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Abstract: Computer-aided analysis for cell images acquired by an electron microscope involves a range of image 
processing steps including edge detection and thresholding. The major problem encountered in automatic cell analysis 
is the possible presence of  incomplete boundaries of cell features, which prevent the generation of cell feature details 
including all measurements as the boundaries include very tiny gaps. This paper presents a novel edge-linking 
technique based on an artificial neural process, which uses directional sensitivity derivatives from an edged image. The 
input signals applied to the neural layer are integrated with direction-sensitive information produced by an auxiliary  
algorithm, which interrogates all the pixels in the 2-D image in order to designate the specified direction in which each 
edge-end pixel should propagate. The proposed edge-linking technique, implemented as an image-processing algorithm 
for direction-sensitive selectiveness, provides an effective solution to the problem of porous boundaries  encountered in 
biological cell image analysis. 
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1. INTRODUCTION 

Computer-aided analysis performed on cell 
images acquired from electron microscopes used in 
conjunction with sensing modalities is of increasing 
importance to researchers in the biomedical field 
because it offers many advantages, especially in the 
remote analysis of medical images. As computer-
aided analysis always comprises a series of 
advanced image-processing steps, a procedure that 
operates automatically is a pertinent factor for many 
researchers. Extracted cell boundaries that have a 
complete perimeter are essential for the generation 
of a detailed report that has the required final 
measurements. Cells with incomplete perimeters, 
even with just one pixel missing, will not be 
detected and recognised as objects to be analysed. 
Despite employing the processing steps prevalent in 
the contemporary practice of image-processing, the 
existence of even the tiniest of gaps present in the 
extracted edges impedes the continuation of the 
automatic processing steps. 

This problem of gaps is common to many other 
types of medical image application. A previous 
study matching a brain atlas to medical images 
found that completely connected contours could not 
be produced despite the application of a number of 
steps [1]. In their study, although Gaussian filtering, 
Sobel edge detection, a thinning operation to obtain 

one-pixel edges and a heuristic search technique to 
link the edge gaps were all used, open segments 
remained, which had to be connected manually. 

To overcome such difficulties experienced in the 
automatic or semi-automatic image processing 
systems, we present here a novel technique for the 
process of edge-linking which is based on the 
concept of direction-sensitive cells present in the 
early stages of the physiology of visual 
development. 
 
2. MODELLING THE NEURAL PROCESS 

Neural activities in the human vision system may 
generate an edge-linkage process according to edge 
information of reflected images on the retina; this is 
the premise for the development of the technique 
described in this paper. Neurons in the visual system 
do not respond strongly to uniform regions, but 
rather to luminance discontinuities [2] [3]. Most 
neurons only respond strongly to edges and do not 
produce vigorous responses to regions or surfaces 
[4] [5]. Even under natural viewing conditions, the 
surface perceived by the vision system depends not 
only on the light reflected from surfaces but 
especially on the change in light across the 
boundaries of the surfaces [6]. If continuous regions 
carry weak physical signals, the question arises as to 
how object surfaces can be seen and not only their 
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boundaries. Hence, a kind of linkage process by 
neural responses may be activated to compensate for 
the immediate lack of physical signals at certain 
image regions. This neural process appears to be 
based on signals from direction-sensitive neurons 
that perceive according to surface directions. The 
receptive fields may develop internal reactions 
producing directional sensitivity through their 
interaction upon such perceptions. This argument 
leads us to a solution for the edge linkage problem 
experienced in medical image analysis tasks. Thus, 
the idea of an edge-linking function, which occurs 
through the activities of directionally sensitive 
neurons, has been developed by mimicking the 
neural processes in the physiology of vision. 
 

3. TECHNIQUES FOR EDGE - LINKING 
Applying available edge extraction techniques, a 

binary image with edges of one-pixel in width can 
easily be obtained for cell image analysis. The 
analysis of cell images is thus substantially 
simplified initially by focusing on obtaining 
information about edges, suspending further pixel 
information, before proceeding to subsequent steps.  

The linkage operates from edge-end pixels on 
one side of the gap until they meet the next edge-end 
pixels at the other side. 

