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Abstract: According to antisymmetry of basilar membrane (BM) movements, a new mathematical model of cochlea is 
derived using viscous cochlear fluid theory, and then transformed into a digital cochlear model with bilinear 
transformation. The frequency responses are found to be quite consistent with the experimental data, especially the high 
frequency slope is much more improved. A new cochlear map and 3 dB bandwidth characteristics for cochlear filter 
banks are obtained and presented, which will make applications of cochlear model more quantitative and accurate. 
Due to simplicity of its structure and reality of its characteristics, it will be proved the model can be used easily in 
speech processing system. 
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1. INTRODUCTION 
As a central part of auditory system, cochlea acts 

electrically as a highly overlapped bandpass filter 
bank. New results are continuously given out and 
knowledge of cochlea is gradually accumulated, but 
the mathematical model of cochlea is far from 
satisfaction. H.B.Allen, et al. [1,2] used Green's 
function method to find a fluid pressure with 
assumption of inviscous cochlear fluid and finally 
acquired a two-dimensional cochlear model 
represented by an integration equation. The 
amplitude frequency response is not very satisfied, 
especially low frequency slope is not as sharp as 
desired, structure of the model appears complicated 
either. 

Cochlear characteristics can be influenced by 
many factors, but BM vibration and cochlear fluid 
motion should be two main factors. In the past years, 
much work was focused on BM properties, such as 
nonlinearity and activity of BM vibration [3-5], but 
cochlear fluid properties were paid little attention. 
S.Koshigoe, et al.[6] did some researches on 
cochlear fluid viscosity, but the work was 
incomplete. A two-dimensional mathematical model 
of cochlear with viscous fluid motion was developed 
in [7,8], but high frequency slope of model's 
amplitude frequency response is not as sharp as 

desired, meanwhile the time variable was not 
discretized either. 

Based on our previous results, a new 
mathematical model of cochlea is developed and 
transformed into a digital form using bilinear 
transformation. The model looks much simpler 
structure and comes to be a typical bandpass filter. 
The amplitude frequency response of the model is 
quite consistent with the experimental data [9-11]. 
The cochlear map which relates the center frequency 
of cochlear filters with BM locations are acquired 
and presented in a mathematical formula, and 3 dB 
bandwidth characteristics which relate the 3 dB 
bandwidth of cochlear filters with BM locations are 
also formulated. 

 
2. COCHLEAR MODEL WITH 

CONTINUOUS TIME AND CONTINUOUS 
SPACE 

According to [7], viscous cochlear fluid gradient 
along the BM can be represented as: 
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where ρ  and γ  denote fluid density and fluid 
viscosity, L  and H  denote BM length and half 
height, p  and su  denote fluid pressure and stapes 

velocity, and x  and t  represent spatial coordinate 
(from base to apex along the BM) and time 
coordinate respectively. 

Due to the antisymmetry of BM movement in 
vertical direction [2,12], it can be assumed that fluid 
pressure zero in helicortema, i.e. 

( ) 0|,, ==Lxtyxp , (2)
 
where y  is spatial coordinate vertical to BM.  

Integrating (1) with boundary condition (2), we 
can obtain a fluid pressure distribution as follows: 
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(3)

 
In reference [7], (1) was derived with the 

assumption ( ) ( )HytAus /sinsin πϕω += , i.e. 
input signal was assumed to be sinusoid signal. 
Because speech signal can be represented with a 
finite sinusoid series [13] (it is obvious that results 
given here are also applicable to any other kinds of 
signals which can be represented by a finite sinusoid 
series) and (1) was obtained by solving a linear 
partial differential equation [7], (3) is applicable to 
speech signal according 0t   linear superposition. 

From [14], it is known the following relation 
exists:  
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where  ( )txp ,  denotes fluid pressure on the BM and   
( )txz ,  BM vertical displacement, ( )xk , ( )xr  and 
( )xm  represent stiffness, damping and mass of BM 

respectively. Combining (3) with (4), we can get a 
continuous space and continuous time cochlear 
model as follows: 
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3. COCHLEAR MODEL WITH DISCRETE 
TIME AND DISCRETE SPACE 

In eq(5), let: 
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then it follows 
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We first discretize space coordinate in (7). To do 

so, let xkx ∆= , where Mk ≤≤0  and MLx = , 
M  is the number of BM segments after 
discretization. (7) is transformed into the following 
form after discretization: 
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Transfer function of (8) is 
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If bilinear transformation is applied to (9), i.e. let 
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where T  denotes sampling interval, then transfer 
function for discrete space and discrete time 
cochlear model can be acquired 
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With respect to speech signal, sampling 
frequency is generally no less than 8 kHz, i.e.  

