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Abstract: We are exploring a weight configuration space searching for solutions to make our neural network with 
spiking neurons do some tasks. For the task of simulating an associative memory model, we have already known one such 
solution — a weight configuration learned a set of patterns using Hebb’s rule, and we guess we have many others which 
we have not known so far. In searching for such solutions, we observed that the so-called fitness landscape was almost 
everywhere completely flatland of altitude zero in which the Hebbian weight configuration is the only unique peak, and in 
addition, the sidewall of the peak is not gradient at all. In such circumstances how could we search for the other peaks? 
This paper is a call for challenges to the problem. 
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1. INTRODUCTION 
With the goal being a realization of associative 

memory by a neural network with spiking neurons, 
we explore the weight space of a neural network in 
which some weight configurations are assumed to 
give the network a function of associative memory. 
Hyper-planes defined on those spaces are sometimes 
called fitness landscapes when we fictitiously plot a 
measure of goodness, or equivalently, a fitness value 
on all the possible points of configuration assuming 
altitude of the hyper-plane constructs a landscape, 
and hence the location of peaks implies the solution 
of our problem. In our experiment of associative 
memory, when we were exploring the fitness 
landscape to try to find those peaks exhaustively, we 
noticed that the landscape was a very unusual one. 
That is, the landscape is almost everywhere a 
flat-land of fitness zero and the shape of the peak 
whose location is already known is more like a mesa 
than a peak. The top is not a pin-point due to a 
synaptic plasticity of the neural network and the 
sidewall is very steep. Therefore, evolutionary 
computations which usually recombine points on the 
hyper-plane as candidate solutions selecting those 
points which perform better than others, would not 
work in this fitness landscape of almost everywhere 
flat-land of fitness zero. This reminds us a classical 
but a seminal experiment by Hinton & Nowlan [1] 
which was proposed to find a peak like a needle in 

haystack. 
In short, assuming that we have many peaks in a 

huge landscape of almost everywhere completely 
flat-land in which only a few of  the peaks are already 
known, our goal is to find a computational method 
that has a capability to search for those unknown 
peaks by employing an information of already known 
peaks. 

In the following three sections, we describe 
Associative Memory, Fitness Landscape, and Hinton 
& Nowlan's experiment more in detail. Then we 
propose a test-function and some results of exploring 
it. 
 

2. ASOCIATIVE MEMORY 
How does anyone stop thinking of something? 
Accidentally. Accidental thoughts. All thoughts are 
accidental. — from “Key to Rebecca'' by Ken Follett.  
 

Associative memory is a memory system in which 
we can store information and recall it later from its 
partial and/or imperfect stimuli. An information is 
stored as a number of stable states with a domain of 
attraction around each of the stable states. If the 
system starts with any stimulus within the domain it 
will converge to the attractor following a trajectory, 
hopefully a short one. This models human memory in 
the sense that, e.g., we can recognize our friend's face 
even without meeting for a long time, or we can recall 
a song immediately after listening to a very beginning 
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part of the song. Hopfield [2] proposed a fully 
connected neural network model of associative 
memory in which a set of patterns is stored 
distributedly among neurons as attractors. Since then 
the model had been fairly well studied for more than a 
decade, and we now know it is not so practical, partly 
due to its small storage capacity, and we study 
another model using spiking neurons instead of the 
McCulloch-Pitts [3] neurons like in the Hopfield 
model, with the goal being to overcome those 
problems and, more importantly, to look for more 
biologically plausible models of human memory. 

Some regions in our brain such as neocortex or 
hippocampus are said to be made up of two categories 
of neurons, that is, pyramidal cells and interneurons. 
Typically, the pyramidal cells communicate with 
each other via excitatory synapses (positive 
influences), while interneurons send signals to 
pyramidal cells via inhibitory synapses (negative 
influences). As Wilson [3] wrote in his book, Marr 
[5] was one of the first to propose this hippocampal 
model involving both recurrent excitation via 
Hebbian [6] synapses and inhibition. In his book, 
Wilson [4] wrote that a single neuron which emits 
spike train when it receives an external stimulus P(t) 
could be modeled by 
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where  Wilson [4] proposed to employ, among many 
alternatives, Naka-Rushton [7] function: 
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M and σ are called saturation and semi-saturation 
constant, respectively, and n is an integer parameter 
for its graph to fit a phenomenon. Here we assume N 
pyramidal cells and implicit number of interneurons. 
We simulate these pyramidal cells by spiking neurons 
which interact with each other using electric current 
via plastic synapses. Pyramidal cells are also 
interacted by interneurons by global inhibition. To be 
more specific, stimuli to one pyramidal cell are given 
from all the other pyramidal cells via synaptic 
strength, as well as interneuron cells whose number is 
reduced to only one here for the sake of simplicity. 

