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Abstract: The authors examine neural network techniques for computing of Lyapunov spectrum using observations 
from unknown dynamical system. Such an approach is based on applying of multilayer perceptron (MLP) for 
forecasting the next state of dynamical system from the previous one. It allows for evaluating the Lyapunov spectrum of 
unknown dynamical system accurately and efficiently only by using scalar time series. The results of experiments are 
discussed. 
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1. INTRODUCTION 
The chaotic behaviour of a dynamical system has 

been manifested by the study of nonlinear 
mathematical equations and it has been observed on 
experimental data [1,2]. Unfortunately, in typical 
practical problems, we do not know the nonlinear 
equations that describe the underlying dynamical 
system of an observed process. The problem consist 
of identifying the chaotic behaviour and building a 
model that captures the important properties of the 
unknown system by using only experimental data. In 
order to determine the main properties of the model, 
we must estimate dynamic invariants of the 
underlying system, such as the correlation 
dimension, the Lyapunov exponents and the 
Kolmogorov entropy. However, in practice, the 
existing approaches for the estimation of the 
Lyapunov exponents from experimental data are 
characterized by computational complexity, require 
a large data length and applied only when we have 
all observations of dynamical system. Working on 
real world data, it is often difficult to obtain a 
reliable estimate with these approaches and thus 
their applicability is limited. 

An important application of chaos theory is the 
analysis of EEG data for the detection and prediction 
of epileptic seizures. Epilepsy is one of the most 
serious neurological disorders, affecting 1% of the 
population in the world. The analysis of the EEG 
signals has been the subject of many rapidly 
growing studies [3]. The common approach is that a 
dynamical property of choice is estimated on EEG 
records prior to the onset of epileptic seizures and 

the change of the evolution of the estimated values, 
as time approaches the onset of a seizure, is taken as 
a predictor of a seizure. For example, by estimating 
the largest Lyapunov exponent, it has been shown 
that the complexity in the brain decreases as the time 
approaches the onset of epileptic seizure [4]. There 
are still open problems as to which characteristics 
can exhibit evolution indicating a forthcoming 
seizure, and there is ongoing investigation of 
techniques capable of capturing changes in the EEG 
signal prior to seizure [5]. In this respect, neural 
networks combined with the estimation of Lyapunov 
exponents may be an appropriate tool that can be 
developed to a robust method for automatic 
detection and prediction of abnormality in EEG data. 

 As was shown in [6,7] the multilayer perceptron 
has been used successfully for the estimation of the 
Lyapunov exponents from scalar time series. 

The rest of the paper is organized as follows. In 
section 2 is described the Lyapunov exponents. 
Section 3 and 4 present the techniques for 
computing the Lyapunov exponents respectively 
using all and single time series. Section 5 discusses 
the results of experiments. To end, Section 6 gives 
conclusions. 
 

2. THE LYAPUNOV EXPONENTS 
The concept of Lyapunov exponents existed 

before the establishment of chaos theory, and was 
developed to characterize the stability of linear as 
well as non-linear systems. The definition covers 
both discrete and continuous systems. A negative 
exponent indicates a local average rate of 
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contraction while a positive value indicates a local 
average rate of expansion. Since the advent of chaos, 
the set or spectrum of Lyapunov exponents has been 
considered a measure of the effect of perturbing the 
initial condition of a dynamical system. 

 Let’s consider a dynamical system described by 
n differential or difference equations. This system 
has n Lyapunov exponents λi (i=1,2,…,n), that are 
globally called Lyapunov spectrum. The Lyapunov 
spectrum describes the system dynamics by defining 
the evolution of the attractor’s trajectories and 
characterizes the sensitive dependence on the initial 
conditions. These exponents are the average 
exponential rates of convergence (divergence) of 
nearby trajectories in the phase space. The largest 
Lyapunov exponent is the statistical measure of the 
divergence between two orbits starting from slightly 
different initial conditions. In a chaotic system the 
largest Lyapunov exponent is positive.  

