
Jean-Jacques Mariage / Computing, 2004, Vol. 3, Issue 1, 58-65

58

LEARNING TO TEACH TO NEURAL NETWORKS

HOW TO LEARN WELL
WITH SOH, A SELF-OBSERVING HEURISTIC

Jean-Jacques Mariage

CSAR research group, AI Laboratory, Paris 8 University, 2, rue de la Liberté, St Denis, France, Cdx 93526

jam@ai.univ-paris8.fr

Abstract: In this ongoing research, we present a Self-Observing Heuristic (SOH). SOH is a hybrid computing method.
It roots in natural selection and optimization techniques to provide an environmentally driven evolutionary computation
scheme, capable of autonomic cumulative learning. Our aim is to realize an adaptive learning system based on neo-
Darwinian evolution of neural units. We proceed in two complementary directions. On one hand, we try to automati-
cally compute the costly tuning phase of the configuration and learning parameters of neural networks (NNs). On the
other hand, we use meiosis cellular growth as a natural computation technique to bypass palimpsest effects observed
when adding new knowledge to previous one. The main idea is to build an event guided growing competitive NN that
develops while it learns to tune other NNs' parameters. Other NNs can be models more or less similar  or even iden-
tical  to it. The system adapts itself, learning to teach other models how to learn well.

Keywords: – adaptive structure, cumulative learning, emergence, evolutionary architecture, holism, neural networks
growth, self-observation.

1. INTRODUCTION

Most of the current learning algorithms suffer
from limitations about evolving capabilities. Self-
organizing structures are nevertheless well known
processes that, among a large variety of domains,
appear in physics and neurobiology [11, 12, 19, 20].
One of the most famous examples is the Belousov-
Zhabotinskii reaction. Those processes show that,
from particles to galaxies, spontaneous emergence of
natural self-organizing structures is quasi universal.
Those structures are autocatalytic. More over, they
are persistent, resilient and self-propagating for a
while, after which they vanish. They rely on a three
state cyclic evolution (Active, Inactive, Quiescent
(A, I, Q)) and they generate the emergence of com-
plex forms, the characteristics of which are not en-
coded at the elementary constituent level.

Considering evolutionary learning in terms of
self-organization heuristics leads to postulate that
connectionist representations are obtained in an as-
cending constructivist way. Semantic progressively
emerges from relations between elementary con-
stituents inside the model on one hand and between
the model and the input data manifold on the other
hand. A learning system thus appears as a recursive
structure relying on two kinds of feedback loops.

One kind is internal to the system. The second is
external, between the environment and the system.

Learning procedures are usually related to super-
vised or unsupervised learning. We here focus on the
constraints imposed by real-time continuous data in
possibly infinite changing and noisy environments
(what we call on-line learning) versus delayed data
carefully prepared for laboratory experimentation
(i.e. off-line learning). Real-time conditions forbid
strict supervised learning. On the other hand, tech-
niques like reactive training or reinforcement learn-
ing are situated in between supervised and unsuper-
vised learning. They allow a system to pursue a tra-
jectory indicated in the data space by changing the
input-target pair. Dual reinforcement learning ex-
tends the procedure to two nets, one learning to
evaluate the quality of the other's learning.

Data driven programming and error measures are
the only way to free the system from the human in
the loop. The system can then go its own sweet way,
self-supervising by regularly testing its efficiency
and reverting to learning mode when necessary.

NNs are very complex processes, which develop
their structure in time. From real-time process con-
trol and analysis, we can set out that, when faced
with too complex processes, usual learning algo-

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

Jean-Jacques Mariage / Computing, 2004, Vol. 3, Issue 1, 58-65

59

rithms reach their limit. It thus becomes necessary to
resort to more powerful methods. We make the hy-
pothesis that, among the existing NN algorithms,
there is a sufficient set of primitives from which a
holistic constructive programming scheme [23, 25]
can emerge, by means of evolutionary techniques.

We have chosen the Self-Organizing Map (SOM)
model [6] because, as attested by a large amount of
research publications, the model itself is currently
evolving, towards adaptive variants. Moreover, it
offers a visual interface of remarkable quality with
the data space in an either familiar and accessible bi-
dimensional topologically ordered representation.
And last but not least, its number of configuration
and learning parameters to tune is rather important.