410*25.1 −≤T , the value of α  is also no more than 
10 (refer to Appendix), so all of the items with 2T  
in the numerator of (11) can be omitted, and the 
following transfer function can be got 
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It can also be put into a much simpler form as 

follows 
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Note that (13) is actually a transfer function of a 
bandpass digital filter. From (13), we can get 
amplitude frequency response (Fig.1) and phase 
frequency response (Fig.2) for the cochlear model. 
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Fig.1. – Amplitude frequency responses of cochlear 

model for 24 equally spaced points on the BM (0.6 cm 
to 3.6 cm from base to apex) 
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Fig.2. – Phase frequency response of cochlear model 

for a location near to BM apex (approximately 1.7 cm 
from the base) 

 
4. COCHLEAR MAP AND 3 DB 

BANDWIDTH CHARACTERISTICS 
From [15], we can get the following transfer 

function for an analog bandpass filter: 
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where 0Ω  is angular central frequency of analog 

bandpass filter, and ∆Ω  is 3 dB bandwidth of the 
filter. If bilinear transformation (10) is applied to 
(14) (note the following relation exists in bilinear 
transformation 
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where ω  denotes angular frequency of digital filter), 
then (14) can be changed into 
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Also: ∆ΩΩ= /0Q  and 00 2 fπω = , where 0f  is 
central frequency of digital filter in Hz. 

In bilinear transformation, if 0ω∆  is small 
around the central frequency 0ω , then relation 
between Ω  and ω  can be considered to be linear, 
so the following formula can be obtained from (15): 
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then from (15) and (18), we can get the following 
relation 
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Substituting (20) into (17) and using (19), we can 
get [16] 

T
Ta
ω

ω
20 ∆+
∆

= , (21a)

T
Tb

ω
ω

2
cos4 0

1 ∆+
−= , (22b)

T
Tb

ω
ω

2
2

2 ∆+
∆−

=  (22c)

Let TfFff S/ ==  ( SF  is sampling 
frequency) which is a normalized frequency of 
called digital frequency, then 

ωππω === fTfT 22  which is digital angular 
frequency in radian, in this way, (21) can be changed 
to the following: 
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It can be found there are only two independent 
variables in (22) because 02 21 ab −= . 

Comparing (13) with (16), it is not difficult to 
find cochlear map and 3 dB bandwidth 
characteristics as follows 
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where k0ω  denotes central angular frequency for k-
th cochlear filter. 

Based on (23) and (24), cochlear map and 3 dB 
bandwidth characteristics can be calculated, and they 
are presented in Fig.3 and Fig.4 respectively.  
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Fig.3. – Cochlear map (vertical coordinate denotes the 

central frequency of cochlear filters, and horizontal 
coordinate denotes BM locations from base to apex 

which have a biggest displacement) 
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Fig.4. – 3 dB bandwidth characteristics for cochlear 

filter banks. (Vertical coordinate denotes 3 dB 
bandwidth of cochlear filters, and horizontal 

coordinate denotes BM locations from base to apex 



Petrovsky A.A., Likhachov D.S. , W.Wan / Computing, 2004, Vol. 3, Issue 1, 75-83 
 

 
 

79

which have a biggest displacement) 

5. TUNING COCHLEAR FILTER BANK 
Let value 0cos2 ω=g  we can express (22a)-

(22c) in the following form [21, 22]: 
 

( )gab 101 −=  (25)
 

02 21 ab −=  (26)
 
So, transfer function for k-th cochlear filter can 

be described by following function: 
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where ka0  and kg  – parameters, which define filter 
bandwidth and central frequency correspondingly. 

For defined value q  and central frequency k0ω  
the coefficients are following: 
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For filter bandwidth kω∆  and central frequency 

k0ω  the coefficients are: 
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A functioning of the k-th tunable cochlear filter 

can be described with following equations [23]: 
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where x(n) – number of the input set, y(n) – number 
of the output set. So, the calculation of each element 
of the output set requires two multiplication and five 
additions. 