To complete the edge map, the automatic linkage 
(zi) can be represented in 1-D by the following 
equations: 
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where a, b, c, e, g, θ are the parameters for the 
neural activations, zi is the linkage argument and Ii 
the input.  

From the above equations, it can be seen that the 
linkage process of an edge-end pixel is limited to 
only one linkage connection, while creating new 
pixel information on the neighbouring pixel 
positions between the edge pixels which are empty. 
Iteratively, new pixel information is produced in 
relation to the corresponding input pixel value Ii, or 
until reaching the value 1 in the binary image. 

This linking process would appear to closely 
resemble the behaviour of the visual path and seems 
to be composed of cellular syncytium. A cellular 
syncytium is an array of intimately connected 

neurons such that contiguous neurons can easily pass 
signals between each other’s compartment 
membranes, possibly via gap junctions [7]. The 
spreading pattern emanating from the edge-end pixel 
continues until the gap is closed. The set of pixels 
thus created is singularly unique and can not be 
duplicated erroneously. 
 

4. DIRECTIONAL SENSITIVITY 
The direction-sensitive information of the pixels 

can be incorporated in the input information of 
corresponding neighbours in the 1-D equation (1), 
and the equation becomes: 
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where     and    denote the directional sensitivity 
function. The input Ii (i=1,2,..,n) applied to 
equations (2) and (3) leads to the output pattern zi 
(i=1,2,..,n) of the automatic linkage process via 
equation (4). 

The input accompanied by direction-sensitive 
information is produced by another algorithm, which 
searches all the pixels in the 2-D image in order to 
designate the specified direction in which each edge-
end pixel should move as in Fig. 1. This search 
locates each edge-end pixel and sets a new direction 
for the pixel. The specified direction for each of the 
detected pixels takes into account the known 
alignment of neighbouring pixels, setting the 
direction of the incomplete pixel to be the opposite 
to that of the neighbouring cell direction. This 
directional information passes on to the neural 
activities given in equation (4) while corresponding 
pixel values act as the input signal for equation (2) 
and (3). The pixel values with this directional 
information are the input signals for equation (4). 
This direction-sensitive algorithm facilitates the 
automatic filling of small gaps in order to complete 
the object boundaries. 

 
 
 
 
 
 
 
 

 
Fig.1 – The eight possible directions for the 

detected pixels. 
 

The direction-sensitive neurons interacting between 
themselves are sensitive to opposite directions. The 
activation consisting of direction selectivity 
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organises relevant edge pixel detection, and this 
results in interaction through neighbouring neurons.  
This similarity- and proximity-based selection 
process serves as an internal representation of the 
linkage process. The edge-end pixel spreads until it 
achieves edge-end pixel correspondence according 
to the directional selectivity indicated by direction-
sensitive neurons. 

The directional sensitivity function, which has to 
accompany the function of equation (4), can be 
implemented in ways other than the proposed 
searching algorithm above. One such method could 
be based on the Chain Coding algorithm by 
extracting some of its features [8] [9] [10]. Chain 
Coding is the process of tracing a pixel-wide line 
starting at an end pixel, finding the next pixel from 
directional information, and continuing in this way 
until the last pixel in the line is found. Chain Coding 
locates end points and uses a single number to 
describe the direction as shown in Fig. 1. 

The function of contour interaction studied in a 
previous project [11], which used receptive fields 
with on- and off-cells presenting direction-sensitive 
neural activities can be also applied for the 
directional sensitivity function denoted in equation 
(4) as another alternative. 
 

5. SIMULATION RESULTS 
The simulation uses the model represented by 

equations (2), (3) and (4) to observe the linkage 
pattern of edge-end pixels. Each parameter 
represented in the model equations influences the 
dynamics of the neural process. The parameters used 
in the simulation were obtained experimentally, 
which are given as: a = 0.1, b = 0.05, c = 0.5, e = 
0.9, g = 105 and θ = 10-3. 

The simulations were performed in order to 
investigate whether the model equations would 
successfully accomplish the edge-linking process. 
The two signals applied to the neural model produce 
the results shown iteratively in Fig. 2 to Fig. 4. 
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Fig. 2 – The linkage process starts in accordance 
with input signals of the two edge-end pixels. 

