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Abstract: Models for machine learning can be categorized roughly into two groups: symbolic and non-symbolic 
Generally speaking, symbolic model based learning can provide understandable results, but cannot adapt to changing 
environments efficiently. On the other hand, non-symbolic model based learning can adapt to changing environments, 
but the results are usually "black-boxes”. In our study, we introduced a hybrid model called neural network tree 
(NNTree). An NNTree is a decision tree (DT) with each non-terminal node containing an expert neural network (ENN). 
Results obtained so far show that an NNTree can be re-trained incrementally using new data. In addition, an NNTree 
can be interpreted easily if we restrict the number of inputs for each ENN. Thus, it is possible to perform recognition, 
learning and understand using the NNTree model alone. 
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1. INTRODUCTION 

Models proposed for machine learning can be 
categorized roughly into two groups: symbolic and 
non-symbolic (or sub-symbolic). Symbolic models 
include decision trees (DTs), decision rules (DRs), 
finite state automata (FSA), and so on. Typical non-
symbolic models are fuzzy logic (FL) based systems 
and different kinds of neural networks (NNs). 
Generally speaking, symbolic approaches can 
provide  nderstandable results, but they are usually 
not efficient for changing environments. On the 
other hand, non-symbolic approaches can provide 
good results even if the data are not given all at 
once. The problem is that results provided by non-
symbolic approaches are often “black-boxes” that 
cannot be understood easily. The point is that no 
single symbolic or non-symbolic model can perform 
both learning and understanding simultaneously. To 
have the advantage of both symbolic and non-
symbolic learning, it is necessary to combine them 
together. For this purpose, many methods have been 
proposed in the literature [1]-[3]. Here, we just 
consider how to combine DTs and NNs. Briefly, we 
have the following approaches:  

1) Transformational approaches: We can 
design a DT first, and then transform it into an NN.  
This approach is useful for quick design of NNs 
because from the DT we can get a good initial 

condition and determine the NN structure easily [4] 
[5]. For understanding, however, we are more 
interested in the inverse transformation. That is, we 
should transform a trained NN into a DT [6] [9]. 
This inverse transformation is often not easy. 

2) Embed the DTs into a NN: This is a kind of 
modular neural network with each module being a 
small DT [13]. We can use this model when we 
know some basic concepts, but do not know how to 
make the global decisions. The problem in using this 
model is that although we know a great detail about 
each part, we cannot understand the whole system. 

 

 
Fig. 1 An example of neural network trees 
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3) Embed the NNs into a DT: This is the neural 
network tree (NNTree) considered in our study. An 
NNTree is DT with each non-terminal node 
containing an expert neural network (ENN). Fig. 1 is 
an example of the NNTrees. This model was first 
used for improving the performance of the DTs [14]. 
In our study, we are trying to use it both for learning 
and for understanding [22]-[26]. Using this model, 
we can understand the final decision roughly if we 
use each ENN to extract a symbol or concept. If we 
are also interested in the detail, we can extract rules 
from the ENNs. Depends on the types of the ENNs 
we use, rule extraction can be very easy. In addition, 
the “symbols” (i.e., the ENNs) can be improved 
using newly observed data. Therefore, NNTree is a 
possible model for unifying learning and 
understanding. 

4) Miscellaneous: There are many hybrid 
systems that can also be considered as combination 
of DTs and NNs, in a broad sense. Examples 
include: fuzzy decision trees [15] [16] and 
hierarchical mixtures of experts [19] [20]. Some 
authors also represent an NN in a tree structured 
genotype for genetic programming based learning 
[17] [18]. All these models are not understandable 
because they still make decisions in a black-box 
manner. 

This paper is a summary of the results we 
obtained so far in our study on NNTrees. In section 
2, we introduce the basic idea for evolving an 
NNTree off-line. In Sections 3 and 4, an incremental 
learning algorithm is given and its effectiveness is 
verified using experimental results. Section 5 and 6 
prove experimentally that NNTrees can be 
interpreted easily if we restrict the number of inputs 
for each ENN. Section 7 is the conclusion. 

