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Abstract: In this ongoing research, we present a Self-Observing Heuristic (SOH). SOH is a hybrid computing method. 
It roots in natural selection and optimization techniques to provide an environmentally driven evolutionary computation 
scheme, capable of autonomic cumulative learning. Our aim is to realize an adaptive learning system based on neo-
Darwinian evolution of neural units. We proceed in two complementary directions. On one hand, we try to automati-
cally compute the costly tuning phase of the configuration and learning parameters of neural networks (NNs). On the 
other hand, we use meiosis cellular growth as a natural computation technique to bypass palimpsest effects observed 
when adding new knowledge to previous one. The main idea is to build an event guided growing competitive NN that 
develops while it learns to tune other NNs' parameters. Other NNs can be models more or less similar  or even iden-
tical  to it. The system adapts itself, learning to teach other models how to learn well. 

Keywords: – adaptive structure, cumulative learning, emergence, evolutionary architecture, holism, neural networks 
growth, self-observation. 

 
 

1. INTRODUCTION 

Most of the current learning algorithms suffer 
from limitations about evolving capabilities. Self-
organizing structures are nevertheless well known 
processes that, among a large variety of domains, 
appear in physics and neurobiology [11, 12, 19, 20]. 
One of the most famous examples is the Belousov-
Zhabotinskii reaction. Those processes show that, 
from particles to galaxies, spontaneous emergence of 
natural self-organizing structures is quasi universal. 
Those structures are autocatalytic. More over, they 
are persistent, resilient and self-propagating for a 
while, after which they vanish. They rely on a three 
state cyclic evolution (Active, Inactive, Quiescent 
(A, I, Q)) and they generate the emergence of com-
plex forms, the characteristics of which are not en-
coded at the elementary constituent level.  

Considering evolutionary learning in terms of 
self-organization heuristics leads to postulate that 
connectionist representations are obtained in an as-
cending constructivist way. Semantic progressively 
emerges from relations between elementary con-
stituents inside the model on one hand and between 
the model and the input data manifold on the other 
hand. A learning system thus appears as a recursive 
structure relying on two kinds of feedback loops. 

One kind is internal to the system. The second is 
external, between the environment and the system.  

Learning procedures are usually related to super-
vised or unsupervised learning. We here focus on the 
constraints imposed by real-time continuous data in 
possibly infinite changing and noisy environments 
(what we call on-line learning) versus delayed data 
carefully prepared for laboratory experimentation 
(i.e. off-line learning). Real-time conditions forbid 
strict supervised learning. On the other hand, tech-
niques like reactive training or reinforcement learn-
ing are situated in between supervised and unsuper-
vised learning. They allow a system to pursue a tra-
jectory indicated in the data space by changing the 
input-target pair. Dual reinforcement learning ex-
tends the procedure to two nets, one learning to 
evaluate the quality of the other's learning.  

Data driven programming and error measures are 
the only way to free the system from the human in 
the loop. The system can then go its own sweet way, 
self-supervising by regularly testing its efficiency 
and reverting to learning mode when necessary.  

NNs are very complex processes, which develop 
their structure in time. From real-time process con-
trol and analysis, we can set out that, when faced 
with too complex processes, usual learning algo-
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rithms reach their limit. It thus becomes necessary to 
resort to more powerful methods. We make the hy-
pothesis that, among the existing NN algorithms, 
there is a sufficient set of primitives from which a 
holistic constructive programming scheme [23, 25] 
can emerge, by means of evolutionary techniques.  

We have chosen the Self-Organizing Map (SOM) 
model [6] because, as attested by a large amount of 
research publications, the model itself is currently 
evolving, towards adaptive variants. Moreover, it 
offers a visual interface of remarkable quality with 
the data space in an either familiar and accessible bi-
dimensional topologically ordered representation. 
And last but not least, its number of configuration 
and learning parameters to tune is rather important. 