The value of the input signal is set at 1 as the linkage 
technique applies to a binary image after applying 
other techniques that include edge detection and 
thresholding. Two edge-end pixels are considered 
for 1-D simulations through a series of 60 neurons.  

The new value creation in accordance with the 
input signals of pixels is demonstrated by the 
simulation result in Fig. 2, which shows the initial 
pattern of linkage activation zi and the two inputs Ii. 
One of the iterations during the computer 
simulations shown in Fig. 3 demonstrates the 
behaviour of the linking process. 
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Fig. 3 – The linkage process starts in accordance 
with input signals of the two edge-end pixels.  

There is an increase in activity where the process 
attempts to differentiate between the valid region 
and the spurious ones (Fig. 3 compared with Fig. 2). 
This activity slows down once the spurious ranges 
are identified and the linkage required between the 
edge-end pixels is established. The remainder of the 
process is for consolidation with the process tending 
toward the equilibrium status. 

Fig. 4 shows the completion of the iteration 
process, which successfully performs the edge-
linkage. 
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Fig. 4 – The linkage process for the edge-end 
pixels is completed to same magnitude of the 

input signal. 
The neural response reaches equilibrium after 50 



Mahinda Pathegama, Özdemir Göl / Computing, 2004, Vol. 3, Issue 1, 27-31 

 

 30 

runs in the simulations have been completed. The 
completed linking value of the two joined pixels 
does not exceed the value of the input magnitude, in 
this case 1, after reaching equilibrium. 

The two other spurious processing links shown in 
Fig. 3 are eliminated when the iterations achieve the 
conditions shown in Fig. 4 and the necessary linkage 
is retained. After obtaining the 2-D image displaying 
the new values for the links, the resultant image can 
easily be added programmatically to the initial 
image where linkage was yet to be established. 
 

5. CELL IMAGE ANALYSIS  
Negative-stained electron-microscopic image for 

SARS Coronavirus shown in Fig. 5 (a) was taken as 
a source image to be analysed as an example. The 
cell image analysis procedure is currently being 
implemented using the graphical G-language of 
LabVIEW® program. Simply coupling a camera to 
an electron-microscope the source image acquired 
through a frame grabber will display on a graphical 
user interface created for the cell analysis using 
LabVIEW®. 

The various steps with the image processing 
techniques programmatically control each resultant 
image displayed on the front panel. The steps used 
in this example include Gaussian smooth filtering, 
image buffer to the temporary memory, Sobel edge 
detection, thresholding, inverting binary image, 
morphological operations including the removal of 
small features and image border touching features, 
and thinning operation. IMAQ® functions introduced 
by National Instruments® facilitate the easier 
programming for user-friendly operation. 

The application of edge detection and 
thresholding ultimately reveals discontinuities in cell 
boundaries as seen in Fig. 5 (b). 

 

 

Fig. 5 – The application to the cell image analysis.

(a) (b)

(c) (d)

 
 

Applying the edge-linking technique proposed in 

this paper closes the tiny gaps without distorting the 
cell boundaries, as illustrated in Fig. 5 (c) after the 
thinning operation which produces a cell boundary 
of one pixel width. At this stage, the embedded 
virtual instrumentation platform labels the extracted 
cell object, after which the system automatically 
generates a detailed report with pre-programmed cell 
analysis tasks in a worksheet. The cell image is 
reconstituted without gaps in cell boundaries by 
superimposing the extracted cell object of Fig. 5 (c) 
on the source image of Fig. 5 (a), as shown in Fig. 5 
(d). It is envisaged that benefits for clinicians will 
accrue in future if the images from each step and the 
report generated are transmitted live to clients’ 
computers with embedded security features, situated 
remotely. 
 

6. CONCLUSION 
A novel approach to solve the edge gap problem 

experienced in medical image analysis has been 
successfully developed and tested. The simplicity of 
the proposed technique should make it an attractive 
pre-processing method for boundary extraction tasks 
in cell analysis, and indeed in any image analysis 
task. 
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