
Qiangfu Zhao / Computing, 2004, Vol. 3, Issue 1, 84-92

 84

LEARNING AND UNDERSTANDING
BASED ON NEURAL NETWORK TREES

Qiangfu Zhao

The University of Aizu

Tsuruga, Ikkimachi, Aizuwakamatsu, Japan 965-8580
qf-zhao@u-aizu.ac.jp, http://www.u-aizu.ac.jp/~qf-zhao

Abstract: Models for machine learning can be categorized roughly into two groups: symbolic and non-symbolic
Generally speaking, symbolic model based learning can provide understandable results, but cannot adapt to changing
environments efficiently. On the other hand, non-symbolic model based learning can adapt to changing environments,
but the results are usually "black-boxes”. In our study, we introduced a hybrid model called neural network tree
(NNTree). An NNTree is a decision tree (DT) with each non-terminal node containing an expert neural network (ENN).
Results obtained so far show that an NNTree can be re-trained incrementally using new data. In addition, an NNTree
can be interpreted easily if we restrict the number of inputs for each ENN. Thus, it is possible to perform recognition,
learning and understand using the NNTree model alone.

Keywords: – Neural networks, decision trees, neural network trees, pattern recognition, machine learning and
understanding, neural network interpretation, incremental learning

1. INTRODUCTION

Models proposed for machine learning can be
categorized roughly into two groups: symbolic and
non-symbolic (or sub-symbolic). Symbolic models
include decision trees (DTs), decision rules (DRs),
finite state automata (FSA), and so on. Typical non-
symbolic models are fuzzy logic (FL) based systems
and different kinds of neural networks (NNs).
Generally speaking, symbolic approaches can
provide nderstandable results, but they are usually
not efficient for changing environments. On the
other hand, non-symbolic approaches can provide
good results even if the data are not given all at
once. The problem is that results provided by non-
symbolic approaches are often “black-boxes” that
cannot be understood easily. The point is that no
single symbolic or non-symbolic model can perform
both learning and understanding simultaneously. To
have the advantage of both symbolic and non-
symbolic learning, it is necessary to combine them
together. For this purpose, many methods have been
proposed in the literature [1]-[3]. Here, we just
consider how to combine DTs and NNs. Briefly, we
have the following approaches:

1) Transformational approaches: We can
design a DT first, and then transform it into an NN.
This approach is useful for quick design of NNs
because from the DT we can get a good initial

condition and determine the NN structure easily [4]
[5]. For understanding, however, we are more
interested in the inverse transformation. That is, we
should transform a trained NN into a DT [6] [9].
This inverse transformation is often not easy.

2) Embed the DTs into a NN: This is a kind of
modular neural network with each module being a
small DT [13]. We can use this model when we
know some basic concepts, but do not know how to
make the global decisions. The problem in using this
model is that although we know a great detail about
each part, we cannot understand the whole system.

Fig. 1 An example of neural network trees

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

Qiangfu Zhao / Computing, 2004, Vol. 3, Issue 1, 84-92

 85

3) Embed the NNs into a DT: This is the neural
network tree (NNTree) considered in our study. An
NNTree is DT with each non-terminal node
containing an expert neural network (ENN). Fig. 1 is
an example of the NNTrees. This model was first
used for improving the performance of the DTs [14].
In our study, we are trying to use it both for learning
and for understanding [22]-[26]. Using this model,
we can understand the final decision roughly if we
use each ENN to extract a symbol or concept. If we
are also interested in the detail, we can extract rules
from the ENNs. Depends on the types of the ENNs
we use, rule extraction can be very easy. In addition,
the “symbols” (i.e., the ENNs) can be improved
using newly observed data. Therefore, NNTree is a
possible model for unifying learning and
understanding.

4) Miscellaneous: There are many hybrid
systems that can also be considered as combination
of DTs and NNs, in a broad sense. Examples
include: fuzzy decision trees [15] [16] and
hierarchical mixtures of experts [19] [20]. Some
authors also represent an NN in a tree structured
genotype for genetic programming based learning
[17] [18]. All these models are not understandable
because they still make decisions in a black-box
manner.