Adaptive topologies are of crucial interest to 
automatically determine the size of NNs. Oversized 
nets lead to prohibitive training time, while under-
sized nets can't find the data space structure. Around 
back-propagation architectures, efficient growing 
and pruning methods allow to find a near-optimal 
number of hidden units. A review has been made in 
[1]. For SOM, things become more difficult because 
of topological ordering constraints in the mapping it 
performs.  

The following of this paper is organized in three 
parts. We first investigate the main properties of the 
SOM algorithm and its evolutionary growing vari-
ants. From that frame, in a second part, we draw out 
a self-observing heuristic as a minimal system capa-
ble of adaptive learning. In the last part, we extract a 
minimal set of properties, necessary to obtain the 
emergence of Darwinian evolution among elemen-
tary constituents, only constrained locally by a few 
deterministic rules. 
 
2. SOM AND RELATED EVOLUTIONARY 

VARIANTS 
SOM is a winner take all (WTA) unsupervised 

learning algorithm. The convergence procedure is 
iterative. Units are arranged on a regular, usually bi-
dimensional, grid. A neighborhood function N(.), 
guided by the lattice, acts as a dissipative structure. 
It spreads neural activation from the best match unit 
to a surrounding active area. This mechanism is re-
sponsible for a local ordering process, which is the 
key to a global convergence of the algorithm to an 
ordered solution [5, 8]. Various shapes exist for N(.). 
Nwidth (the neighborhood size) regularly decreases as 
a function of time. The intensity of spreading activa-
tion can be a function of inter-units distance [21] or 
uniform [6].  

As regularly reminded by Kohonen [5, 8], SOM 
learning is divided into two training stages. In a first 
(crude) self-organization phase, clusters of units find 
their place and density (reflecting their intra and in-

ter relations). In a second (fine tuning) phase, the 
algorithm converges on the basis of the previously 
extracted structure of the data classes. To obtain an 
ordered mapping of good quality, a few conditions 
are necessary. The initial Nwidth must be very large in 
the early training phase1, and stop with one ring of 
neighboring units at the end of the process. Kohonen 
[7, p. 4913] states that “The clustering effect is more 
complex in the case where the width of the kernel is 
much smaller than the width of the network”. In the 
convergence phase, Nwidth can be significantly re-
duced or eventually kept constant. Parameters need 
to be manually tuned for the two training phases. 
The initial size of the neighborhood considerably 
increases the cost of the learning procedure. It thus 
becomes of prime importance to precisely evaluate 
the number of units.  

To try to overcome these problems, growing 
variants of SOM have been designed, either con-
strained on a geometrical structure, or free on a 
graph. The construction of the map space then be-
comes an evolutionary process, only driven by the 
data distribution. We won't describe those architec-
tures in details here, for they are now well known 
and frequently used (for a survey, see [13 or 14]). 
They bring the considerable advantage of automati-
cally specifying a very delicate interlinked set of 
parameters2.  

Despite this, some of them present major draw-
backs. Many parameters remain to be manually 
specified. Some variants even introduce additional 
ones, such as the maximum number of units allowed 
[2, 3, 4, 24], connection and disconnection thresh-
olds [2], a fixed number of adaptation steps, a re-
quired precision [4] or a growing speed [22], that 
seem at least as tricky to operate as the standard 
model's parameters. Except for [22], the growth 
process needs to be controlled by means of the usual 
trial and error intuitive procedure.  

SOM performs a dimensionality reduction from 
an n-dimensional input data space into an internal 
bi-dimensional memory space. Reduction provides 
efficient abstraction for the resulting mapping. The 
counterpart is that neighboring clusters can be 
grouped together as a consequence of an inappropri-
ate dimension selection for the map instead of re-
flecting an implicit relation detected in the structure 
of the data manifold. For high dimensional data 
spaces with unknown distribution, such misclassifi-
cation problems are not detectable.  