The synaptic strength from pyramidal cell j to i is 
denoted as wij and all the inhibitory synapses from 
interneuron are assumed to have a value g. Then 
stimulus to the i-th pyramidal cell Pi is described as 
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where (·)+ means that we use the value if and only if 
inside the parentheses is positive and zero otherwise. 
Following Wilson [4], we experimented with σ = 10, 
M = 100, and n=2 in Eq.(2). 

Thus, our equation of spiking ratio of the i-th 
pyramidal cell Ri with the spiking ratio of the 
interneuron G is given as 
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where, τR is set to 10. Note that wii (i = 1, …, N) 
should be set to all zero. 

In order to encode N-bit binary patterns using N 
spiking neurons, we use firing-rate of a neuron within 
certain time window which expresses binary number 
according to whether the rate exceeds a threshold or 
not. 

In what he calls CA3 network in his book, Wilson 
[4] employed 256 pyramidal cells so that these cells 
represent a pattern constructed by 16×16 array of 
pixels. The network also incorporates one 
interneuron cell to provide pyramidal cells a feedback 
inhibition. The task of the network is to recognize 
four given patterns from its noisy input. Each of the 
four patterns is represented by 32 active cells plus 
other 224 quiet cells. Network has learned to 
recognize these four patterns by modifying the 
synapses according to the following what might be 
called Hebb's [6] rule. 

 
wij = k •sgn(Ri – 0.5M) •sgn(Rj – 0.5M)       (5) 
 

where k is set to 0.016, M is a saturation level in 
Eq.(1), and sgn(x) is equal to 1 if x>0 and 0 otherwise. 
The equation is called Hebb's rule in the sense that wij 
will be modified if and only if both the neuron i and j 
should be activated. Also note that Eq.(5) is applied 
only if the previous value of wij is 0, otherwise, wij 
will remain intact. 

A noisy input of a pattern is constructed by 
randomly picking up about one-third of the active 
cells of the selected pattern with adding them other 20 
quiet cells, also chosen at random, after turning them 
active. Then one of these four patterns is given to the 
network, that is, network starts the dynamics with the 
pattern as the initial configuration of its neurons' state. 
Network updates the state according to Eq.(4). The 
dynamics is observed during a total of 100 ms 
(assuming step of dt of dr/dt to be 1 ms), with the 
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noisy input being continued to be fed for the first 20 
ms. 

 

3. FITNESS LANDSCAPE 
The hill on the south side of the town sloped steeply to the 
river, here. On the west there was a long ridge which fell 
gently to the plain. — from  “Pillar of the Earth'' by Ken 
Follett. 
 

The concept of the fitness landscape was first 
introduced by Wright [8] to study biological 
evolutionary processes. Since then, this concept has 
been used not only in evolutionary biology but also in 
chemistry, physics, computer science and so on. 

In chemistry, for example, a molecule can be 
represented as a string of N letters with each letter 
being chosen from an alphabet of size k (see Macken 
et al. [10]). Twenty amino acids (k = 20) for proteins 
or four nucleotides (k = 4) for nucleic acids can be 
considered as examples of the alphabet. The kN 
possible combinations of the letters construct a 
configuration space of the string. Then, for example, 
the free energy of RNA folding into secondary 
structures (see Fontana [11]) or the ability of peptides 
to bind to a particular substrate to catalyze a specific 
reaction (see Maynard Smith [12]) is assigned as a 
fitness value to each configuration. 

In physics, the Hamiltonian energy of Ising spins 
defines a fitness landscape on the configuration space 
of N spins, where each spin takes the value either 1 or 
-1 (k=2). Bray and Moore [9] argued about the 
number and distribution of meta-stable states (local 
optima) of the Hamiltonian energies. 

To explore these fitness landscapes, we need a 
rule by which a point in the space moves to one of its 
neighbors. Then, consecutive movements of a point 
to the neighbors form a walk on the landscape. 
Macken et al. [10] used random point mutation that 
changes a single letter in the string to specify 
neighbors of the string. Then, by sampling points 
along an “evolutionary walk” in which point moves 
to the firstly found fitter neighbor, they studied the 
statistical properties of the landscape defined by the 
chemical affinity of antibody for  antigen in immune 
response. Weinberger [11] used two different walks:  
“gradient walk”  in which the walker steps to the  
best of its neighbors and “random adaptive walk” in 
which the next step is chosen at random from the set 
of better neighbors, to investigate the Kauffman's NK 
landscape [13] which is a model formulated in more 
general form. 