Let’s consider a small sphere at the initial 
condition in the n-dimensional phase space. Through 
the time this sphere is transformed into an ellipsoid 
with n principal axes: the Lyapunov spectrum 
measures the exponential growth for the principal 
axes of the evolving ellipsoid. In fact, let’s consider 
the following Lyapunov spectrum: 

 1 2 nλ λ λ≥ ≥ ≥K   (1) 
 and let’s order the axis of the ellipsoid by 
decreasing length; λ1 corresponds to the longest 
axis, λ2 corresponds to the subsequent one, and so 
on. The Lyapunov exponent λi is defined as: 

 

( )1 lnlim (0)
i

i
t i

l t
t l
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where )0(il  and )(tli  are the lengths of i-th axis at 
the initial time and at a time t, respectively. 
Therefore every Lyapunov exponent characterizes 
the modification of the principal axis of the 
ellipsoid. In an n-dimensional chaotic system the 
sum of the n Lyapunov exponents is negative for 
dissipative systems. The positive exponents are 
responsible for the sensitivity to initial conditions. 
The sum of the positive Lyapunov exponents is 
equal to Kolmogorov entropy and determines the 
upper prediction limit. High dimension chaotic 
systems tend to have very large positive exponents 
and predictions may be of little use.  

 
3. COMPUTING OF LYAPUNOV  

SPECTRUM USING ALL OBSERVATIONS 
Let’s consider a dynamical system described by 

the n-dimensional observable vector 
X(t)=[X1(t),X2(t),…,Xn(t)] and assume that the 
observations Xi(t) are known.  

A neural network can be created to forecast the 
next state of dynamical system from the previous 
one. This network is a multilayer network with n 
input units, m hidden units, and n output units (Fig. 
1). The output is defined as x(t+1)=F(x(t)). Starting 
from a given initial condition, this network is able to 
compute the state of the dynamical system at any 
time, as well as to describe the evolution of the 
phase trajectory points. At each step the Gram-
Schmidt orthogonalization procedure must be used 
to adjust the output vector. 

 Let )(twi  be the length of the i-th vector at the 
time t. This length characterizes the value of the 
vector along the i-th ellipsoid axis. Thus, the i-th 
Lyapunov’s exponent is given by: 

∑
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The correspondent length )(twi  can be evaluated 
by using a neural network and, consequently, the 
Lyapunov exponents can be estimated. The 
algorithm to compute the complete Lyapunov 
spectrum is as follows: 

1. Take the initial point  N(0)=[x1(0),x2(0),…,xn(0)]  
from the basin of attraction. 

2. Choose a small value 810−≈ε  and define the 
coordinates of next n points as follows: 

A1(0)=[x1(0)+ε,x2(t),…,xn(t)] 
           A1(0)=[x1(0),x2(t)+ε,…,xn(t)]    (4) 
           … 

A1(0)=[x1(0),x2(t),…,xn(t)+ε] 
The following orthogonal vectors are obtained: 

NA1(0)= w1(0)= [ε,0,…,0] 
           NA2(0)=w2(0)=[0,ε,…,0]   (5) 

 . . . 
NAn(0)= w2(0) =[0,0,…,ε] 

Figure 1.  Predicting neural network  
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3. Compute the length of each vector 
ε== )0()0( ii wNA , where ni ,1= . 

4. At the time t=0, use the set of points N(0), A1(0), 
A2(0),…, An(0) as the input vector of the neural 
network. The output produced by the predicting 
network is the set of the coordinates of the points 
at the next time t=t+1: 

N(1) =[x1(1,N),x2(1,N),…, xn(1,N)] 
           A1(1)=[x1(1,A1),x2(1,A1),…,xn(1,A1)]    (6) 

A2(1)=[x1(1,A2),x2(1,A2),…,xn(1,A2)] 
. . .  
An(1)=[x1(1,An),x2(1,An),…,xn(1,An)], 

where xj(1,Aj) is the j-th coordinate of the point 
Aj at the time t=1. This leads to the next set of 
vectors: 

],...,,[)1()1( 1211111 nwwwwNA ==                 
],...,,[)1()1( 2221222 nwwwwNA ==   (7) 

. . .  
],...,,[)1()1( 21 nnnnnn wwwwNA ==  

where wij is the i-th coordinate of the j-th vector, 
having defined ),1(),1( NxAxw ijiij −= . 