Adaptive topologies are of crucial interest to
automatically determine the size of NNs. Oversized
nets lead to prohibitive training time, while under-
sized nets can't find the data space structure. Around
back-propagation architectures, efficient growing
and pruning methods allow to find a near-optimal
number of hidden units. A review has been made in
[1]. For SOM, things become more difficult because
of topological ordering constraints in the mapping it
performs.

The following of this paper is organized in three
parts. We first investigate the main properties of the
SOM algorithm and its evolutionary growing vari-
ants. From that frame, in a second part, we draw out
a self-observing heuristic as a minimal system capa-
ble of adaptive learning. In the last part, we extract a
minimal set of properties, necessary to obtain the
emergence of Darwinian evolution among elemen-
tary constituents, only constrained locally by a few
deterministic rules.

2. SOM AND RELATED EVOLUTIONARY

VARIANTS
SOM is a winner take all (WTA) unsupervised

learning algorithm. The convergence procedure is
iterative. Units are arranged on a regular, usually bi-
dimensional, grid. A neighborhood function N(.),
guided by the lattice, acts as a dissipative structure.
It spreads neural activation from the best match unit
to a surrounding active area. This mechanism is re-
sponsible for a local ordering process, which is the
key to a global convergence of the algorithm to an
ordered solution [5, 8]. Various shapes exist for N(.).
Nwidth (the neighborhood size) regularly decreases as
a function of time. The intensity of spreading activa-
tion can be a function of inter-units distance [21] or
uniform [6].

As regularly reminded by Kohonen [5, 8], SOM
learning is divided into two training stages. In a first
(crude) self-organization phase, clusters of units find
their place and density (reflecting their intra and in-

ter relations). In a second (fine tuning) phase, the
algorithm converges on the basis of the previously
extracted structure of the data classes. To obtain an
ordered mapping of good quality, a few conditions
are necessary. The initial Nwidth must be very large in
the early training phase1, and stop with one ring of
neighboring units at the end of the process. Kohonen
[7, p. 4913] states that “The clustering effect is more
complex in the case where the width of the kernel is
much smaller than the width of the network”. In the
convergence phase, Nwidth can be significantly re-
duced or eventually kept constant. Parameters need
to be manually tuned for the two training phases.
The initial size of the neighborhood considerably
increases the cost of the learning procedure. It thus
becomes of prime importance to precisely evaluate
the number of units.

To try to overcome these problems, growing
variants of SOM have been designed, either con-
strained on a geometrical structure, or free on a
graph. The construction of the map space then be-
comes an evolutionary process, only driven by the
data distribution. We won't describe those architec-
tures in details here, for they are now well known
and frequently used (for a survey, see [13 or 14]).
They bring the considerable advantage of automati-
cally specifying a very delicate interlinked set of
parameters2.

Despite this, some of them present major draw-
backs. Many parameters remain to be manually
specified. Some variants even introduce additional
ones, such as the maximum number of units allowed
[2, 3, 4, 24], connection and disconnection thresh-
olds [2], a fixed number of adaptation steps, a re-
quired precision [4] or a growing speed [22], that
seem at least as tricky to operate as the standard
model's parameters. Except for [22], the growth
process needs to be controlled by means of the usual
trial and error intuitive procedure.

SOM performs a dimensionality reduction from
an n-dimensional input data space into an internal
bi-dimensional memory space. Reduction provides
efficient abstraction for the resulting mapping. The
counterpart is that neighboring clusters can be
grouped together as a consequence of an inappropri-
ate dimension selection for the map instead of re-
flecting an implicit relation detected in the structure
of the data manifold. For high dimensional data
spaces with unknown distribution, such misclassifi-
cation problems are not detectable.

Unlike SOM, a part of its evolutionary growing
variants provide a mapping that is isomorphic to the

1 i.e. covering at least 30% to 50% of the total number of units.
2 That is the shape and the dimension of the map, its number of
units, and sometimes even the type of lattice, which determines
the neighborhood density.