This paper is a summary of the results we
obtained so far in our study on NNTrees. In section
2, we introduce the basic idea for evolving an
NNTree off-line. In Sections 3 and 4, an incremental
learning algorithm is given and its effectiveness is
verified using experimental results. Section 5 and 6
prove experimentally that NNTrees can be
interpreted easily if we restrict the number of inputs
for each ENN. Section 7 is the conclusion.

2. OFF-LINE EVOLUTIONARY

LEARNING OF NNTREES
To construct a DT, it is often assumed that a

training set consisting of feature vectors and their
corresponding class labels are available. The DT is
then constructed by partitioning the feature space in
such a way as to recursively generate the tree. This
procedure involves three steps: splitting nodes,
determining which nodes are terminal nodes, and
assigning class labels to terminal nodes. Among
them, the most important and most time consuming
step is splitting the nodes. There are many criteria
for splitting nodes. One of the most popular criteria
is the information gain ratio which is used in C4.5
[21]. For off-line learning, the overall learning
process of NNTree is the same as that of C4.5. The
point here is to find an ENN in each non-terminal
node to maximize the information gain ratio. To find
the ENNs, we can use genetic algorithm (GA). The

reason for using GA here is that we do not know in
advance how to partition the examples.

Three basic operations are used in GA: selection,
crossover and mutation. In our study, for simplicity,
we adopted the truncation selection, one point
crossover and bit-by-bit mutation. The genotype of
an individual ENN is a binary string consisting of all
connection weights, with each weight represented in
binary number. The ENNs used in our study are
multilayer perceptrons (MLPs), although other
models can also be adopted. The fitness is defined as
the information gain ratio. Based on these
definitions, a good ENN can be generated
evolutionally for each non-terminal node [23].

2. INCREMENTAL LEARNING OF

NNTREES
The purpose of incremental learning is to

improve an existing NNTree using new data.
Incremental learning is important for a learner to
adapt to environment changes. The first algorithm
we proposed is learning with fixed structure
(LWFS). In this method, an initial tree is first
designed through off-line learning with currently
available data. The ENNs of the NNTree are then re-
trained using newly observed data.

Note that LWFS is actually supervised learning.
For any new training example x, the teacher signal
for node N (starting from the root) can be
determined as follows. Suppose that for x, the i-th
output of the corresponding ENN is the maximum (i
� [0,1] in this study), if the i-th child of N was
assigned some examples of the class c=label(x)
during off-line learning, the teacher signal is defined
by

On the other hand, if the i-th child of N was not

assigned any example of the class c during off-line
learning, but the j-th (i ≠ j) child of N was, the
teacher signal is defined by

Once the teacher signals are determined, we can

re-train the ENN using, say BP (back-propagation)
algorithm.

Currently, we have applied LWFS to produce
smaller NNTrees [25]. The basic idea is to design an
NNTree using partial training data (say, 1/10 of the
data) first, and then re-train the tree using all data
(also off-line learning). Since the tree size is
approximately proportional to the number of training

Qiangfu Zhao / Computing, 2004, Vol. 3, Issue 1, 84-92

 86

data, the tree obtained by this two-stage approach
is usually much smaller than that designed directly
from all data. If the redundancy of the training set is
high, the generalization ability of the tree will not be
decreased significantly.

For incremental learning, however, we cannot
expect that the data obtained at the beginning
contain enough (not to say redundant) domain
information for obtaining a good tree structure. We
should allow the structure of the tree changeable to
integrate information incrementally. For this
purpose, we proposed learning with variable
structure (LWVS) [26]. The learning process is
described as follows. Suppose that the new example
is x, and its label is c=label(x). Start from the root
node

Step 1: See if the current node is a terminal node.
If not, go to Step 2; if yes, see if the class label of
the node is c. If yes (i.e., this example is
recognizable), receive the next training example, and
reset the current node as the root; if not, split the
node into two, with one of them containing
examples of the old node, and another containing the
current example. The current node now becomes a
parent node. A new ENN is then designed for this
node. In designing the ENN, all training examples
assigned to this node so far can be used.

Step 2: Re-train the current node. In this step, we
update the weights of the ENN only once using BP
algorithm with the current example. The teacher
signal is defined by (1) or (2).

Step 3: See if x can be classified to the correct
branch. If yes, go to Step 5; otherwise, continue.