 
2. OFF-LINE EVOLUTIONARY 

LEARNING OF NNTREES 
To construct a DT, it is often assumed that a 

training set consisting of feature vectors and their 
corresponding class labels are available. The DT is 
then constructed by partitioning the feature space in 
such a way as to recursively generate the tree. This 
procedure involves three steps: splitting nodes, 
determining which nodes are terminal nodes, and 
assigning class labels to terminal nodes. Among 
them, the most important and most time consuming 
step is splitting the nodes. There are many criteria 
for splitting nodes. One of the most popular criteria 
is the information gain ratio which is used in C4.5 
[21].  For off-line learning, the overall learning 
process of NNTree is the same as that of C4.5. The 
point here is to find an ENN in each non-terminal 
node to maximize the information gain ratio. To find 
the ENNs, we can use genetic algorithm (GA). The 

reason for using GA here is that we do not know in 
advance how to partition the examples.  

Three basic operations are used in GA: selection, 
crossover and mutation. In our study, for simplicity, 
we adopted the truncation selection, one point 
crossover and bit-by-bit mutation. The genotype of 
an individual ENN is a binary string consisting of all 
connection weights, with each weight represented in 
binary number. The ENNs used in our study are 
multilayer perceptrons (MLPs), although other 
models can also be adopted. The fitness is defined as 
the information gain ratio. Based on these 
definitions, a good ENN can be generated 
evolutionally for each non-terminal node [23]. 

 
2. INCREMENTAL LEARNING OF 

NNTREES 
The purpose of incremental learning is to 

improve an existing NNTree using new data. 
Incremental learning is important for a learner to 
adapt to environment changes. The first algorithm 
we proposed is learning with fixed structure 
(LWFS). In this method, an initial tree is first 
designed through off-line learning with currently 
available data. The ENNs of the NNTree are then re-
trained using newly observed data.  

Note that LWFS is actually supervised learning. 
For any new training example x, the teacher signal 
for node N (starting from the root) can be 
determined as follows. Suppose that for x, the i-th 
output of the corresponding ENN is the maximum ( i 
� [0,1] in this study), if the i-th child of N was 
assigned some examples of the class c=label(x) 
during off-line learning, the teacher signal is defined 
by 

 
On the other hand, if the i-th child of N was not 

assigned any example of the class c during off-line 
learning, but the j-th ( i  ≠ j ) child of N was, the 
teacher signal is defined by 

 
Once the teacher signals are determined, we can 

re-train the ENN using, say BP (back-propagation) 
algorithm. 

Currently, we have applied LWFS to produce 
smaller NNTrees [25]. The basic idea is to design an 
NNTree using partial training data (say, 1/10 of the 
data) first, and then re-train the tree using all data 
(also off-line learning). Since the tree size is 
approximately proportional to the number of training 
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data, the tree obtained by this two-stage approach 
is usually much smaller than that designed directly 
from all data. If the redundancy of the training set is 
high, the generalization ability of the tree will not be 
decreased significantly. 

For incremental learning, however, we cannot 
expect that the data obtained at the beginning 
contain enough (not to say redundant) domain 
information for obtaining a good tree structure. We 
should allow the structure of the tree changeable to 
integrate information incrementally. For this 
purpose, we proposed learning with variable 
structure (LWVS) [26]. The learning process is 
described as follows. Suppose that the new example 
is x, and its label is c=label(x). Start from the root 
node 

Step 1: See if the current node is a terminal node. 
If not, go to Step 2; if yes, see if the class label of 
the node is c. If yes (i.e., this example is 
recognizable), receive the next training example, and 
reset the current node as the root; if not, split the 
node into two, with one of them containing 
examples of the old node, and another containing the 
current example. The current node now becomes a 
parent node. A new ENN is then designed for this 
node. In designing the ENN, all training examples 
assigned to this node so far can be used. 

Step 2: Re-train the current node. In this step, we 
update the weights of the ENN only once using BP 
algorithm with the current example. The teacher 
signal is defined by (1) or (2). 