Jean-Jacques Mariage / Computing, 2004, Vol. 3, Issue 1, 58-65

60

data space. They are exact Topology Representing
Nets (TRN) [17], and thus, the mapping obtained
suffers from a lack of abstraction and topological
ordering loss. A few variants [2, 6] keep the grid
lattice to drive the growth process in a bi-
dimensional space. They maintain the convenient
visualization interface offered by SOM and improve
it by visualizing the frontiers of the data classes.
Those, the structure of which is free on a graph loose
either the topological ordering and the visualization.

However, experimentation with growing variants
of SOM have led to a gradual suppression of the
global parameters in evolutionary topological map
algorithms and to localize the whole set of parame-
ters to the unit.

3. SETTING THE FRAMEWORK
SOH relies on a dual learning procedure between

NNs. It is similar to the Dual Heuristic Programming
(DHP) [10], but with three main differences. First,
the only assumption we make about the actor model
is that we need a standard unsupervised primitive
extractor model (SOM, Adaptive Resonance Theory
(ART), Neo-Cognitron, etc.) Second, the critic net is
an SOM-based evolutionary (incremental and adap-
tive) algorithm. Third, we try to use the actor-critic-
actor loop to automatically extract, encode, and
make use of learning primitives detected in the actor
model.

The system evaluates the quality of the learning
process other NN models are performing. To let it
look at the way NNs learn, we give it the time
course of their parameters as context vectors like in
the temporal SOM or in RNNs. The associated data
are organization measures of the observed models.
While SOH evolves, its structure develops to reflect
the universe it is exposed to. Its world being learning
algorithms, defined by the relation between their
parameters and organization measures, it thereby
learns to identify good learning processes. In turn,
since it learns to appreciate the quality of learning in
other models by considering the time course of their
configuration parameters, it learns by the same way
to tune the learning parameters of basic models. Fur-
thermore, as SOH learns to teach to classifiers that
work as extractors of primitives too, it learns to ex-
tract the learning invariants it finds in other models.
Once trained, SOH is able to recover the context
from the data and vice versa.

4. BASIC CELL PROPERTIES
Constraints on intercellular activity are limited in

number. They settle through afferent and efferent
connection beams. A weight vector figures the in-
coming synapses of the cell, or its receptive field.
Outgoing synapses are a dissipative structure that

spreads activation in the neighborhood. In order to
capture possible hierarchical relations between pa-
rameters, SOH is tree structured. We explicitly en-
dow the cell with a quiescent state. Its activation
function has three possible states: Active, Inactive,
Quiescent (A, I, Q), necessary to obtain the emer-
gence of self-replicating and resilient forms. Cellular
death prevents from overcrowding. The selection of
the active element results from competition. All the
units, provided they are not in quiescent state, have
equal chances to be selected. At every moment,
there exist a finite number of active cells. Internal
and external retroaction loops make the structure
recursive and store a trace of the past states in mem-
ory. The whole configuration parameter set is local-
ized at the unit level.

Insertion and suppression heuristics control the
system growth and equilibrium. The process is very
brittle [2, 3, 4]. It must find a compromise between
stability and plasticity. The various ways mentioned
in the literature to deal with this problem rely on the
activation frequency of the units and on a distance
measure between their weight vectors.

Duplication emanates from a representation con-
flict. A cell duplicates when an activity bud devel-
ops, indicating a local perturbation, where relations
with the environment exert a pressure. The bud
shows that too much activity accumulates over the
same cell and claims for its repartition (the resource
redistribution according to B. Fritzke). Three kinds
of perturbation are mainly used in the SOM-based
evolutionary architectures. Growing Cell Structure
(GCS) considers the triggering frequency, Bungy-
SOM the sum of the triggering errors, while Incre-
mental Grid Growing (IGG) and Dynamic Cell
Structure (DCS) use the sum of the distances to the
entries that trigger the cell. Depending on the case, a
new cell connects to all the neighbors of the cell it
splits from, to the single error node (IGG), or be-
tween the most frequently activated unit, and the
neighboring cell with the most distant memory
(GCS). The new cell inherits from the common sen-
sibility to the activity that induces this outgrowth. Its
memory is initialized as if it had been part of that
cell cluster since the beginning of learning, with the
mean of the memory vectors of all its neighbors.
What we call meiosis duplication. The new cell thus
grabs a trace of the sensitivity to the whole features
gathered in the neighborhood tree. The splitting cell
(the old one) becomes inactive for a while before
turning to the quiescent state, from which it gradu-
ally recovers sensibility. This transitory state creates
an idle time, which drives the activity transfer onto
the new cell. The cell specializes by cooperative and
competitive interaction with the related elements. It
connects to, or reinforces its connections with, any
cell sensible to the same activity. It separates from,

Jean-Jacques Mariage / Computing, 2004, Vol. 3, Issue 1, 58-65

61

or decreases the strength of its connection with, any
element sensible to a different activity.