Step 4: Re-train the node again. Now, we re-train
the ENN using all examples assigned to this node up
to now. This is actually a review process. This will
result in an ENN that can classify both new and old
examples better.

Step 5: Re-train the j-th child recursively, where
we suppose that the j-th output of the ENN is the
maximum for the input x.

Remark-1: Note that in the above algorithm, for
any input example, each node on the classification-
path (a similar concept as search-path) is re-trained
in two steps: minor revision (Step 2) and major
revision (Step 4). The basic idea is to revise the
ENN slightly using BP. If the node is already good
enough to recognize the current example after minor
revision, input another example. Otherwise, we
revise the ENN with all currently available data.
These two steps can be considered as ``learning and
reviewing'', which seems to be a simplified process
of human learning. Of course, reviewing with all
data assigned to this node so far is actually not
practical for on-line incremental learning. In the
future, we would like to introduce some forgetting
mechanism in the reviewing process.

Remark-2: In the growing algorithm, a new
terminal node is split into two whenever an example
is misclassified. As the result, the tree may grow too
fast. One method for preventing the tree from
growing too large is to split the nodes only when
some splitting condition is satisfied. The following
condition is used in our study:

where ntotal is the total number of examples
assigned to the node by the tree, nwrong is the number
of misclassified examples, T is a threshold and s is
the splitting-rate. In general, T and s depend on the
training set size and the number of classes. In our
study, we just set T=30 and s=0.1 for simplicity.
Fine-tuning is not performed. With these values, the
above condition can be read as ``a new node will not
be created if ntotal is less than 30, or if the percentage
of misclassified examples is less than 10%''.

Remark-3: It is interesting to note that using the
above algorithm, even if we start from an empty
tree, the tree can grow automatically through
incremental learning. When a new ENN is created,
one child contains examples of the old node, and
another contains the misclassified examples.
Therefore, the teacher signals can be defined
straightforwardly. For minor revision and major
revision, we can define the teacher signals using (1)
and (2). The only difference is that we use examples
assigned to the nodes so far instead of those
assigned in off-line learning. Therefore, BP
algorithm can be used throughout the learning
process. This is important because the computational
cost of BP is usually much less than that of GA. As
will be shown later, the NNTrees so obtained are
smaller, and have better generalization ability, as
compared with those obtained by using GA based
learning.

4. EXPERIMENTAL RESULTS FOR

INCREMENTAL LEARNING
To verify the effectiveness of LWVS, we

conducted several experiments using five databases
taken from the machine learning repository of the
University of California at Irvine. Parameters related
with these databases are given in Table 1, where #
means ``the number of''. To make the results more
reliable, we adopted n-fold cross validation for all
databases. For example, for ``Housevotes84'', n=5,
and thus a 5-fold cross validation is used. That is,
4/5 of the data are used for learning, and 1/5 of the
data are used for testing. The number n is chosen so
that there is enough number of examples in the test
set. This is important for reliable evaluation of the

Qiangfu Zhao / Computing, 2004, Vol. 3, Issue 1, 84-92

 87

results. To increase the reliability further, 10 or 20
runs are conducted for each case; altogether 100
experiments are conducted for each database. In
each run, the training data are shuffled before
learning, so that the examples are provided in
different order. For on-line learning, the examples in
the training set are provided one-by-one until all
examples are visited once. Three algorithms are
compared:

1) Off-line learning: The off-line learning
algorithm given in Section 2. Since all data are
supposed to be available all at once, results obtained
by this algorithm can be considered as the upper-
limit for incremental learning.

2) GA-LWVS: Incremental learning using GA
for creating new nodes and for major revision.

3) BP-LWVS: Incremental learning using BP
only.

Table 1: Parameters of the databases

Parameters related to the ENNs include 1) the
number of inputs equals to the number of features;
2) the number of hidden neurons is fixed to 5; and 3)
the number of outputs is 2. Parameters related to GA
for off-line learning and for creating a new node are
1) the number of generations is 1,000; 2) the
population size is 200; 3) the number of bits per
weight is 16; 4) the selection rate is 0.2 (That is,
20% of individuals with low fitness values are
selected against in each generation); 5) the mutation
rate is 0.01; and 6) the crossover rate is 0.7. For
major revision in GA-LWVS, the number of
generations is 100. Parameters related to BP for
minor revision are 1) the learning rate is 0.5; 2) the
momentum is 0; and 3) the number of epochs is 1.
For major revision and for creating new nodes in
BP-LWVF, the umber of epochs is 1,000.