Step 3: See if x can be classified to the correct 
branch. If yes, go to Step 5; otherwise, continue. 

Step 4: Re-train the node again. Now, we re-train 
the ENN using all examples assigned to this node up 
to now. This is actually a review process. This will 
result in an ENN that can classify both new and old 
examples better. 

Step 5: Re-train the j-th child recursively, where 
we suppose that the j-th output of the ENN is the 
maximum for the input x. 

Remark-1: Note that in the above algorithm, for 
any input example, each node on the classification-
path (a similar concept as search-path) is re-trained 
in two steps: minor revision (Step 2) and major 
revision (Step 4). The basic idea is to revise the 
ENN slightly using BP. If the node is already good 
enough to recognize the current example after minor 
revision, input another example. Otherwise, we 
revise the ENN with all currently available data. 
These two steps can be considered as ``learning and 
reviewing'', which seems to be a simplified process 
of human learning. Of course, reviewing with all 
data assigned to this node so far is actually not 
practical for on-line incremental learning. In the 
future, we would like to introduce some forgetting 
mechanism in the reviewing process. 

Remark-2: In the growing algorithm, a new 
terminal node is split into two whenever an example 
is misclassified. As the result, the tree may grow too 
fast. One method for preventing the tree from 
growing too large is to split the nodes only when 
some splitting condition is satisfied. The following 
condition is used in our study: 

 

 
 

where ntotal  is the total number of examples 
assigned to the node by the tree, nwrong is the number 
of misclassified examples, T is a threshold and s is 
the splitting-rate. In general, T and s depend on the 
training set size and the number of classes. In our 
study, we just set T=30 and s=0.1 for simplicity. 
Fine-tuning is not performed. With these values, the 
above condition can be read as ``a new node will not 
be created if ntotal  is less than 30, or if the percentage 
of misclassified examples is less than 10%''. 

Remark-3: It is interesting to note that using the 
above algorithm, even if we start from an empty 
tree, the tree can grow automatically through 
incremental learning. When a new ENN is created, 
one child contains examples of the old node, and 
another contains the misclassified examples. 
Therefore, the teacher signals can be defined 
straightforwardly. For minor revision and major 
revision, we can define the teacher signals using (1) 
and (2). The only difference is that we use examples 
assigned to the nodes so far instead of those 
assigned in off-line learning. Therefore, BP 
algorithm can be used throughout the learning 
process. This is important because the computational 
cost of BP is usually much less than that of GA. As 
will be shown later, the NNTrees so obtained are 
smaller, and have better generalization ability, as 
compared with those obtained by using GA based 
learning. 

 
4. EXPERIMENTAL RESULTS FOR 

INCREMENTAL LEARNING 
To verify the effectiveness of LWVS, we 

conducted several experiments using five databases 
taken from the machine learning repository of the 
University of California at Irvine. Parameters related 
with these databases are given in Table 1, where # 
means ``the number of''. To make the results more 
reliable, we adopted n-fold cross validation for all 
databases. For example, for ``Housevotes84'', n=5, 
and thus a 5-fold cross validation is used. That is, 
4/5 of the data are used for learning, and 1/5 of the 
data are used for testing. The number n is chosen so 
that there is enough number of examples in the test 
set. This is important for reliable evaluation of the 
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results. To increase the reliability further, 10 or 20 
runs are conducted for each case; altogether 100 
experiments are conducted for each database. In 
each run, the training data are shuffled before 
learning, so that the examples are provided in 
different order. For on-line learning, the examples in 
the training set are provided one-by-one until all 
examples are visited once. Three algorithms are 
compared: 

1) Off-line learning: The off-line learning 
algorithm given in Section 2. Since all data are 
supposed to be available all at once, results obtained 
by this algorithm can be considered as the upper-
limit for incremental learning. 

2) GA-LWVS: Incremental learning using GA 
for creating new nodes and for major revision. 

3) BP-LWVS: Incremental learning using BP 
only. 

