are 
collectively tuned. The weights wij,delay and wij,direct 
are in the range [0, 1] and are initially set to 0.5. The 
input layer differs from the other subsequent layers 
in that the direct path weights w1j,direct are set to 1 
clamping the paths of the input layer directly to the 
first output neuron. The synaptic interconnections to 
the output neurons are hardwired wij,hardwired = 1) [fig. 
2].  

The synaptic weights are trained with an 
unsupervised learning rule and a Boltzmann 
temperature function which decreases from a 
starting temperature Tmax to a lower end temperature 
Tmin in constant amounts δT. Each layer has its own 
Boltzmann temperature. The following learning rule 

applies for all subsequent layers. A random number 
in the range [0, 1] is computed for every signal 
bifurcation. The probability of the direct or delay 
signal path being taken at a signal bifurcation is 
computed by a Boltzmann temperature dependent 
term  
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The random value at each node is then compared 

with the probability of the direct path. If the random 
number is greater or equal than Pdirect the delay path 
is activated. If the random number is less than Pdirect 
the direct path is activated.  

If an output neuron spikes in a layer the weights 
of the selected paths are collectively changed by +ε 
and the other by −ε. The weights are updated by  
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and  
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An output neuron only spikes if all selected 

signal paths are activated, because the thresholds of 
the output neurons are equally set to the number of 
signal paths minus 1. The thresholds of the output 
neurons can be adjusted to lower values (e.g. the 
output neuron spikes if more than k inputs are 
active). This could accelerate the learning process 
and be more robust to noise or defective structures 
i.e. complete loss of several delay lines etc. The two 
weights wij,delay and wij,direct in the signal bifurcation 
paths are always simultaneously changed. The 
weights wij,delay are computed as wij,delay=1−wij,direct. 
The Boltzmann temperature is lowered when an 
output neuron spikes. If the Boltzmann temperature 
has reached its minimal value, the maximum of both 
weights converges to 1, the minimum to 0.  

The learning is described for a neural net with 9 
output neurons, 9 neural delay lines and 9 input 
neurons [fig. 1]. The nine bars displayed in fig. 3 are 
repeatedly presented to the net in the learning phase. 
Each bar is computed by the straight line equation 
y=a×x+b, where b is set to zero (common origin). 
The minimal and maximal slopes amin and amax are 
set to 0 and 1 respectively. The nine slopes ai are 
varied between the interval [0, 1] by subdividing it 
into 9 slope values.  
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The neural net is trained to recognize nine bars 
with different slopes ai={0,a2,…,1}. The alignment 
of the output neurons forms a one-dimensional 
feature axis with ascending slopes from output 
neuron #1 (horizontal bar detector) to output neuron 
#9 (diagonal bar detector).  
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Fig. 1 – Structure of the neural net 

For each layer the weight setting has to be 
learned. The learning of the weights is a time 
evolving process. Weights of the first layer settle 
first and converge to their 0 or 1 state. After the 
weights in the first layer have settled, the weights of 
the second layer begin to settle, then the weights of 
the subsequent layers, until the weights of the last 
layer settle. Subsequent learning in each layer 
depends on the preconditioned setting of the weights 
in the previous layers. Learning finishes when all 
weights converged to their final states 1 or 0.  
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Fig. 2 – The signal paths and the synaptic 

interconnections 

One image row with 9 input pixels is clamped to 
the input neurons every time step. The input layer is 
hardwired by setting the synaptic weights of the 
direct signal path to 1 and the delay path to 0, so that 
the first output neuron is directly interconnected to 
the latest image row. In the next time step output 
neuron #2 in the second layer receives direct inputs 
from image row(i+1) and the delayed inputs from 
image row(i). Output neuron #i in layer i is exposed 
both to the input stimuli from layer i−1 and the 
stored previous input stimuli from the intermediate 
delay neurons of the precedent layers. A 
spatiotemporal input pattern presented at output 
neuron i has been distorted by the previous layers, so 
that the output neuron #i learns a distorted input 
pattern j’ instead of the original input pattern j. Each 
layer can therefore be trained separately, substituting 
the spatiotemporal input pattern j by the distorted 
pattern j’ at layer i−1. The previous layers i−1 bend 
a specific spatiotemporal input j to a horizontal bar 
at layer i. Each output neuron is trained by its 
learning rule to learn a horizontal bar.  