Unlike SOM, a part of its evolutionary growing 
variants provide a mapping that is isomorphic to the 

                                                 
1 i.e. covering at least 30% to 50% of the total number of units.  
2 That is the shape and the dimension of the map, its number of 
units, and sometimes even the type of lattice, which determines 
the neighborhood density.  
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data space.  They are exact Topology Representing 
Nets (TRN) [17], and thus, the mapping obtained 
suffers from a lack of abstraction and topological 
ordering loss. A few variants [2, 6] keep the grid 
lattice to drive the growth process in a bi-
dimensional space. They maintain the convenient 
visualization interface offered by SOM and improve 
it by visualizing the frontiers of the data classes. 
Those, the structure of which is free on a graph loose 
either the topological ordering and the visualization.  

However, experimentation with growing variants 
of SOM have led to a gradual suppression of the 
global parameters in evolutionary topological map 
algorithms and to localize the whole set of parame-
ters to the unit. 
 

3. SETTING THE FRAMEWORK 
SOH relies on a dual learning procedure between 

NNs. It is similar to the Dual Heuristic Programming 
(DHP) [10], but with three main differences. First, 
the only assumption we make about the actor model 
is that we need a standard unsupervised primitive 
extractor model (SOM, Adaptive Resonance Theory 
(ART), Neo-Cognitron, etc.) Second, the critic net is 
an SOM-based evolutionary (incremental and adap-
tive) algorithm. Third, we try to use the actor-critic-
actor loop to automatically extract, encode, and 
make use of learning primitives detected in the actor 
model. 

The system evaluates the quality of the learning 
process other NN models are performing. To let it 
look at the way NNs learn, we give it the time 
course of their parameters as context vectors like in 
the temporal SOM or in RNNs. The associated data 
are organization measures of the observed models. 
While SOH evolves, its structure develops to reflect 
the universe it is exposed to. Its world being learning 
algorithms, defined by the relation between their 
parameters and organization measures, it thereby 
learns to identify good learning processes. In turn, 
since it learns to appreciate the quality of learning in 
other models by considering the time course of their 
configuration parameters, it learns by the same way 
to tune the learning parameters of basic models. Fur-
thermore, as SOH learns to teach to classifiers that 
work as extractors of primitives too, it learns to ex-
tract the learning invariants it finds in other models. 
Once trained, SOH is able to recover the context 
from the data and vice versa. 
 

4. BASIC CELL PROPERTIES 
Constraints on intercellular activity are limited in 

number. They settle through afferent and efferent 
connection beams. A weight vector figures the in-
coming synapses of the cell, or its receptive field. 
Outgoing synapses are a dissipative structure that 

spreads activation in the neighborhood. In order to 
capture possible hierarchical relations between pa-
rameters, SOH is tree structured. We explicitly en-
dow the cell with a quiescent state. Its activation 
function has three possible states: Active, Inactive, 
Quiescent (A, I, Q), necessary to obtain the emer-
gence of self-replicating and resilient forms. Cellular 
death prevents from overcrowding. The selection of 
the active element results from competition. All the 
units, provided they are not in quiescent state, have 
equal chances to be selected. At every moment, 
there exist a finite number of active cells. Internal 
and external retroaction loops make the structure 
recursive and store a trace of the past states in mem-
ory. The whole configuration parameter set is local-
ized at the unit level.  

Insertion and suppression heuristics control the 
system growth and equilibrium. The process is very 
brittle [2, 3, 4]. It must find a compromise between 
stability and plasticity. The various ways mentioned 
in the literature to deal with this problem rely on the 
activation frequency of the units and on a distance 
measure between their weight vectors.  