Table 2 shows the results obtained by off-line
learning. Only the recognition rates (averaged over
100 runs) for the test sets are given here. Those for
the training set are always 1 (or 100%). Tables 3-5
show the sizes of the NNTrees obtained using
different algorithms. For off-line learning, we have
results obtained using all data, 1/2 of the data, 1/5 of
the data, and 1/10 of the data. Clearly, if we reduce

the number of data used in off-line learning, the tree
size can be reduced. This is the basic idea for
designing small NNTrees [25].

Table 2 Performance of NNTrees designed by off-
line learning

Table 3 Sizes of the NNTrees obtained by off-line

learning with part of the training data

Table 4 Sizes of the NNTrees obtained by GA-LWVS

Table 5 Sizes of the NNTrees obtained by BP-LWVS

For incremental learning, we have results
obtained with and without initial trees. We can see
that the NNTrees obtained by BP-LWVS are smaller
than those obtained by GA-LWVS. They are even
comparable with the results of off-line learning.

Tables 6-10 show the performance of the
NNTrees obtained using different methods, for
different databases. These tables show that the
recognition rate for the test set. The recognition rate
for the training set is given in the parenthese. From

Qiangfu Zhao / Computing, 2004, Vol. 3, Issue 1, 84-92

 88

these results we can see that, in most cases, the trees
after incremental learning are better than the initial
trees (obtained by off-line learning). In addition, the
generalization ability (recognition rate for the test
set) of the NNTrees generated by the BP-LWVS is
much better than those generated by GA-LWVS. For
some cases the results obtained by the former are
even better than those obtained by off-line learning
(although not very significant).

Table 6 Results for Dermatology

Table 7 Results for Ionosphere

Table 8 Results for Tic-tac-toe

Table 9 Results for Housevotes84

Table 10 Results for Car

5. DESIGNING INTERPRETABLE
NNTREES

In the previous sections, we have shown that
NNTree is a model suitable for incremental learning.
Domain knowledge contained in the new data can be

integrated by increasing the number of nodes
dynamically. If a proper strategy for splitting node is
used, the tree will not become very large. In fact, as
shown by the experimental results, in most cases the
tree sizes are comparable with the results obtained
by off-line learning.

Now let us consider interpretation of NNTrees. In
the recent years, many algorithms for interpreting a
trained NN have been proposed in the literature [6]-
[12]. The algorithms can be roughly divided into two
categories: decompositional and pedagogical.
Decompositional algorithms extract rules from each
neuron (unit) in the NN and then aggregate them,
while pedagogical algorithms generate training
examples from the NN, and then induce rules from
the examples directly. The advantage of pedagogical
algorithms is that they can extract rules independent
of the learning rules and the network structure.
However, from the point of view of
understandability and accuracy, decompositional
algorithms are usually considered better because
they can extract exact rules contained in the given
NN.

In fact, in the worst case the computational
complexity (the memory space and the computation
time needed) for interpreting a single neuron is
exponentially proportional to the number of inputs.
For example, if the number of inputs for a neuron is
128, the computational complexity for extracting a
Boolean function from this neuron is proportional to
2 128 . This means that decompositional algorithms
are in general NP- complete.

To reduce the computational cost for interpreting
an NN, a direct way is to reduce the number of
inputs of the neurons. For conventional NNs, we can
reduce the number of inputs using some feature
selection techniques. However, the number of
features cannot be reduced if the features are already
well selected. If we use NNTrees, it is possible to
reduce the number of inputs of each ENN greatly
because an ENN can make a local decision using
only a few features. Thus, if we restrict the number
of inputs of each ENN, the NNTree can be
interpreted easily. Assume again that the number of
features is 128. The computational complexity will
be proportional to 2128 if we interpret the NNTree
directly. If we restrict the number of inputs for each
ENN to 8, the computational complexity will be
proportional to 2 8 × Size , where Size is the
number of non-terminal nodes in the NNTree. If the
inputs are properly chosen for each ENN, Size is
usually much smaller than the number of non-
terminal nodes in the conventional DT obtained by
C4.5, and thus Size can be considered as a constant.