Table 1: Parameters of the databases 

 
 

Parameters related to the ENNs include 1) the 
number of inputs equals to the number of features; 
2) the number of hidden neurons is fixed to 5; and 3) 
the number of outputs is 2. Parameters related to GA 
for off-line learning and for creating a new node are 
1) the number of generations is 1,000; 2) the 
population size is 200; 3) the number of bits per 
weight is 16; 4) the selection rate is 0.2 (That is, 
20% of individuals with low fitness values are 
selected against in each generation); 5) the mutation 
rate is 0.01; and 6) the crossover rate is 0.7. For 
major revision in GA-LWVS, the number of 
generations is 100. Parameters related to BP for 
minor revision are 1) the learning rate is 0.5; 2) the 
momentum is 0; and 3) the number of epochs is 1. 
For major revision and for creating new nodes in 
BP-LWVF, the umber of epochs is 1,000. 

Table 2 shows the results obtained by off-line 
learning. Only the recognition rates (averaged over 
100 runs) for the test sets are given here. Those for 
the training set are always 1 (or 100%). Tables 3-5 
show the sizes of the NNTrees obtained using 
different algorithms. For off-line learning, we have 
results obtained using all data, 1/2 of the data, 1/5 of 
the data, and 1/10 of the data. Clearly, if we reduce 

the number of data used in off-line learning, the tree 
size can be reduced. This is the basic idea for 
designing small NNTrees [25]. 

Table 2 Performance of NNTrees designed by off-
line learning 

 
 
Table 3 Sizes of the NNTrees obtained by off-line 

learning with part of the training data 
 

 
Table 4 Sizes of the NNTrees obtained by GA-LWVS 

 
Table 5 Sizes of the NNTrees obtained by BP-LWVS 

 
 

For incremental learning, we have results 
obtained with and without initial trees. We can see 
that the NNTrees obtained by BP-LWVS are smaller 
than those obtained by GA-LWVS. They are even 
comparable with the results of off-line learning.  

Tables 6-10 show the performance of the 
NNTrees obtained using different methods, for 
different databases. These tables show that the 
recognition rate for the test set. The recognition rate 
for the training set is given in the parenthese. From 
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these results we can see that, in most cases, the trees 
after incremental learning are better than the initial 
trees (obtained by off-line learning). In addition, the 
generalization ability (recognition rate for the test 
set) of the NNTrees generated by the BP-LWVS is 
much better than those generated by GA-LWVS. For 
some cases the results obtained by the former are 
even better than those obtained by off-line learning 
(although not very significant). 

Table 6 Results for Dermatology 

 
Table 7 Results for Ionosphere 

 
Table 8 Results for Tic-tac-toe 

 
Table 9 Results for Housevotes84 

 
Table 10 Results for Car 

 
 

5. DESIGNING INTERPRETABLE 
NNTREES 

In the previous sections, we have shown that 
NNTree is a model suitable for incremental learning. 
Domain knowledge contained in the new data can be 

integrated by increasing the number of nodes 
dynamically. If a proper strategy for splitting node is 
used, the tree will not become very large. In fact, as 
shown by the experimental results, in most cases the 
tree sizes are comparable with the results obtained 
by off-line learning. 

Now let us consider interpretation of NNTrees. In 
the recent years, many algorithms for interpreting a 
trained NN have been proposed in the literature [6]-
[12]. The algorithms can be roughly divided into two 
categories: decompositional and pedagogical. 
Decompositional algorithms extract rules from each 
neuron (unit) in the NN and then aggregate them, 
while pedagogical algorithms generate training 
examples from the NN, and then induce rules from 
the examples directly. The advantage of pedagogical 
algorithms is that they can extract rules independent 
of the learning rules and the network structure. 
However, from the point of view of 
understandability and accuracy, decompositional 
algorithms are usually considered better because 
they can extract exact rules contained in the given 
NN. 