Various sets of spatiotemporal patterns can be 
learned. The learning of the weight settings depends 
on the training set and the size of the neural net. In 
learning the weight settings the neural net is able to 
detect patterns, like bars or sinusoids. The net has 
been trained with bars of different slopes and in a 
separate run with sinusoids of different frequencies. 
The training patterns are displayed in fig. 3 and fig. 
4. The neural net has been trained for neural net 
sizes of 3×3 up to 16×16. Each net with n output 
neurons is trained with a set of n distinct training 
patterns. A weight setting for a neural net of size 
9×9 trained with bars is displayed in tab. 1. The 
table is associated with the topology of the neural 
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net in fig. 1 and reads from left to right starting with 
the weight setting wij of delay line 1 up to the weight 
setting w9j of delay line 9. The table reads from 
bottom to top with the weight wi1 from layer 1 up to 
the weight wi9 from layer 9. Tab. 2 displays the 
weight setting for a net of size 9×9 trained with 
sinusoids. The weight setting for sinusoids differs 
from bars; see tab. 1 and tab. 2 for comparison. The 
velocity vector field is monotonic with descending 
velocities from delay line 1 to delay line 9 either for 
bars as for sinusoids. The neural net correctly 
detected bars and sinusoids for all examined net 
sizes.  

 
5. COMPARING THE NEURAL NET 
SOLUTION TO A MATHEMATICAL 

SOLUTION 

The neural net architecture as displayed in fig. 1 
is topologically identical to the layered architecture 
of a parallel Hough transform ASIC as described in 
[4] and shares the same functional elements if the 
symbols of fig. 1 are translated into the equivalent 
electronic gate-level description. The Hough 
transform is a standard pattern recognition tool for 
finding simple patterns like straight lines, circles 

 

 
Fig. 3 – The training set of nine bars, x-axis 

horizontal, y-axis vertical 

and trigonometric functions in images [5],[6]. The 
Hough transform is analytically expressible for 
straight lines, circles and trigonometric functions by 
their corresponding coordinate transform equations; 
read [7] for reference, where an algorithm for a 
parallel execution of the Hough transform in a pixel 
grid for real-time detection of circles in multi-wire 
drift chambers is explained in detail. 

 
Fig. 4 – The training set of nine sinusoids, x-axis 

vertical, y-axis horizontal 

To compute the Hough transform for straight lines, 
the straight line equation y=ax+b is rewritten in the 
form b=−xi×a+yj. The Hough transform is executed 
by generating for each input pixel i,j with input 
coordinates xi,yj the corresponding straight lines b(a) 
with slope −xi and offset yj in the a,b coordinate 
system. The input data is processed by the parallel 
Hough transform in the same way as the neural net 
does. The straight line generation b(a) is parallelized 
for a complete input row {x0,…,xn} and serialized in 
y; y=y0,…,yn. For all set pixels i in an input image 
row j, the straight lines b=−xi×a with fixed slope −xi 
for each position {x0,…,xn} are generated. The slopes 
−xi are expressed as a run length coded local slope 
sequence, e. g. the diagonal line is run length coded 
as {1,1,1,1,…,1}. The velocity vector field for the 
parallel Hough transform execution consists of the 
set of all run length coded local slope sequences −xi.  

Comparing the velocity vector fields of the 
parallel Hough transform and the neural net shows 
whether they converge to the same or a similar 
solution. The velocity vector field of the neural net 
 

Table 1. Weight setting in a net of size 9×9, trained 
with bars 
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Table 2. Weight setting in a net of size 9×9, trained 
with sinusoids 

 
 

is defined by the weight setting. The weight setting 
defines the signal propagation through the delay 
lines. If the net is configured with the weights 
setting of tab. 1, we can single step through the net 
to follow its function. All direct path segments are 
selected for delay line #1 [tab. 1]. The signal passes 
through delay line #1 instantaneously. Delay line #2 
is configured with the first 4 segments set to direct 
path, the fifth set to delay path, and the next four to 
direct path. The signal propagation is blocked at the 
fifth delay neuron at time t, and is propagated 
through the next for segments at time t+1. The path 
length of a non-interrupted signal path is counted by 
the number of output neurons which are 
simultaneously activated between a path start delay 
neuron and the next path stop delay neuron. The 
signal propagation for each delay line is run length 
coded by serially writing the path lengths for each 
delay line. For delay line #2 the signal propagation 
code reads as {4 5}, for delay line #3 it is {2 4 3}; 
see tab. 1. The velocity vector field of the neural net 
consists of the set of the path length sequences of the 
delay lines #1 to #n.  