We extend the concept of the discrete fitness 
landscape to a continuous one. Namely, a capability 
of a fully-connected neural network to store a set of 
bipolar patterns (each bit is either 1 or -1) as 
associative memory assigns fitness on the real-valued 

synaptic weight configuration space (k = ∞). A 
walker moves to its neighboring point determined by 
Gaussian random mutation. 
 

4. NEEDLE IN HAYSTACK 
One day I’d cooked soba. Great! I tried teuchi udon the 
next day and it was also great. It is really easy to make 
such delicious dishes just from flour or buckwheat flour. 
The main thing is sauce, however. It is either tasty or not. 
Nothing in between. — Edward Venskovich (Personal 
Communication). 

 
The problem Hinton & Nowlan [1]  proposed is to 

search for only one configuration of 20 bits of one 
and zero, that is, the search space is made up of 220 
points all of which except for one point are assigned 
fitness zero. Only exactly one point, for example, 
(11111111110000000000) is assigned fitness one. 
That is why this is called search for a needle in a 
haystack. See Fig. 1 bellow. 
 

 
Fig. 1  A fictitious sketch of fitness landscape of a 

needle in a haystack. The haystack here is drawn as a 
two-dimensional flat plane of fitness zero. 

It seems impossible to solve this if we use a simple 
genetic algorithm, since usually it recombines two 
genotypes whose phenotypes are a little better than 
others, and in our circumstance almost all genotypes 
perform equally badly. Any hill-climbing would not 
seem to work. Hinton & Nowlan [1], however, 
exploited lifetime learning of each individual. That is, 
chromosome is made up of genes of which about 25% 
are “1”,  25% are “0”, and the rest of the  50% are “?”. 
Within one generation all the “?” positions are 
assigned one or zero at random and fitness is 
evaluated, which is called lifetime learning of each 
individual. Each individual repeats the learning 1000 
times in its lifetime. If it reaches the point of fitness 
one at the n-th trial, then the degree to which learning 
succeeded is calculated as: 
 
                            1+19·(1000 - n)/1000.                 (6) 

 
Hinton & Nowlan's model is a sort of 

gedanken-experiment to study how the lifetime 
learning affects an evolution, that is, the Baldwin 
effect. The location of the unique solution (whose 
fitness is one, while all others' are zero) is assumed to 
be known before a run, though it is not of the case in 
real world problems.  
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5. TINY FLAT ISLAND IN HUGE LAKE 
It's Spring Cleaning time again ... for my brain. Below, a 
cluster of random follow-ups, postscripts and observations 
to tide you over until the spring weather actually turns 
springlike. — David Pogue from New York Times, 10 Apr. 
2003. 
 

Hinton & Nowlan's experiment is valid 
under an assumption, as they wrote, that phenotype 
can recognize when it has achieved the perfect fitness 
during its lifetime learning. This usually does not 
hold when it is applied to solve our real world 
problems. If the phenotype recognizes that it reaches 
the solution, all we need is to check its genotype to 
know the parameter configuration which give the 
phenotype to achieve its goal and no need for the 
computation to proceed. Without the assumption, we 
could not  explore this specific fitness landscape 
searching for the goal.  Hence, here, we call for 
challenges to this type of problems and we proposed a 
test function for the purpose.  This is essentially 
identical to the Hinton & Nowlan's fitness landscape, 
but more flexible to control its complexity. 

Test-function (Tiny Flat Island in Huge Lake) 
Assuming a n-dimensional hypercube all of whose 
coordinate xi (i=1, …,n) lies [-1,1], find an algorithm 
to locate a point in the region A whose coordinates 
all lie [0, a] (a ≤1). 
 

The target of the search is a hypercube in the 
n-dimensional Euclidean space, and the size of the 
hypercube and complexity of the search are 
controlled by changing a and n, respectively. When 
we see the search from the fitness landscape point of 
view, this is like a search for a tiny flat-land of 
altitude one in a huge flat-land of altitude zero. When 
n=20 and a=1 it is equivalent to Hinton & Nowlan’s 
needle in haystack, and if necessary, we can make the 
needle tinier by decreasing the value of a. 
      Or, if we have, for example, multi-agent system or 
artificial immune system in mind to make them this 
kind of search, we might modify this test-function as 
giving the agents an information of, say, a 
hyper-cube whose coordinates all lie [-0.1, 0.1] and 
then asking them to search for two regions each of 
whose coordinates all lie [-0.9, -1] and [0.9, 1]  
respectively.   
 