In fact, in the worst case the computational 
complexity (the memory space and the computation 
time needed) for interpreting a single neuron is 
exponentially proportional to the number of inputs. 
For example, if the number of inputs for a neuron is 
128, the computational complexity for extracting a 
Boolean function from this neuron is proportional to 
2 128 . This means that decompositional algorithms 
are in general NP- complete. 

To reduce the computational cost for interpreting 
an NN, a direct way is to reduce the number of 
inputs of the neurons. For conventional NNs, we can 
reduce the number of inputs using some feature 
selection techniques. However, the number of 
features cannot be reduced if the features are already 
well selected. If we use NNTrees, it is possible to 
reduce the number of inputs of each ENN greatly 
because an ENN can make a local decision using 
only a few features. Thus, if we restrict the number 
of inputs of each ENN, the NNTree can be 
interpreted easily. Assume again that the number of 
features is 128. The computational complexity will 
be proportional to 2128 if we interpret the NNTree 
directly. If we restrict the number of inputs for each 
ENN to 8, the computational complexity will be 
proportional to 2 8 × Size   , where Size is the 
number of non-terminal nodes in the NNTree. If the 
inputs are properly chosen for each ENN, Size is 
usually much smaller than the number of non-
terminal nodes in the conventional DT obtained by 
C4.5, and thus Size can be considered as a constant. 

One question is that whether the tree size will be 
greatly increased if we restrict the number of inputs 
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for each ENN. Theoretically, the answer is no. In 
fact, if we select the features used by each ENN 
properly, the partitioning ability of the ENN might 
be increased because unrelated features are 
sometimes just noise for making correct decisions. 
In this sense, restricting the number of inputs for 
each ENN may actually reduce the size of the 
NNTrees. 

The point is how can we select useful features for 
each ENN? In general, feature selection is a difficult 
problem. This is more difficult for incremental 
learning because we cannot select good features 
unless we get enough information. If we just 
consider the case of off-line learning, we can use 
GA to select the features and to determine the 
weights of each ENN simultaneously. For this 
purpose, information related to feature selection can 
be embedded in the genotype of the ENN. Three 
methods were proposed in our study: 

Method-I: Assign a fixed number of consecutive 
features to each ENN. The number of features used 
is pre-defined, and it is usually much smaller than 
the number of all features. The position of the first 
feature is encoded in the genotype along with the 
connection weights. 

Method-II: As in Method-I, a number of 
consecutive features are assigned to an ENN. 
However, this time, the number of features for 
different ENNs can be different. The maximum 
number of features to be used is pre-defined and 
fixed. The position of the first feature and the 
number of features to be used are 

encoded in the genotype along with the weights 
of the ENN. 

Method-III: In this method, a number of 
separate features are selected from different 
positions. The number of used features and the 
positions of the features are all encoded to the 
genotype along with the weights. As in Method-II, 
the upper limit of the number of features is pre-
defined. This method might be more flexible than 
the previous two Methods, but the search space will 
be much larger. 

 
6. EXPERIMENTAL RESULTS FOR 

DESIGNING INTERPRETABLE 
NNTREES 

To verify the effectiveness of the methods 
introduced above, and to examine the performance 
of the NNTrees so obtained, we conducted several 
experiments using four databases taken from the 
machine learning repository of the UCI. The 
databases are Dermatology, Ionosphere, Mushroom 
and Optdigits. To show the effect of feature 
selection, databases with many features were used. 

For detailed descriptions of the databases, see 
related web pages. 

The experiment parameters are 1) the number of 
output neurons of each ENN is 2; 2) the number of 
hidden layers is 1; 3) the number of hidden neurons 
is 4; 4) the number of inputs is |F|/n, where |F| is the 
dimension of the feature space, and n=1, 2, 4 or 8 
(For Method-II and Method-III, |F|/n is the upper 
limit of the number of inputs); 5) the number of runs 
is 10; 6) the number of generations is 1,000; 7) the 
population size is 200; 8) the selection rate is 0.2; 9) 
the crossover rate is 0.7; 10) the mutation rate is 
0.01; 11) the number of bits per weight is 16; 12) 
each weight takes value from [-16,16]; and 13) the 
number of bits for encoding the position of a 
selected feature is 8. 