In the literature two main ways of implementing
the intermediate refractory state are adopted. Either
there exist an explicit disposition in the activation
rule, or the balance between excitation and inhibi-
tion processes is assumed to implicitly induce the
same effect. In the former, a quiescent cell becomes
active again after several selection attempts during
its resting time, as in the GCS. In the latter, inhibi-
tion is considered to be equivalent to a kind of non-
local refractory state. Transition between the states
A, I, Q is continuous. A brief absolutely quiescent
period immediately follows the active state. The
next state is a relatively refractory phase where cell's
excitability is reduced. That is the quiescent state
succeeds those two ones. The competitive version of
the Hebb rule, due to Martinetz [15], to compute the
lateral connections strength, builds up such a
mechanism.



 ≤≤≥=+

 0
,,1,.. .)1(

otherwise
NlkyyyyifyyC lkjijit

ij (1)

where () ii wxRy −= is the response of the
ith unit for an input vector x. R(.), the mapping func-
tion, R → [0, 1], is continuous, and monotonically
decreasing.

In case of non-stationery data distributions, the
rule is modified to let the connection strength de-
crease until it vanishes. A decay constant α, and a
suppression threshold θ, such as 0 < α, θ < 1 are in-
troduced.







<
≤≤≥

=+

 , 0

,,1,.. 1

)(

)()1(

otherwiseC
Cif

Nlkyyyyif
C

t
ij

t
ij

lkji
t

ij

α
θ (2)

For off line learning procedures, with a learning
set T of size T , α takes the value

 T θα = (3)

The cell is endowed with a lifetime. It is the fre-
quency of its exchanges that keeps it alive. It can be
the node activation frequency as well as triggering
conflicts or neighborhood commitments. Units that
have not been selected for a (parametrical) while
degenerate and disappear. Every cell manages its
own neighborhood, which evolves by its own. It has
its own learning rate. One cell can learn faster than
another or it can not learn at all. Most of the archi-
tectures examined in [13 and 14] depend on a regu-
lar lattice of units and fix those two parameters by
keeping them constant. Fritzke's GCS, [4] maintains
one ring of neighbors and two different learning
rates, one for the best match unit, and another for the
neighbors.

The unit has a tree-structured neighborhood, al-
lowing it to capture multiple influences with com-
plex structure (lists, trees, graphs). Neighborhood
role is crucial. It must establish kernels of connec-
tions to serve as suitable bases for unit clusters to
develop and specialize. To be efficient, the chosen
function must allow clusters to develop dense con-
nectivity. The global growth of the system requires a
neighborhood either of variable size and reduced in
the early learning. On one hand, clusters encode
categories or functional abilities. They must struc-
ture according to the density of the data forms they
represent and to their affinities with the other
groups. On the other hand, the system gradually
builds itself from one — or a few — unit(s) that split
when needed. The evolution of the neighborhood
cannot follow the particularly efficient regular de-
creasing scheme T. Kohonen adopted for the SOM,
which remains the prime example as far as
neighborhood is concerned.

We thus propose a connective neighborhood, lo-
cal to the unit, based on an algorithmic dynamical
dissipative structure relying on a free graph. To al-
low a saw tooth evolution of the neighborhood, trees
of sub-trees (algorithmically Steiner partial minimal
spanning trees, hereafter denoted STs) progressively
grow or shrink and connect or disconnect on the fly,
during learning. An ST is the optimal diffusion tree.
The algorithm adds new branching nodes to the
neighborhood tree — not to the underlying graph —
and deletes costly edges to optimally cover relational
sub-manifolds on graph structures. The resulting tree
is built in such a way that it been an MST of para-
metric depth and cardinality.

We denote a graph G as a set of vertices V and
edges E.