One question is that whether the tree size will be
greatly increased if we restrict the number of inputs

Qiangfu Zhao / Computing, 2004, Vol. 3, Issue 1, 84-92

 89

for each ENN. Theoretically, the answer is no. In
fact, if we select the features used by each ENN
properly, the partitioning ability of the ENN might
be increased because unrelated features are
sometimes just noise for making correct decisions.
In this sense, restricting the number of inputs for
each ENN may actually reduce the size of the
NNTrees.

The point is how can we select useful features for
each ENN? In general, feature selection is a difficult
problem. This is more difficult for incremental
learning because we cannot select good features
unless we get enough information. If we just
consider the case of off-line learning, we can use
GA to select the features and to determine the
weights of each ENN simultaneously. For this
purpose, information related to feature selection can
be embedded in the genotype of the ENN. Three
methods were proposed in our study:

Method-I: Assign a fixed number of consecutive
features to each ENN. The number of features used
is pre-defined, and it is usually much smaller than
the number of all features. The position of the first
feature is encoded in the genotype along with the
connection weights.

Method-II: As in Method-I, a number of
consecutive features are assigned to an ENN.
However, this time, the number of features for
different ENNs can be different. The maximum
number of features to be used is pre-defined and
fixed. The position of the first feature and the
number of features to be used are

encoded in the genotype along with the weights
of the ENN.

Method-III: In this method, a number of
separate features are selected from different
positions. The number of used features and the
positions of the features are all encoded to the
genotype along with the weights. As in Method-II,
the upper limit of the number of features is pre-
defined. This method might be more flexible than
the previous two Methods, but the search space will
be much larger.

6. EXPERIMENTAL RESULTS FOR

DESIGNING INTERPRETABLE
NNTREES

To verify the effectiveness of the methods
introduced above, and to examine the performance
of the NNTrees so obtained, we conducted several
experiments using four databases taken from the
machine learning repository of the UCI. The
databases are Dermatology, Ionosphere, Mushroom
and Optdigits. To show the effect of feature
selection, databases with many features were used.

For detailed descriptions of the databases, see
related web pages.

The experiment parameters are 1) the number of
output neurons of each ENN is 2; 2) the number of
hidden layers is 1; 3) the number of hidden neurons
is 4; 4) the number of inputs is |F|/n, where |F| is the
dimension of the feature space, and n=1, 2, 4 or 8
(For Method-II and Method-III, |F|/n is the upper
limit of the number of inputs); 5) the number of runs
is 10; 6) the number of generations is 1,000; 7) the
population size is 200; 8) the selection rate is 0.2; 9)
the crossover rate is 0.7; 10) the mutation rate is
0.01; 11) the number of bits per weight is 16; 12)
each weight takes value from [-16,16]; and 13) the
number of bits for encoding the position of a
selected feature is 8.

We first conducted a group of experiments using
Method-I only. In the experiments, the number of
features for each ENN is the total number |F| divided
by n=1, 2, 4, or 8. The results for n=1 are traditional
NNTrees. The experimental results are shown in
Tables 11-14. The results of C4.5 after pruning (with
default value for the pruning parameter) are also
provided for comparison. In the tables, #Inputs is the
number of inputs for each ENN, Error Rate is the
percentage of misclassification for the test set, and
Tree Size is the number of all nodes. The Error Rate
and Tree Size are averaged over 10 runs except for
C4.5. The error rates for the training set are always
zero because perfect training was performed.

As stated earlier, if the features are properly
selected, the partitioning ability of the ENNs will not
be decreased, and the tree size will not be increased.
From the experimental results, however, we can see
that the size of the NNTree has somewhat been
increased when we restrict the number of inputs for
each ENN. There are many reasons for this. For
instance, the number of generations might be too
small to select the best set of features for each ENN;
the GA used in the experiments might be too simple;
or the restriction might be to severe for the problems
considered. Anyway, we should do more
experiments to verify these points. What we can say
right now is that in all cases the increase in tree size
is slower than the decrease in the dimension. That is,
the number of nodes will be increased less than n
times when the number of features are reduced n
times. This is a less-than-linear increase, but the
computational complexity can be exponentially
reduced.