We first conducted a group of experiments using 
Method-I only. In the experiments, the number of 
features for each ENN is the total number |F| divided 
by n=1, 2, 4, or 8. The results for n=1 are traditional 
NNTrees. The experimental results are shown in 
Tables 11-14. The results of C4.5 after pruning (with 
default value for the pruning parameter) are also 
provided for comparison. In the tables, #Inputs is the 
number of inputs for each ENN, Error Rate is the 
percentage of misclassification for the test set, and 
Tree Size is the number of all nodes. The Error Rate 
and Tree Size are averaged over 10 runs except for 
C4.5. The error rates for the training set are always 
zero because perfect training was performed. 

As stated earlier, if the features are properly 
selected, the partitioning ability of the ENNs will not 
be decreased, and the tree size will not be increased. 
From the experimental results, however, we can see 
that the size of the NNTree has somewhat been 
increased when we restrict the number of inputs for 
each ENN. There are many reasons for this. For 
instance, the number of generations might be too 
small to select the best set of features for each ENN; 
the GA used in the experiments might be too simple; 
or the restriction might be to severe for the problems 
considered. Anyway, we should do more 
experiments to verify these points. What we can say 
right now is that in all cases the increase in tree size 
is slower than the decrease in the dimension. That is, 
the number of nodes will be increased less than n 
times when the number of features are reduced n 
times. This is a less-than-linear increase, but the 
computational complexity can be exponentially 
reduced. 

To compare the effectiveness of different 
methods, we conducted another set of experiments. 
In these experiments, the maximum number of 
inputs assigned to each ENN is set to 8 or 16. 
Certainly, the number of inputs of Method-I is fixed. 
Tables 15-18 show the experimental results. In the 
tables, Max_#Input denotes the maximum number of 
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inputs. In all experiments, the average sizes of 
NNTrees designed by using Method-II are the 
largest if the number of inputs for the ENN is the 
same. Probably, this is due to the fact that the search 
space of Method-II is larger than that of Method-I. 
From this point of view, we may think that the 
NNTrees designed by Method-III would be larger 
because the search space is larger. However, it was 
not the case. Actually, for the database Optdigits, the 
results of Method-III are much better than those 
obtained by using other two methods. The reason 
might be that Method-III can, in general, select 
better features, although the search space is larger. 

Table 11: Results for Dermatology, using Method-I 

 
Table 12: Results for Ionosphere, using Method-I 

 
Table 13: Results for Mushroom, using Method-I 

 
Table 14: Results for Optdigits, using Method-I 

 
Table 15 Results for Dermatology 

 
Table 16 Results for Ionoshpere 

 
Table 17. - Results for Mushroom 

 
Table 18 Results for Optdigits 

 
 

7. CONCLUSION AND REMARKS 
In this study, we have introduced a hybrid 

learning model called neural network tree (NNTree). 
Results obtained so far have confirmed that the 
NNTrees are suitable both for incremental learning 
and for understanding. However, so far the two 
aspects (learning and understanding) of NNTree 
have been investigated separatedly. In fact, it is 
difficult to select a proper set of features for each 
ENN incrementally. This is because that features 
useful for decision making must be selected based 
on enough domain knowledge. 

One possible solution for this is to design a 
normal NNTree incrementally first, and then select 
using say, GA, the best features for each ENN 
before interpreting the NNTree. In this method, 
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feature selection is performed after learning, and 
thus only information for feature selection are to be 
evolved. The question is that can we always reduce 
the number of features greatly in each ENN after 
learning? 

If we have enough information at the very 
beginning (e.g., for data mining), we can design an 
NNTree with restricted number of inputs for each 
ENN, and then interpret. The NNTree can be re-
trained incrementally using new data. Here, we need 
a mechanism for dynamic replacement of features 
during incremental learning. That is, if some features 
are found more useful than existing ones, we should 
use them instead of the old ones. 
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