EvvVvVvEVG jiji) ,(, tq.) ,(∈∈∃∈∀= (4)

The vertices are points in a vector space, defined
on ℝn. Learning can be considered as a graph match-
ing process between different spaces. The learning
system (the network) is a graph in the weight space,
where n-dimensional memory vectors represent the
coordinates of the nodes. This graph, internal to the
net, must develop its structure in order to reflect the
graph of the relations that exist in the data space.

The distance between two points a and b is ex-
pressed by an Lp metric denoted

p
ba− where p

denotes the chosen distance metric.

In the rectilinear (L1) metric,

 1 baba yyxxba −+−=− .

In the Euclidean (L2) metric,

Jean-Jacques Mariage / Computing, 2004, Vol. 3, Issue 1, 58-65

62

2
222) () (baba yyxxba −+−=− .

The length of an edge e = (a - b) is bae −= .

 The length of a tree, Γ is ∑
∈

=
Гe

eГ .

We consider a non oriented graph G = (V, E), and
dweights(.), a non negative cost function, expressed in
an arbitrarily chosen metric on the edges of G. For
every subset S of vertices of G, a Steiner tree T for S
is a sub-tree of G connecting all the vertices in S.
The cost of the ST is the sum of the individual costs
of its edges. An ST is minimal if its cost is minimal
among all the STs.

An ST presents very interesting properties. First,
it provides automatic creation of neighboring nodes,
to supply the system needs, even trees to connect
forests. Second, in case of unlimited number and
complexity of the connection structure, computation
of the exact partial ST is NP-complete. We must
thus resort to approximate cost reducing methods,
thereby introducing fuzziness in the learning process
and possibly compensate the drawback of exact to-
pology representing nets using the competitive Hebb
rule. Third, the tree being parametric, it allows a
saw-toothed evolution of the neighborhood size,
which appears to be a fundamental condition for to-
pology ordering preservation on growing nets. Fi-
nally, when topological ordering is under way, the
process is not very brittle. It is not necessary to re-
compute the neighborhood every time step. The pe-
riodicity can be drawn by the system itself, consider-
ing an ordering measure of the topology. A compari-
son made by D. Polani [18] shows that the µQH
measure provides acceptable results.

5. ALGORITHM DESCRIPTION
The literature mentions two ways to implement

the internal loop, which memorizes anterior states.
Passed activity is incorporated to the actual activity
by mean of either a context input vector or dual ba-
sic cells.

The external loop is an adaptive process inspired
by Darwinian natural selection. Units creation and
suppression mechanism drives the net towards adap-
tation to the data evolution. The cooperation and
competition schema completes it. From the unit to
the whole structure, as well as for clusters and sub-
structures that make it up, the constituents perma-
nently struggle for survival. A higher-level loop is
related to error measure. By that way, the system is
exclusively events driven programmed.

To prevent from the intrusion of any omniscient
entity, learning is un- or self-supervised. The struc-
ture grows freely, driven by the data distribution.

Events that generate change in the error evolution
regulate alternation between learning and tests.

Error allows to verify the quality of the conver-
gence, automate the tuning of some parameters and
to find a stopping criterion. With certain algorithms,
a global error is enough (statistical methods, MLP).
Others (SOM) require a more sophisticated error
measure because of the neighborhood links.

Local error points out an environmental pressure,
which generates an accumulation of activity. It indi-
cates that some data forms compete around conflict-
ing representations. Either the same unit attracts too
many forms, or several units are sensitive to the
same form. Data vectors compete because, on one
side, they share enough common features, but on the
other side, they remain sufficiently different for be-
ing attracted by various prototypes.

Global error evaluates the convergence quality.
This estimation can be used to determine a stopping
test or to automatically tune configuration parame-
ters as the learning rate or the neighborhood size.

A sudden increase of the quantification error in-
dicates a rarely met state. The observing system can
then automatically re-enter in learning mode.

Learning ends when the criteria chosen as stop-
ping test no more significantly evolves. In realistic
learning simulation conditions, the system must al-
ternate learning trials over finite clean data sets — in
order to create basic receptive structures — as well
as over potentially infinite noisy data streams, ap-
plied in real time.