By direct comparison of fig. 3 and tab. 1 it is 
obvious that each delay line learns the local slope xi 
of its associated bar expressed as a run length coded 
local slope sequence. The local slope sequence {2 4 
3} of bar #3 in fig. 3 is the same as the path length 
sequence {2 4 3} for delay line #3 as shown in tab. 
1. Each column j (delay line #j) codes the run length 
coded local slopes xi of its associated bar in a net of 
size 9×9; compare tab. 1 and fig. 3.  

 
6. SUMMARY 

A neural net with velocity tuneable delay lines 
self-learns to detect bars of different slopes and 
sinusoids of different frequencies depending on the 
applied training set. Self-learning has been examined 
for different sizes of the neural net. The neural net 
executes a coordinate transform which maps the spa-
tiotemporal input patterns to a feature vector. The 
weight settings are either analytically derived by the 

Hough transform equations or are self-learned by the 
neural net.  

 
7. REFERENCES 

[1] R. Shapley, D. McLaughlin, M. Shelley. 
Orientation selectivity, M. A. Arbib (Editor). The 
Handbook of Brain Theory and Neural Networks. 
MIT Press. 2003. p. 831 – 835  
[2] G. Blasdel. Orientation selectivity, preference 
and continuity in monkey striate cortex, Journal of 
Neuroscience 12 (8) (1992). p. 3139 – 3161  
[3] D. H. Hubel, T. N. Wiesel, M. P. Stryker. 
Anatomical demonstration of orientation columns in 
macaque monkey, Journal of Comparative 
Neurology 177 (1978). p. 361 – 380 
[4] A. Epstein, G. U. Paul, B. Vettermann, C. 
Boulin, F. Klefenz. A parallel systolic array ASIC 
for real time execution of the Hough-transform, E. S. 
Peris, A. F. Soria, V. G. Millan (Editors). 
Proceedings of the 12th IEEE International 
Congress on Real Time for Nuclear and Plasma 
Sciences, Valencia, 2001. p. 68 – 72  
[5] D. H. Ballard. Generalizing the Hough transform 
to detect arbitrary shapes, Pattern Recognition 13 
(1981).  p. 111 – 122  
[6] P. V. C. Hough. Method and means for 
recognizing complex patterns, US Patent 3069654 
(1962)  
[7] F. Klefenz, K. H. Noffz, R. Zoz, W. Conen, R. 
Männer. R. (1993) Track recognition in 4 
microseconds by a systolic trigger processor using a 
parallel Hough transform, IEEE Tr. Nucl. Sci. 40 (4) 
(1993). p. 688 – 691 
 
 

Andreas Brueckmann was 
born in 1978 in Hessisch 
Lichtenau, Germany. He studies 
Computer Science at the Technical 
University of Ilmenau, Germany. In 
addition he is involved in the 
development of music recognition 
systems and sematic audio 
analysis at Fraunhofer IDMT 

Ilmenau, Germany. His areas of interests are sports, 
making music and conjuring tricks. 

 
Dr. Frank Klefenz was born in 

1961 in Heidelberg, Germany. He 
received a diploma in physics in 
1988 and a PhD in physics in 
1992. He developed several 
systolic array computers in FPGA 
as second level triggers for 
CERN, Geneva. He devised a 
parallel Hough transform ASIC. He is currently at 
Fraunhofer IDMT leading a group of research 
scientists in the fields of music recognition. He holds 



A. Brückmann, F. Klefenz, A. Wünsche / Computing, 2004, Vol. 3, Issue 1, 21-26 
 

 26 

several patents in that field. His areas of interests 
are saxofone playing and adobe constructions. 

 
Andreas Wünsche was born in 

1973 in Hohenmölsen, Germany. 
He received a diploma in 
telecommunications from the 
University of Applied Sciences in 
Leipzig in 2000. He joined 
Fraunhofer IDMT and specialized 
in developing a Hubel-Wiesel 
neural net simulator. He now is at 

Siemens VDO in Wetzlar. His areas of interests are 
home recording and drumming. 