Duplication emanates from a representation con-
flict. A cell duplicates when an activity bud devel-
ops, indicating a local perturbation, where relations 
with the environment exert a pressure. The bud 
shows that too much activity accumulates over the 
same cell and claims for its repartition (the resource 
redistribution according to B. Fritzke). Three kinds 
of perturbation are mainly used in the SOM-based 
evolutionary architectures. Growing Cell Structure 
(GCS) considers the triggering frequency, Bungy-
SOM the sum of the triggering errors, while Incre-
mental Grid Growing (IGG) and Dynamic Cell 
Structure (DCS) use the sum of the distances to the 
entries that trigger the cell. Depending on the case, a 
new cell connects to all the neighbors of the cell it 
splits from, to the single error node (IGG), or be-
tween the most frequently activated unit, and the 
neighboring cell with the most distant memory 
(GCS). The new cell inherits from the common sen-
sibility to the activity that induces this outgrowth. Its 
memory is initialized as if it had been part of that 
cell cluster since the beginning of learning, with the 
mean of the memory vectors of all its neighbors. 
What we call meiosis duplication. The new cell thus 
grabs a trace of the sensitivity to the whole features 
gathered in the neighborhood tree. The splitting cell 
(the old one) becomes inactive for a while before 
turning to the quiescent state, from which it gradu-
ally recovers sensibility. This transitory state creates 
an idle time, which drives the activity transfer onto 
the new cell. The cell specializes by cooperative and 
competitive interaction with the related elements. It 
connects to, or reinforces its connections with, any 
cell sensible to the same activity. It separates from, 
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or decreases the strength of its connection with, any 
element sensible to a different activity. 

In the literature two main ways of implementing 
the intermediate refractory state are adopted. Either 
there exist an explicit disposition in the activation 
rule, or the balance between excitation and inhibi-
tion processes is assumed to implicitly induce the 
same effect. In the former, a quiescent cell becomes 
active again after several selection attempts during 
its resting time, as in the GCS. In the latter, inhibi-
tion is considered to be equivalent to a kind of non-
local refractory state. Transition between the states 
A, I, Q is continuous. A brief absolutely quiescent 
period immediately follows the active state. The 
next state is a relatively refractory phase where cell's 
excitability is reduced. That is the quiescent state 
succeeds those two ones. The competitive version of 
the Hebb rule, due to Martinetz [15], to compute the 
lateral connections strength, builds up such a 
mechanism.  



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                                       0
,,1,..         . )1(

otherwise
NlkyyyyifyyC lkjijit

ij  (1)

where ( )         ii wxRy −=  is the response of the 
ith unit for an input vector x. R(.), the mapping func-
tion, R → [0, 1], is continuous, and monotonically 
decreasing.  

In case of non-stationery data distributions, the 
rule is modified to let the connection strength de-
crease until it vanishes. A decay constant α, and a 
suppression threshold θ, such as 0 < α, θ < 1 are in-
troduced.  
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For off line learning procedures, with a learning 
set T of size T , α takes the value 

   T θα =  (3)

The cell is endowed with a lifetime. It is the fre-
quency of its exchanges that keeps it alive. It can be 
the node activation frequency as well as triggering 
conflicts or neighborhood commitments. Units that 
have not been selected for a (parametrical) while 
degenerate and disappear. Every cell manages its 
own neighborhood, which evolves by its own. It has 
its own learning rate. One cell can learn faster than 
another or it can not learn at all. Most of the archi-
tectures examined in [13 and 14] depend on a regu-
lar lattice of units and fix those two parameters by 
keeping them constant. Fritzke's GCS, [4] maintains 
one ring of neighbors and two different learning 
rates, one for the best match unit, and another for the 
neighbors.  

The unit has a tree-structured neighborhood, al-
lowing it to capture multiple influences with com-
plex structure (lists, trees, graphs). Neighborhood 
role is crucial. It must establish kernels of connec-
tions to serve as suitable bases for unit clusters to 
develop and specialize. To be efficient, the chosen 
function must allow clusters to develop dense con-
nectivity. The global growth of the system requires a 
neighborhood either of variable size and reduced in 
the early learning. On one hand, clusters encode 
categories or functional abilities. They must struc-
ture according to the density of the data forms they 
represent and to their affinities with the other 
groups. On the other hand, the system gradually 
builds itself from one — or a few — unit(s) that split 
when needed. The evolution of the neighborhood 
cannot follow the particularly efficient regular de-
creasing scheme T. Kohonen adopted for the SOM, 
which remains the prime example as far as 
neighborhood is concerned.  