With finite learning bases, the simplest test com-
pares the average error E, over the input data vectors
set at the current iteration, to a threshold. The error
is computed between the ith input and the jth trigger-
ing unit memories.

() NjdXE
X

i

t
ji

j

t , ,1 , , argmin 1
1

)()(L== ∑
=

wx (5)

where X is the learning vectors number, N the
units number, and d(.) a distance measure, ex-
pressed in a chosen metric.

The stopping criterion S is a threshold, chosen
arbitrarily small. It is compared to the ratio between
the error measures, at the current time iteration (t),
and at the previous one (t-1).

S
E

EE
t

tt

<
−−

)(

)()1(

(6)

For a more accurate observation, the average er-
ror decline is considered since the last node creation.
New nodes are added if the error does not decrease
quickly enough during a sliding time window [1].

Jean-Jacques Mariage / Computing, 2004, Vol. 3, Issue 1, 58-65

63

Tt

twtt

E
EE δ<− −

*)(

)()(

 (7)

where tw is the time window width, t* the itera-
tion following the last node creation, and Tδ is a
user defined trigger slope parameter. The process
can be automatically settled by setting Tδ to half the
smallest inter-errors difference.

{ },0 ji ssmin −=<δ (8)

with 0>− ji ss and Nji ≤≤ ,1 . The error being
considered as insignificant when

21

)()1(δ<∑
=

−
n

i

tt
ii xx (9)

xi being the activation state of the ith unit.

In SOM, the learning rate,)(tα , 1 0)(<< tα is a
global parameter. It decreases monotonically as a
function of time. A linear evolution in 1 - (t / Ttotal)
is generally chosen, t being the current iteration in-
dex, and Ttotal the number of time steps. Kohonen et
al. [9] suggest, as a second choice, an inverse func-
tion of time in C / (C + t). C being a constant with a
value of C = Ttotal / 100. We adopted the same
scheme, with Ttotal being the width of the current
sliding time window.

The neighborhood radius self-tunes. Any new
cell jnew sets the initial size of its neighborhood.
Among all the other cells, units the activation state
of which is lower than a threshold are part of its
neighborhood. Possible thresholds are the mean of
the activation values or the median value.

new
N

j
new jjjActNjActGjjN ,)(1)()(

1
≠≤∈∀= ∑

=

 (10)

The amount of time elapsed since the last
neighborhood update defines a confidence parame-
ter. It linearly decreases in local_itN1/ , where itlocalN _
is the number of time steps. Old neighborhoods must
be recomputed. In [5], tests carried out with a mini-
mal spanning tree neighborhood, show that a re-
computing frequency every 10 to 100 iterations is
enough. A cell creation thereby initializes a
neighborhood that is large with regard to the number
of units, and sets its confidence to 1.

The probability density of the regions in the data
space is generally unknown. It corresponds to the
receptive field of the cell — its triggering stimuli —
i.e. to the Voronoi region in the data space the center
of which is the current triggered cell. It can be esti-

mated by the cell's triggering frequency (Fritzke [4],
p. 1446 & foll.). Beyond bi-dimensional universes,
computing the Voronoi tessellation becomes very
complex. It is however possible to “estimate the vol-
ume of the Voronoi regions by the mean length of
the edges cl emanating from the cell c in an n-
dimensional hypercube”.

As stated in [4], the neighborhood is the estimate
volume of the Voronoi cell, i.e. the mean length of
the edges.

∑
∈

−=
cNi

iccc Ncardl)(1 ww (11)

Remotest nodes from the best match unit are de-
leted from the active neighborhood, not from the
map. We simply compare their activation values as:

)(
)()(

bmuAct
bmuActjAct − (12)

The number of vertices in the neighborhood,
card(Nc(.)), thereby automatically increases or de-
creases. One way to heighten the saw tooth evolu-
tion of the neighborhood is to affect the slope of the
function by mean of a cooling schedule ranging be-
tween the mean and half the mean.

When a cell becomes the best match unit its acti-
vation frequency)(t

bmuτ is incremented. For all the
other units, it is decremented by an amount of

1 0 , <<δδ .