To compare the effectiveness of different
methods, we conducted another set of experiments.
In these experiments, the maximum number of
inputs assigned to each ENN is set to 8 or 16.
Certainly, the number of inputs of Method-I is fixed.
Tables 15-18 show the experimental results. In the
tables, Max_#Input denotes the maximum number of

Qiangfu Zhao / Computing, 2004, Vol. 3, Issue 1, 84-92

 90

inputs. In all experiments, the average sizes of
NNTrees designed by using Method-II are the
largest if the number of inputs for the ENN is the
same. Probably, this is due to the fact that the search
space of Method-II is larger than that of Method-I.
From this point of view, we may think that the
NNTrees designed by Method-III would be larger
because the search space is larger. However, it was
not the case. Actually, for the database Optdigits, the
results of Method-III are much better than those
obtained by using other two methods. The reason
might be that Method-III can, in general, select
better features, although the search space is larger.

Table 11: Results for Dermatology, using Method-I

Table 12: Results for Ionosphere, using Method-I

Table 13: Results for Mushroom, using Method-I

Table 14: Results for Optdigits, using Method-I

Table 15 Results for Dermatology

Table 16 Results for Ionoshpere

Table 17. - Results for Mushroom

Table 18 Results for Optdigits

7. CONCLUSION AND REMARKS
In this study, we have introduced a hybrid

learning model called neural network tree (NNTree).
Results obtained so far have confirmed that the
NNTrees are suitable both for incremental learning
and for understanding. However, so far the two
aspects (learning and understanding) of NNTree
have been investigated separatedly. In fact, it is
difficult to select a proper set of features for each
ENN incrementally. This is because that features
useful for decision making must be selected based
on enough domain knowledge.

One possible solution for this is to design a
normal NNTree incrementally first, and then select
using say, GA, the best features for each ENN
before interpreting the NNTree. In this method,

Qiangfu Zhao / Computing, 2004, Vol. 3, Issue 1, 84-92

 91

feature selection is performed after learning, and
thus only information for feature selection are to be
evolved. The question is that can we always reduce
the number of features greatly in each ENN after
learning?

If we have enough information at the very
beginning (e.g., for data mining), we can design an
NNTree with restricted number of inputs for each
ENN, and then interpret. The NNTree can be re-
trained incrementally using new data. Here, we need
a mechanism for dynamic replacement of features
during incremental learning. That is, if some features
are found more useful than existing ones, we should
use them instead of the old ones.

8. ACKNOWLEDGMENT

This research is supported in part by the Grant-
in-Aid for scientific research of Japan Society for
the Promotion of Science (No. 14580426). The
author would like to thank Mr. Takeda and Mr.
Mizuno for conducting a great number of
experiments.

9. REFERENCES

[1] M. Hilario, “An overview of strategies for
neurosymbolic integration,” Proc. International Joint
Conference on Artificial Intelligence, 1995.

[2] S. Wermter and R. Sun, “An overview of
hybrid neural systems,” in Hybrid Neural Systems,
S. Wermter and R. Sun editors, Springer-Verlga,
Berlin Heidelderg, 2000.

[3] L. R. Medsker and D. L. Bailey, “Models and
guidelines for integrating expert systems and neural
networks,” in Intelligent Hybrid Systems, A. Kandel
and G. Langholz editors, CRC Press, 1992.

[4] R. P. Brent, "Fast training algorithms for
multilayer neural nets," IEEE Trans. on Neural
Networks, Vol. 2, No. 3, pp. 346-354, 1991.

[5] I. K. Sethi, “Entropy nets: from decision trees
to neural networks,” Proc. IEEE, Vol. 78, No. 10,
pp. 1605-1613, 1990.

[6] M. W. Craven and J. W. Shavlik, “Extracting
tree-structured representations of trained networks,”
In D. Touretzky, M. Mozer and M. Hasselmo
editors, Advances in Neural Information Processing
Systems (Vol. 8), MIT Press, 1996.

[7] J. L. Castro, C. J. Mantas and J. M. Benitez,
"Interpretation of artificial neural networks by
means of fuzzy rules," IEEE Trans. Neural
Networks, Vol. 13, No. 1, pp. 101-116, 2002.

[8] L. M. Fu, "Rule generation from neural
networks," IEEE Trans. System, Man, and
Cybernetics, Vol. 24, No. 8, pp. 114-124, 1994.