 
6. DISCUSSION 

In Fig.1, BM is evenly divided into 300 segments 
(M=300). If BM length is L=3,5 cm, then ten 

amplitude frequency responses in Fig.1, are 
associated with the BM locations whose first point is 
0.6 cm from the base and the last point is 1.63 cm 
with the space interval being 0.12 cm. The figures 
presented here look much more consistent with the 
experimental data [10] [11], especially the high 
frequency slope has obviously been improved. It can 
also be seen that there are some differences among 
the peaks of curves. With the reduction of central 
frequency, pear value is gradually reduced, on the 
other hand, the peak value of curves will be 
gradually reduced with the increment of distance of 
locations from the BM base, but those differences 
are very small according to the computation, 
especially for those curves which have a high central 
frequency, the differences can almost be 
unidentified. From the viewpoint of computation, 
coefficient kA  of (13) for kkk rFA /=  and kr  is 
assumed to be constant. From (6), it can be found 
than kF  will be gradually reduced with the 
increment of x because there are only two items 
related to x, one is x itself and the other is cosine, the 
latter will reduce nonlinearly with the increment of 
x, the reduction of cosine is faster than increment of 
x, especially when x becomes large. From the other 
viewpoint, it seems that BM displacement will 
reduce with reduction of excitement frequency 
(assume excitement amplitude is invariant). Because 
low frequency signals excite BM apex, so it has to 
travel a longer distance along the BM and 
degradation seems to take place. 

In Fig.2, a phase frequency response is presented. 
It is associated with a point near to BM apex, 
approximately 3.3 cm from the base (stapes). It is 
almost a linear function in linear frequency scale. 
Cochlear map is defined to be a relation between 
excitement frequencies or central frequency of 
cochlear filter and BM location which has a biggest 
displacement, excitement with different frequency 
excites a biggest displacement in different BM 
locations. From Fig.3, we find that relation between 
excitement frequency and location with biggest 
displacement is not exactly linear, that is to say, for 
those cochlear filters equally spaced on the BM, the 
differences between their central frequencies are not 
equally spaced in a linear frequency coordinate. 

Cochlear map is conventionally deduced from 
experimental data [17]-[20], here it is deduced 
directly from the mathematical model of cochlear, 
and the result is quite consistent with the 
experimental data. 

3 dB bandwidth characteristics are defined to be 
a relation between 3 dB bandwidth of cochlear 
filters and BM locations with the biggest 
displacement. From Fig.4, we can see that 
bandwidth of cochlear filters is almost increased 
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linearly with the increment of distance from BM 
base to BM center, but from center to apex, 
bandwidth is almost invariant. It seems that we can 
use a filter banks with same bandwidth to process 
speech signal for speech signal excites BM locations 
from center to apex. 

It is believed that this result will make the 
application of cochlear model more quantitative and 
accurate. 

 
7. AN EXAMPLE OF IMPLEMENTATION 

COCHLEAR MODEL FOR SPEECH 
CODING 

Speech analysis process can be represented as 
shown in Fig.5 [24]. The approach considered here 
involves main ideas from papers [25, 26]. The 
human auditory system model is used for improving 
spectral peaks selection. 

DFT
s(n)

Hamming
window

Module
calculation

Phases
calculation

Histogram
computation

G(f)
Peaks

selection

S(f)Input
speech

|S(f)|
Amplitudes
calculation

Frequencies

Amplitudes

Phases

w(n) S(f)

Cochlear model

|S(f)|

Auditory model

 
 Fig.5. – Speech analysis scheme 

Peak selection algorithm can be described with 
following steps: 

Step 1. Array  mD  is calculated by following 
expression: 

 
( )( ) ( )( ) ( )( )lIndHlIndSlIndD PmPPm ⋅= , 

PLl ,1= , Mm ,1= , 
(33)

 

where m  – currently processed cochlear channel 
number; M   – a number of all cochlear filters; PL  – 
a number of all spectral peaks; )(lInd P  – array with 
indexes of obtained spectral peaks from array 

)(kS ; ( ))( lIndH Pm  – amplitude-frequency 
response of the m-th cochlear filter in frequency 
position ( )lIndP , PLl ,1= ; ( )( )lIndS P  – values 
of speech signal spectrum in frequency position 

( )lIndP . 
Step 2.  Weighting coefficients l

mP  for l-th 
spectral peak and m-th cochlear channel are 
calculated by following rule: 

 
if ( )( ) ( )iLvlIndD Pm >  and  

( )( ) ( )1−< iLvlIndD Pm , UNi ,1=  
(34)

then il
mP 2= ,  

 
where UN  – a number of values in array Lv ; ( )iLv  
is i-th element of level values array. 