1)()1(+=+ t
bmu

t
bmu ττ (13)

bmuit
i

t
i

t
i , .)()()1(≠∀−=+ τδττ (14)

New units' weight vectors are initialized accord-
ing to :









+

+
= ∑

∈)(

)1(

1
newNi

inew

ccNcard
w wx (15)

where))((newNcard c is the neighborhood of the
cell from which the new cell splits from.

Following [22], the learning procedure is adapted
to on-line conditions. The learning step)(tα and the

neighborhood radius)(
,

t
ibmuh are no longer defined, as

in SOM, as a function of the learning time (which
can be unknown). They are related to the cells’ acti-
vation frequency iτ . Those parameters, which are
global in SOM become local to the cell.

The learning rule thus becomes:

())()(
,

)(
,

)()1(t
i

t
ibmu

t
ibmu

t
i

t
i h wxww −+=+ α (16)

Jean-Jacques Mariage / Computing, 2004, Vol. 3, Issue 1, 58-65

64

6. ALGORITHM SCHEMA

Initialize the first cell with: its activation state
s0 = 1, memory = the first data vector, its activation
frequency τnew = 1, and learning rate.

Do

 Apply an input vector x on the captors.

 Competition: select the best match unit bmu

 Adapt activation frequencies with (13) and (14).

 If there exist too old neighborhoods:

 list cells that re-compute their neighborhoods.

 If conflict,

 Insertion of a new cell:

 set its activation frequency τnew = 1,

 set its weights as in (15)

 Append it to re-computed neighborhood list.

 Else

 apply learning rule (16) to bmu
and its neighborhood.

 If there are obsolete cells,

 delete them
and their links with direct neighbors.

 Re-compute neighborhoods for listed cells.

While the stopping criterion is not satisfied
Competition: Only active nodes are allowed to

compete. We locate bmu among them. If there exist
several bmu units, we randomly select one among
them. The bmu unit is the root of a neighborhood
tree. It stores the mean distance3 between the active
units and the data vector as the automatic neighbor-
hood membership threshold θ. Units with an activa-
tion that falls under θ's value are possible neighbors.

Conflict: a conflict is detected when more than
one cell triggers for the same input.

Insertion: no learning takes place when an inser-
tion occurs. We only compute the new cell's
neighborhood.

Neighborhood: gather cells according to (10).

Stopping criterion: learning ends when the stop-

3 or the value of the median distance.

ping criterion as defined in (6) and (7) is reached.

Obsolete cells: cells are deleted if their activation
frequency iτ is less than a given Threshold.

7. CONCLUDING REMARKS
We presented a simple heuristic as a general

theoretical framework to apply evolutionary NNs to
the design of automatic parameterization. This can
settle a basis from which SOH can further be ex-
tended to automatic experiments in order to integrate
a more complete set of learning primitives. NNs per-
formance on specific tasks strongly depends on node
type(s) and learning rule(s) choice. Human design of
the learning process notoriously relies on past ex-
perience with similar models and contexts. Once the
power of evolution is set in motion, it becomes very
interesting to study how SOH classifies, recombines,
and so on… the learning features it extracts. Such a
system would allow to automatically merge together
various algorithms or selected parts of them in
modular systems and to train them.

8. SELECTED REFERENCES
[1] T. Ash, and G. Cottrell (1995). “Topology-
modifying neural network algorithms”. In Michael
A. Arbib, ed., Handbook of Brain Theory and Neu-
ral Networks, MIT Press, 990-993.
[2] J. Blackmore, R. Miikkulainen (1993). “Incre-
mental Grid Growing: Encoding High-Dimensional
Structure into a Two-Dimensional Feature Map”.
Procs. of the IEEE ICNN, San-Francisco, CA.
[3] J. Bruske and G. Sommer (1995). “Dynamic
cell structure learns perfectly topology preserving
map”. Neural Computation, 7, 845-865.
[4] B. Fritzke (1994). “Growing Cell structures – a
self-organizing network for unsupervised and super-
vised learning”. Neural Networks 7, (9), 1441-1460.
[5] J. Kangas, T. Kohonen, J. Laaksonen, O.
Simula, and O. Ventä (1989). “Variants of self orga-
nizing maps”. Procs. of the IJCNN'89, II, 517-522.
[6] T. Kohonen (1982). “Self-Organized formation
of topologically correct feature maps”. Biological
Cybernetics, 43, 59-69.
[7] T. Kohonen (1989). Self-Organization and As-
sociative Memory. Springer Series in Information
Sciences, Third. Edition, Springer-Verlag, Berlin.
[8] T. Kohonen (1993). “Things you haven't heard
about the Self-Organizing Map”. Procs. of the
IJCNN'93, 1147-1156.
[9] T. Kohonen, J. Hynninen, J. Kangas, J. Laak-
sonen, (1995). “SOM_PAK: The Self Organizing
Map program package”. Report A31, Helsinki Uni-
versity of Technology, Laboratory of Computer and
Information Science.