We thus propose a connective neighborhood, lo-
cal to the unit, based on an algorithmic dynamical 
dissipative structure relying on a free graph. To al-
low a saw tooth evolution of the neighborhood, trees 
of sub-trees (algorithmically Steiner partial minimal 
spanning trees, hereafter denoted STs) progressively 
grow or shrink and connect or disconnect on the fly, 
during learning. An ST is the optimal diffusion tree. 
The algorithm adds new branching nodes to the 
neighborhood tree — not to the underlying graph — 
and deletes costly edges to optimally cover relational 
sub-manifolds on graph structures. The resulting tree 
is built in such a way that it been an MST of para-
metric depth and cardinality.  

We denote a graph G as a set of vertices V and 
edges  E.  

EvvVvVvEVG jiji   ) ,( ,       tq.) ,(   ∈∈∃∈∀=  (4)

The vertices are points in a vector space, defined 
on ℝn. Learning can be considered as a graph match-
ing process between different spaces. The learning 
system (the network) is a graph in the weight space, 
where n-dimensional memory vectors represent the 
coordinates of the nodes. This graph, internal to the 
net, must develop its structure in order to reflect the 
graph of the relations that exist in the data space.  

The distance between two points a and b is ex-
pressed by an Lp metric denoted 

p
ba− where p 

denotes the chosen distance metric.  

In the rectilinear (L1) metric, 

                1 baba yyxxba −+−=− . 

In the Euclidean (L2) metric,  
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2
222 )  (  )  (      baba yyxxba −+−=− . 

The length of an edge e = (a - b) is       bae −= . 

 The length  of a tree, Γ is ∑
∈

=
Гe

eГ    .  

We consider a non oriented graph G = (V, E), and 
dweights(.), a non negative cost function, expressed in 
an arbitrarily chosen metric on the edges of G. For 
every subset S of vertices of G, a Steiner tree T for S 
is a sub-tree of G connecting all the vertices in S. 
The cost of the ST is the sum of the individual costs 
of its edges. An ST is minimal if its cost is minimal 
among all the STs.  

An ST presents very interesting properties. First, 
it provides automatic creation of neighboring nodes, 
to supply the system needs, even trees to connect 
forests. Second, in case of unlimited number and 
complexity of the connection structure, computation 
of the exact partial ST is NP-complete. We must 
thus resort to approximate cost reducing methods, 
thereby introducing fuzziness in the learning process 
and possibly compensate the drawback of exact to-
pology representing nets using the competitive Hebb 
rule. Third, the tree being parametric, it allows a 
saw-toothed evolution of the neighborhood size, 
which appears to be a fundamental condition for to-
pology ordering preservation on growing nets. Fi-
nally, when topological ordering is under way, the 
process is not very brittle. It is not necessary to re-
compute the neighborhood every time step. The pe-
riodicity can be drawn by the system itself, consider-
ing an ordering measure of the topology. A compari-
son made by D. Polani [18] shows that the µQH 
measure provides  acceptable results. 
 

5. ALGORITHM DESCRIPTION 
The literature mentions two ways to implement 

the internal loop, which memorizes anterior states. 
Passed activity is incorporated to the actual activity 
by mean of either a context input vector or dual ba-
sic cells.  

The external loop is an adaptive process inspired 
by Darwinian natural selection. Units creation and 
suppression mechanism drives the net towards adap-
tation to the data evolution. The cooperation and 
competition schema completes it. From the unit to 
the whole structure, as well as for clusters and sub-
structures that make it up, the constituents perma-
nently struggle for survival. A higher-level loop is 
related to error measure. By that way, the system is 
exclusively events driven programmed.  

To prevent from the intrusion of any omniscient 
entity, learning is un- or self-supervised. The struc-
ture grows freely, driven by the data distribution. 

Events that generate change in the error evolution 
regulate alternation between learning and tests.  

Error allows to verify the quality of the conver-
gence, automate the tuning of some parameters and 
to find a stopping criterion. With certain algorithms, 
a global error is enough (statistical methods, MLP). 
Others (SOM) require a more sophisticated error 
measure because of the neighborhood links.  