5. The basis [w1(1),w2(1),…,wn(1)] is transformed 
into the orthonormal frame by using the Gram-
Schmidt algorithm, as follows: 

a) The first vector of the orthonormal frame 
is chosen as: 
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b) The subsequent vectors are defined by the 
following recurrent formulas: 

∑
−

=

′⋅′⋅−=
1

1
)1())1()1(()1()1(

i

j
jj

T
iii wwwww  

22
2

2
1 ...)1( niiii wwww +++=  









=′

)1(
,...,

)1(
,

)1(
)1( 21

i

ni

i

i

i

i
i w

w
w
w

w
ww  

where ni ,2= . 
c) Compute: 

)0(
)1(
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where ni ,1= . 
The result is the new set of points: 

)],1(),...,,1(),,1([)1( 21 NxNxNxN n=  

)],1(),...,,1(),,1([)1( 112111 AxAxAxA n=   (9) 

)],1(),...,,1(),,1([)1( 222212 AxAxAxA n=  
. . .  

)],1(),...,,1(),,1([)1( 21 nnnnn AxAxAxA = , 

where ),1('),1( NxwAx iijjj +⋅= ε . 

6. Repeat from step 3 to step 5 for pt ,1= , where 
1000≈p . 

7. Define the Lyapunov spectrum as: 

∑
=

=
p

t
ii ts

p 1
)(1λ  

where ni ,1= . The following Lyapunov’s 
exponents are therefore obtained: 

 nλλλ ≥≥≥ K21  (10) 
By using this approach, the Lyapunov exponents of 
the Henon time series are 0.442 and –1.625 (the 
actual values are 0.418 and -1.622, respectively). For 
the Lorenz time series they are 0.777, 0.003, and –
14.472 (the actual values are 0.906, 0, and –14.472, 
respectively). Figg. 2 and 3 show the dependence of 

iλ  from p for the Henon and the Lorenz time series, 
respectively. 

 
4. COMPUTING OF LYAPUNOV 

SPECTRUM USING SINGLE  
TIME SERIES 

 
In this case the Lyapunov spectrum can be computed 
by a similar way. However before we must perform 
the reconstruction of attractor dynamics. Let’s 
assume now, that only one observation Xi(t) is 
known. The main goal is to compute Lyapunov 
exponents of unknown dynamical system using only 
one observation. Then the first  step  of  proposed  
approach  is  to  reconstruct  the attractor dynamics 
from a single time series, using the method of delays 
[2]. 

After this step we can obtain the reconstructed 
trajectory X(t), which can be presented as a matrix 
where each row is a phase-space vector: 
 X=[X(1) X(2) … X(k)], (11) 
where X(ί) is the state of the system at discrete time ί 
and each X(ί) is given by 

 X(i) = [x(i) x(i – τ)…x(i – (m – 1)⋅τ )]  

= [x1(i) x2(i)… xm(i)], (12) 
where τ is the time delay and m is the embedding 
dimension.  

It is based on the Taken’s theorem [8], which 
states that the attractor can be reconstructed from a 
one dimensional observation in a phase space with 
dimension m ≥ 2[d] + 1, where d is the fractal 
dimension of the attractor and [.] is the integer part. 
Chaotic systems have strange attractor characterized 
by a non-integer dimention d. To apply the 
embedding theorem it is necessary to estimate the 
embedding dimension, i.e. the dimension of the 
reconstructed state space  m, and the time delay, 
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which is the time separation of lagged samples 
comprising the reconstructed state vector.  

There exist several methods for the estimation of 
these parameters, e.g. mutual information for the 
delay time, false nearest neighbors and saturation of 
measures such as correlation dimension for the 
embedding dimension [2,6].  

The second step of proposed approach is to create 
neural network in order to forecast the next state of 
dynamical system X(i) from the previous one X(i-1). 
This network is a multilayer perceptron with m input 
units, k hidden units, and n output units (Fig.1). 
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Figure 2. Estimation of the Lyapunov spectrum for the 

Henon time series 
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Figure 3. Estimation of the Lyapunov spectrum for the 

Lorenz time series 

The output is defined as 
 X(t+1) = F(X(t)). (13) 

After training neural network and starting from a 
given initial condition, this network is able to 
compute the state of the dynamical system at any 
time, as well as to describe the evolution of the 
phase trajectory points. At each step the Gram-
Schmidt orthogonalization procedure must be used 
to adjust the output vector as it is shown in section 3. 
Thus the proposed approach permits to estimate 
Lyapunov exponents using only single time series. 