[9] G. P. J. Schmitz, C. Aldrich and F. S. Gouws,
"ANN-DT: an algorithm for extraction of decision

trees from artificial neural networks," IEEE Trans.
Neural Networks, Vol. 10, No. 6, pp. 1392-1401,
1999.

[10] T. Mitchell and S. Thrun, “Explanation-
based neuralnetwork learning: a lifelong learning
approach,” Kluwer Academic Publishers, Boston,
1996.

[11] H. Tsukimoto, "Extracting rules from trained
neural networks," IEEE Trans. Neural Networks,
Vol. 11, No. 2, pp. 377-389, 2000.

[12] A. B. Tickle, R. Andrews, M. Golea and J.
Diederich, “The truth will come to light: directions
and challenges in extracting the knowledge
embedded within trained artificial neural networks,”
IEEE Trans. on Neural Networks, Vol. 9, No. 6, pp.
1057-1068, 1998.

[13] http://www.salford-systems.com/index.html
[14] H. Guo and S. B. Gelfand,``Classification

trees with neural network feature extraction,'' IEEE
Trans. on Neural Networks, Vol. 3, No. 6, pp. 923-
933, Nov. 1992.

[15] A. Suarez and J. Lutsko, “Globally optimal
fuzzy decision trees for classification and
regression,” IEEE Trans. on Pattern Analysis and
Machine Intelligence, Vol. 21, No. 12, pp. 1297-
1311, 1999.

[16] C. Z. Janickow, “Fuzzy decision trees:
issues and methods,” IEEE Trans. on Systems, Man
and Cybernetics B, Vol. 28, No. 1, pp. 1-14, 1998.

[17] J. R. Koza, Genetic Programming – I,
Fourth Printing, The MIT Press, 1994.

[18] B. T. Zhang and H. Muhlenbein, “Evolving
optimal neural networks using genetic algorithms
with Occam’s razor,” Complex Systems, Vol. 7, No.
3, pp. 199-220, 1993.

[19] R. A. Jacobs and M. I. Jordan, “Adaptive
mixtures of local experts,” Neural Computation,
Vol. 3, pp. 79-87, 1991.

[20] M. I. Jordan and R. A. Jacobs, “Hierarchical
mixtures of experts and EM algorithm,” Neural
Computation, Vol. 6, pp. 181-214, 1994.

[21] J. R. Quinlan, C4.5: Programs for Machine
Learning, Morgan Kaufmann Publishers, 1993.

[22] S. Mizuno and Q. F. Zhao, "Neural Network
Trees with Nodes of Limited Inputs are Good for
Learning and Understanding," Proc. 4th Asia-Pacific
Conference on Simulated Evolution And Learning
(SEAL2002), pp. 573-576, Singapore, 2002.

[23] Q. F. Zhao, ''Evolutionary design of neural
network tree - integration of decision tree, neural
network and GA,'' Proc. IEEE Congress on
Evolutionary Computation, pp. 240-244, Seoul,
2001.

[24] Q. F. Zhao, ''Training and re-training of
neural network trees,'' Proc. INNS-IEEE
International Joint Conference on Neural Networks,
pp. 726-731, 2001.

Qiangfu Zhao / Computing, 2004, Vol. 3, Issue 1, 84-92

 92

[25] T. Takeda and Q. F. Zhao, "Size reduction
of neural network trees through re-training,''
Technical Report of IEICE, PRMU2002-105 (2002-
10).

[26] T. Takeda, Q. F. Zhao and Y. Liu, "A Study
on On-line Learning of NNTrees'' Proc. INNS-IEEE
International Joint Conference on Neural Networks,
2003.

Dr. Zhao received the Ph. D
degree from Tohoku University of
Japan in 1988. He joined the
Department of Electronic
Engineering of Beijing Institute of
Technology of China in 1988, first
as a post doctoral fellow and then
associate professor. He was
associate professor from Oct.

1993 at the Department of Electronic Engineering of
Tohoku University of Japan. He joined the University
of Aizu of Japan from April 1995 as an associate
professor, and became tenure full professor in April
1999.
His research interests include image processing,
pattern recognition and understanding,
computational intelligence, neurocomputing and
evolutionary computation.