6. EXPERIMENTS 
Needle in Haystack. We were forced to modify 

the Hinton & Nowlan's experiment because when 
individuals are created at random, they usually did 
not achieve fitness one during 1000 times of lifetime 
learning. Hence, we create individuals one by one at 
random and each time we make it learn 1000 times, 

and if it reaches the fitness one we put it in the 
population of the first generation, and this is repeated 
until those individuals fill the population. In other 
words, a run starts with a population of individuals 
who are within 1000 steps from the needle. One 
example of run shows we have to try 118,499 times 
randomly to obtain such a population of 100 
individuals.  

  The result mentioned above is only within the 
first generation. If we proceed the evolution under the 
condition that individual knows whether it reaches 
the fitness one while we observer cannot know what 
is going on to genes whose allele is “?”, we expect the 
number of “?” genes decreases as the evolution 
proceeds, and eventually we obtain the target 
chromosome which is made up genes ”1” and “0” 
alone. See Fig. 2 bellow. 
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Fig. 2  An evolution of search for a needle in a haystack 

from the experiment of Hinton & Nowlan [1]. 

Tiny Flat Island in Huge Lake. Thus, we now 
know that although the Hinton & Nowlan's 
experiment is elegant method to see lifetime learning 
enhances the genetic search, that is, the Baldwin 
effect works in our evolutionary computations, while 
in reality we have not found so far an algorithm to 
solve this type of a needle hidden in a haystack. Then 
we proposed a test-function in the previous Section, 
and here we show results of applying both a simple 
random search, which is not even a random 
hill-climbing, and the lifetime learning, the one 
proposed by Hinton & Nowlan but only within one 
generation, to the test function. 

Simple random search. We set a = 1 and study if 
a randomly created chromosome with length n will be 
in the domain A or not (See Eq.(4), that is to say, a 
random search looking for points in A. As n becomes 
large, search becomes difficult and eventually when n 
= 20 we cannot find any such point within a 
reasonable time, say, in 24 hours. No wander Hinton 
& Nowlan adopted the chromosome of length 20! Fig. 
4 shows the result of how many chromosomes were 
on A out of 10,000 randomly created ones. 
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Lifetime learning. Here, we also create a 

chromosome at random one by one, but we study if 
each of them reaches the domain A after 1000 times 
of learning. In Fig. 4 we plot how many 
chromosomes we have to create until we find the 
individual who reaches the goal within 1000 times of 
learning. We see the results are a little better than the 
above mentioned random search. 
 
 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 5 10 15 20 25 30

N
um

be
r 

of
 S

uc
ce

ss
fu

l I
nd

iv
id

ua
ls

Lengh of Chromosome  
Fig. 3  Number of individuals who happen to be in a 
point in the target region A out of randomly created 
10,000 individuals. 
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Fig. 4  Average Number of random individuals needed 
to find a one who succeeded in reaching the target via 

1000 times of lifetime learning. 

7. SUMMARY 
We came across a very difficult problem while we 

made experiments with our associative memory 
system using a neural network with spiking neurons. 
We have already known one weight configuration 
which give the network a function of associative 
memory — Hebbian weights. We conjecture we have 
other such weight configurations. Then we explored a 
fitness landscape defined on weight space in which 
the Hebbian weights locates, and we observed that 
the Hebbian peak in the fitness landscape is like a tiny 

flat island in a huge lake. The lake is too huge to get a 
bird's eye view of the whole lake and we have never 
been able to see other islands. Hence we have 
proposed in this paper a test-function which is a 
simplified version of our problem and we can easily 
control the difficulty of the problem with the 
structure being essentially the same. This reminds us 
of the Hinton & Nowlan's classical experiment of 
searching for a needle in a haystack in which 
individual's lifetime learning was employed to learn 
if the Baldwin effect works in our computational 
evolution. We have found that the lifetime learning 
also somehow works in the proposed test-function if 
we compare it to a simple random search. However, 
we still doubt more or less if we can apply the 
Baldwin effect as it is to a real world problem. So, 
this paper is a call for challenge proposals of the 
methods to solve our test function. 

In short, not so short though, in a huge landscape 
of almost everywhere completely flat-land,  assuming 
we have many peaks only a few of which we know, 
our goal is to find a computational method that 
searches for the unknown peaks, by employing an 
information of those already known peaks. 

As a candidate of these methods, we now thinking 
of  anomaly detection by artificial immune system.  
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