 
5. EXPERIMENTAL RESULTS 

 
Let’s examine proposed approach for estimation of 
Lyapunov spectrum. As the chaotic systems, which 
we want to model are the Lorenz and Roessler 
attractors. The Lorenz attractor is described by the 
following three coupled nonlinear differential 
equations: 
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where G=10, r=28, and b=8/3 for chaotic behavior. 
Lorenz proposed this model for the atmospheric 
turbulence. For such a system actual values of 
Lyapunov exponents are 0.906, 0, and –14,472, 
respectively. The value of fractal dimension is 2.06. 
The Roessler attractor can be described by the 
following equations:  
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where a = b = 0.2 and r = 5.7 for chaotic behavior. 
The actual values of Lyapunov exponent are 0.07, 0, 
and –5.39 respictevely. The value of fractal 
dimension is 2.03. 
Only the X-series has been used in both cases; the 
size of the data set was 400 points. We have been 
choose the embedding dimension m=3 less than in 
accordance with Takens criterion. A multilayer 
perceptron with 3 input units, 10 hidden units, and 3 
output units has been used.  
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5. CONCLUSION 

In this paper some aspects of chaotic time series 
processing have been addressed, namely estimation 
of the Lyapunov spectrum from all observations and 

from the single time series. The proposed approach 
based on the  applying of  the  multilayer  perceptron  
for estimation of Lyapunov exponents. The neural 
network technique allow for evaluating the 
Lyapunov spectrum even on small data set, that 

Table 1. Estimation of Lyapunov spectrum of Lorenz system using neural network 

Lyapunov spectrum 
dt Τ 

λ1 λ2 λ3 

Absolute 
error 

Relative 
error 

0,04170 0,1668 0,612978 -0,2016840 -15,0033 0,559053 3,83% 

0,04200 0,1680 0,725777 -0,0211582 -14,6402 0,193839 1,33% 

0,04215 0,1686 0,966544 -0,3009800 -15,9458 1,407730 9,64% 

0,04220 0,1688 0,965399 -0,3006240 -15,9270 1,389170 9,51% 

0,08500 0,1700 1,143851 -0,2816490 -14,9843 0,553092 3,79% 

0,04260 0,1704 1,021790 -0,4326160 -15,6514 1,168620 8,00% 

0,04260 0,1704 0,483841 0,0528098 -13,3949 1,251610 8,57% 

0,04300 0,1720 0,742471 -0,0865899 -14,2650 0,358420 2,45% 

0,08600 0,1720 0,830438 -0,3357490 -13,5627 1,066370 7,30% 

0,04320 0,1728 0,570654 -0,1465600 -14,9297 0,511766 3,51% 

0,08700 0,1740 1,216890 -0,6435080 -14,5374 0,715508 4,90% 

 
Table 2. Estimation of Lyapunov spectrum of Roessler system using neural network 

Lyapunov spectrum 
dt τ 

λ1 λ2 λ3 

Absolute 
error 

Relative 
error 

0,04 0,04 0,173003 -0,0821049 -5,47571 0,154879 2,87% 

0,07 0,07 0,060350 -0,3888620 -5,18352 0,441825 8,19% 

0,06 0,12 0,090696 0,0030709 -5,02998 0,363565 6,74% 

0,06 0,12 0,106080 -0,0358488 -5,79224 0,402378 7,46% 

0,06 0,12 0,077922 -0,0187908 -5,93021 0,537581 9,97% 

0,07 0,14 0,129117 -0,1092460 -4,93167 0,477637 8,86% 

0,08 0,16 0,106981 -0,0449128 -5,36074 0,065971 1,22% 

0,08 0,16 0,085461 -0,0282390 -5,31476 0,084427 1,57% 

0,04 0,16 0,119605 -0,2027930 -5,56896 0,272851 5,06% 

0,06 0,18 0,141245 -0,0751598 -5,48983 0,141277 2,62% 

0,08 0,48 0,078753 -0,0144016 -5,24691 0,147000 2,73% 
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permits both for reducing the computationally 
complexity and for limit the observation time.  
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