Step 3.  Array histogram elements ( )( )lIndG Pm  
for l-th spectral peak and m-th cochlear channel is 
computed by following formula: 
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l
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=⋅⋅=

=

)()( , (35)

 
where l

mP  – weighting coefficient for l-th spectral 
peak and m-th cochlear channel. 

Step 4.  Histogram ( )( )lIndG P  in position 
( )lIndP  is computed by following expression: 

 

( )( ) ( )( )∑
=

=
M

m
PmP lIndGlIndG

1
, PLl ,1= , (36)

 
Step 5.  L  spectral peaks are selected at 

frequencies that correspond to L  largest element 
values in the histogram ( )( )lIndG P . 

An example of histogram G  for one speech 
signal frame is presented in Fig.6. X-direction – 
frequencies from 0 to 4000 Hz (sampling frequency 
is 8000 Hz). Y-direction – calculated weights (the 
bigger is an element histogram weight – the more 
important is its role in human speech recognition). 
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Fig.6. – A histogram for one speech signal frame 

Selected spectral peak locations for one speech 
signal frame are presented in Fig.7 (red circles).  
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Fig.7. – Selected spectral peaks 

Speech synthesis procedure presumes generating 
sinusoids according to frequency and phase 
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parameters, weighed by amplitude and then summed 
to produce a frame of synthesized speech as shown 
in Fig.8. The resulting speech signal is formed by 
overlapping and adding each frame of the 
synthesized speech.   

Sine
generator  1

Sine
generator  2

Sine
generator  L

.

.

Frame-to-frame
interpolation and

phase
unwrapping

Frame-to-frame
interpolation

Output
speech

FrequenciesPhases

Amplitudes  
Fig.8. – Speech synthesis scheme 

As an example a piece of the original speech 
signal in time domain is presented in Fig.9 
(sampling frequency is 8000 Hz, signal amplitude is 
16 bits, male voice) and his spectrogram – in Fig.10. 

A piece of the synthetic speech signal is 
presented in Fig. 11 and his spectrogram – in Fig.12. 

Following parameters were used for speech 
signal analysis: length of the Fourier transform FN  
is 1024, a number of all cochlear filters M  is 50, a 
number of sinusoids is 7; analyzing window length 
is 32 ms; frame length is 22,5 ms. 
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Fig.9. – The original speech signal 
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Fig.10. – The original speech signal spectrogram 
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Fig.11. – The synthetic speech signal 

Time, s

Fr
eq

ue
nc

y,
 H

z

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1000

2000

3000

4000

 
Fig.12. – The synthetic speech signal spectrogram 

So, the experiment results show that the 
synthesized output signal retains most of the 
clearness of the original speech. It has good 
legibility and allows speaker recognition. Compared 
with the conventional speech coding systems, the 
proposed encoder has simple algorithmic realization 
and does not require making voice/unvoiced 
decision and pitch estimation during the speech 
analysis. Therefore it is less sensitive to a 
background noise and to changing a speaker than 
conventional speech encoders. Assuming that a 
vector quantization of speech parameters is used the 
average coding bit-rate is from 2 to 8 kbit/s. 

 
8. CONCLUSION 

Based on previous cochlear mechanics put 
forward by the authors, a news cochlear model is 
obtained using both antisymmetry of BM movement 
and theory that speech signal can be represented by a 
finite sinusoid series. By using bilinear 
transformation, the model is changed into a second-
order digital cochlear model, that is to say, cochlea 
can be modeled with a second-order difference 
equation. The frequency slope is sharpened and thus 
looks more realistic. 

According to characteristics of bilinear 
transformation, a new cochlear map and 3 dB 
bandwidth characteristics are acquired. The cochlear 
map is also quite consistent with the experimental 
data, except in the BM apex. The cochlear model put 
forward in this paper is believed to simple in 
structure, and therefore easy to apply, but it is far 
from complete and much work can be done because 
BM nonlinearity and other special properties of BM 
is not included, this model makes such inclusion 
feasible. 
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