Jean-Jacques Mariage / Computing, 2004, Vol. 3, Issue 1, 58-65

65

[10] G. Lendaris, and C. Paintz (1997) “Training
Strategies for Critic and Action Neural Networks in
Dual Heuristic Programming Method”. Procs. of the
IEEE ICNN'97, 712-717.
[11] B. F. Madore, and W. L. Freedman (1983).
“Computer simulations of the Belousov-Zhabotinsky
reaction”. Science, 222, 437-438.
[12] B. F. Madore, and W. L. Freedman (1987).
“Self-organazing structures”. American Scientist,
vol. 75, N° 3, 252-259.
[13] J-J. Mariage (2000). Architectures neuronales
évolutives, un état de l'art. RR CSAR 00-12-01-17,
Laboratoire d'IA, université Paris 8.
[14] J-J. Mariage (2001). De l'Auto-Organization à
l'Auto-Observation. Ph.D. Dissertation, Department
of Computing Science, AI Laboratory, Paris 8 Uni-
versity.
[15] T. Martinetz (1993). “Competitive hebbian
learning rule forms perfectly topology preserving
maps”. In Stan Gielen and Bert Kappen, Eds., Procs.
of the ICANN'93, 427-434.
[16] T. Martinetz, and K. Schulten (1991). “A neu-
ral gaz network learns topologies”. In T. Kohonen et
al. (Eds.), IEEE ICNN'91, 1, 397-407.
[17] T. Martinetz, and K. Schulten (1994). “To-
pology representing networks”. In Neural Networks,
7(3), 505-522.
[18] D. Polani, (1997). “Organization mesures for
Self-Organazing maps”. Procs. of WSOM'97, 280-
285.
[19] I. Prigogine (1980). From being to becoming:
time and complexity in the physical sciences. Free-
man.
[20] I. Prigogine, I. Stengers (1984). Order out of
chaos: Man's new dialogue with nature. Bantam.
[21] H. Ritter, and K. Schulten (1988). “Extending
Kohonen's self-organizing mapping algorithm to
learn ballistic movements”. In Neural Computers, R.
Eckmiller and C. von der Malsburg Eds., Springer-
verlag, 393-406.
[22] T. Trautmann, T. Deneux (1995). “Compari-
son of dynamic feature map models for environ-
mental monitoring”. Procs. of the ICNN'95, I, 73-78.
[23] F. Varela, E. Thompson, and E. Rosch (1993).
The Embodied Mind: Cognitive Science and Human
Experience. MIT Press, Cambridge, MA.
[24] TH. Villmann, H.-U. Bauer (1997). “The
GSOM-algorithm for growing hypercubical output
spaces in self-organizing maps”. Procs. of the
WSOM'97, 286-291.
[25] T. Ziemke (1999). Rethinking Grounding. In
Riegler, Peschl, von Stein (Eds.), Understanding
Representation in the Cognitive Sciences, New
York: Plenum Press.

Jean-Jacques Mariage was born
in Saisseval, France, in 1953.
While working from 1973 to 1999
in postal and telecommunication
civil service, he began studying
computer science at the University
of Paris 8 in 1990 where he ob-
tained his PhD in 2001. He joined
the artificial Intelligence Lab.

inside the CSAR research group in 1994 where he
now pursues his research as a post PhD. His work
on automatic parameterization tuning of unsuper-
vised NN models led him towards his today’s main
interest which is holistic programming of biologically
inspired adaptive systems. His current interests in-
clude NN algorithms, evolutionary programming,
artificial life, learning, memory, evolution, and bio-
logical aspects of encoding structures development.