Local error points out an environmental pressure, 
which generates an accumulation of activity. It indi-
cates that some data forms compete around conflict-
ing representations. Either the same unit attracts too 
many forms, or several units are sensitive to the 
same form.  Data vectors compete because, on one 
side, they share enough common features, but on the 
other side, they remain sufficiently different for be-
ing attracted by various prototypes.  

Global error evaluates the convergence quality. 
This estimation can be used to determine a stopping 
test or to automatically tune configuration parame-
ters as the learning rate or the neighborhood size.  

A sudden increase of the quantification error in-
dicates a rarely met state. The observing system can 
then automatically re-enter in learning mode.  

Learning ends when the criteria chosen as stop-
ping test no more significantly evolves. In realistic 
learning simulation conditions, the system must al-
ternate learning trials over finite clean data sets — in 
order to create basic receptive structures — as well 
as over potentially infinite noisy data streams, ap-
plied in real time.  

With finite learning bases, the simplest test com-
pares the average error E, over the input data vectors 
set at the current iteration, to a threshold. The error 
is computed between the ith input and the jth trigger-
ing unit memories.  

( ) NjdXE
X

i

t
ji

j

t  , ,1      , , argmin  1  
1

)()( L== ∑
=

wx  (5)

where X is the learning vectors number, N the 
units number,  and d(.) a distance measure, ex-
pressed in a chosen metric.  

The stopping criterion S is a threshold, chosen 
arbitrarily small. It is compared to the ratio between 
the error measures, at the current time iteration (t), 
and at the previous one (t-1).  

S
E

EE
t

tt

<
−−

)(

)()1(

 
(6)

For a more accurate observation, the average er-
ror decline is considered since the last node creation. 
New nodes are added if the error does not decrease 
quickly enough during a sliding time window [1].  
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where tw is the time window width, t* the itera-
tion following the last node creation, and Tδ  is a 
user defined trigger slope parameter. The process 
can be automatically settled by setting Tδ  to half the 
smallest inter-errors difference. 

{ },0 ji ssmin −=<δ  (8)

with 0>− ji ss  and Nji ≤≤ ,1 . The error being 
considered as insignificant when  

21
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xi being the activation state of the ith unit.  

In SOM, the learning rate, )(tα , 1    0 )( << tα  is a 
global parameter. It decreases monotonically as a 
function of time. A linear evolution in 1 - (t / Ttotal) 
is generally chosen, t being the current iteration in-
dex, and Ttotal the number of time steps. Kohonen et 
al. [9] suggest, as a second choice, an inverse func-
tion of time in C / (C + t). C being a constant with a 
value of C = Ttotal / 100. We adopted the same 
scheme, with Ttotal being the width of the current 
sliding time window.  

The neighborhood radius self-tunes. Any new 
cell jnew sets the initial size of its neighborhood. 
Among all the other cells, units the activation state 
of which is lower than a threshold are part of its 
neighborhood. Possible thresholds are the mean of 
the activation values or the median value.  

new
N

j
new jjjActNjActGjjN    ,)( 1  )(       )(

1
≠≤∈∀= ∑

=

 (10)

The amount of time elapsed since the last 
neighborhood update defines a confidence parame-
ter. It linearly decreases in local_itN1/ , where itlocalN _  
is the number of time steps. Old neighborhoods must 
be recomputed. In [5], tests carried out with a mini-
mal spanning tree neighborhood, show that a re-
computing frequency every 10 to 100 iterations is 
enough. A cell creation thereby initializes a 
neighborhood that is large with regard to the number 
of units, and sets its confidence to 1. 

The probability density of the regions in the data 
space is generally unknown. It corresponds to the 
receptive field of the cell — its triggering stimuli — 
i.e. to the Voronoi region in the data space the center 
of which is the current triggered cell. It can be esti-

mated by the cell's triggering frequency (Fritzke [4], 
p. 1446 & foll.). Beyond bi-dimensional universes, 
computing the Voronoi tessellation becomes very 
complex. It is however possible to “estimate the vol-
ume of the Voronoi regions by the mean length of 
the edges cl  emanating from the cell c in an n-
dimensional hypercube”.  

As stated in [4], the neighborhood is the estimate 
volume of the Voronoi cell, i.e. the mean length of 
the edges.  

∑
∈

−=
cNi

iccc Ncardl       )(  1  ww  (11)

Remotest nodes from the best match unit are de-
leted from the active neighborhood, not from the 
map. We simply compare their activation values as:  

)(
)(  )(

bmuAct
bmuActjAct −  (12)

The number of vertices in the neighborhood, 
card(Nc(.)), thereby automatically increases or de-
creases. One way to heighten the saw tooth evolu-
tion of the neighborhood is to affect the slope of the 
function by mean of a cooling schedule ranging be-
tween the mean and half the mean.  

When a cell becomes the best match unit its acti-
vation frequency )(t

bmuτ  is incremented. For all the 
other units, it is decremented by an amount of 

1    0 , <<δδ . 

1    )()1( +=+ t
bmu

t
bmu ττ  (13)
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i

t
i

t
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New units' weight vectors are initialized accord-
ing to : 
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where ))(( newNcard c is the neighborhood of the 
cell from which the new cell splits from. 

Following [22], the learning procedure is adapted 
to on-line conditions. The learning step )(tα  and the 

neighborhood radius )(
,

t
ibmuh are no longer defined, as 

in SOM, as a function of the learning time (which 
can be unknown). They are related to the cells’ acti-
vation frequency iτ . Those parameters, which are 
global in SOM become local to the cell.  

The learning rule thus becomes:  

( ))()(
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6. ALGORITHM SCHEMA 

Initialize the first cell with: its activation state 
s0 = 1, memory = the first data vector, its activation 
frequency τnew = 1, and learning rate.  

Do 

 Apply an input vector x on the captors. 

 Competition: select the best match unit bmu 

 Adapt activation frequencies with (13) and (14). 

 If there exist too old neighborhoods:  

  list cells that re-compute their neighborhoods. 

 If conflict,  

  Insertion of a new cell: 

  set its activation frequency τnew = 1, 

  set its weights as in (15) 

  Append it to re-computed neighborhood list.  

 Else 

  apply learning rule (16) to bmu 
and its neighborhood. 

 If there are obsolete cells, 

  delete them 
and their links with direct neighbors. 

 Re-compute neighborhoods for listed cells.  

While the stopping criterion is not satisfied 
Competition: Only active nodes are allowed to 

compete. We locate bmu among them. If there exist 
several bmu units, we randomly select one among 
them. The bmu unit is the root of a neighborhood 
tree. It stores the mean distance3 between the active 
units and the data vector as the automatic neighbor-
hood membership threshold θ. Units with an activa-
tion that falls under θ's value are possible neighbors.  

Conflict: a conflict is detected when more than 
one cell triggers for the same input.  

Insertion: no learning takes place when an inser-
tion occurs. We only compute the new cell's 
neighborhood.  

Neighborhood: gather cells according to (10).  

Stopping criterion: learning ends when the stop-

                                                 
3 or the value of the median distance.  

ping criterion as defined in (6) and (7) is reached. 

Obsolete cells: cells are deleted if their activation 
frequency iτ  is less than a given Threshold. 

 

7. CONCLUDING REMARKS 
We presented a simple heuristic as a general 

theoretical framework to apply evolutionary NNs to 
the design of automatic parameterization. This can 
settle a basis from which SOH can further be ex-
tended to automatic experiments in order to integrate 
a more complete set of learning primitives. NNs per-
formance on specific tasks strongly depends on node 
type(s) and learning rule(s) choice. Human design of 
the learning process notoriously relies on past ex-
perience with similar models and contexts. Once the 
power of evolution is set in motion, it becomes very 
interesting to study how SOH classifies, recombines, 
and so on… the learning features it extracts. Such a 
system would allow to automatically merge together 
various algorithms or selected parts of them in 
modular systems and to train them.  
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