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1. INTRODUCTION  
Let examine multilayer neural network, 

consisting of N neural blocks (Fig.1). Each of these 
blocks has a structure described in Fig. 2. 

 
 
 
 
 
 
 

Fig.1 – Multilayer neural network 
 

Output values of each neural block are input 
values for the next block; input values for the first 
block are sequence of input 
patterns ( ) ( )01 ,..., , 1,

Tk k k
mx x x k L= = . Output value 

of in-th neuron of n-th block for a k-th pattern is 
defined by recurring expression 
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Fig.2 – Architecture of n neural block 

 

 
 So we form a vector 
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The task of such neural networks’ training 
consist in finding of weights’ coefficients matrix 
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and vectors of thresholds 
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minimize some network error ES. That error 
characterizes deviation of network outcome values 
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N

N k
iy  from standard 

N

k
it  for each iN-th neural 

element for k-th pattern. We take a mean-square 
error as criterion function: 
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2. TRAINING ALGORITHM  

For a program realization of such neural 
networks’ training process is very helpful its matrix 
algorithmization [1], described by the next way: 

Modifications of synaptic connection in 
multilayer heterogeneous neural network are 
produced accordance to the formulas: 
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where ( )nC  is calculated recurrently: 
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are n nm m×  matrixes, 
1

( )
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n
j jM

−
 - are ( )1 1n nm m −× +  

matrixes consisting of zero elements with only 
element in position 1n nj j − , which value is equal to 
one. 

Synaptic connection changes begin from the last 
layer down to first. 

Using such training methodic we can take a 
training step ( )nα  like a constant or a adaptive. Last 
case is more effective. For a twolayer neural 
network we can take it in accordance to the one of 
the next method: layerwise training, two-parameter 
training and generalized method of fastest descent 
[2]. But spreading some of them in to the neural 
networks with more then two layers architecture 
gives very complicated formulas. So we proposed 
the next two methods, which basic principals deal 
with matrix algorithmization and fastest descent 
method. 

  
3. TRAINING ALGORITHM BASED ON 

THE NETWORKS’ ERROR 
CONDITIONAL OPTIMIZATION  

We proposed new heuristic method of neural 
networks’ training process with use of adaptive 
training step. Such method based on conditional 
minimization of the each layers’ error. By use of this 
method we consider each layer like onelayer neural 
network, which training produced by gradient 
descent method. And we aimed output of each layer 
to the received “standard”. So, we must recalculate 
“standard” values through all training process.  

The algorithm of thus method can be described in 
the next way: 

Procedure Network training 
begin  
  set training accuracy ε  
  repeat 
      modification of N layer synaptic connection 
      for n=N-1 down to 1 do 
       begin 
           for k=1 to L do 
              begin 

finding of “standard” output of n-th 
layer for each pattern  

              end 
modification of n-th layer synaptic 
connection 

        end 
        finding the training error ES 
   until SE ε<  
 end. 
This algorithm is based on the next theorem. 
Theorem. By using of above algorithm we must 

calculate “standard” output values accordance to the 
formulas 
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where parameter β  must be taken by us as a small 
number.   

 Adaptive training step can by taken in the next 
way: 
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Modification of weights and threshold is 
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Proof. Let us examine n-th block of our multilayer 
neural network (Fig. 2). We will consider it as 
onelayer feedforward neural network with input 
values ( )1

( 1), ( 1), ( 1), ( 1),
1 2 1
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mY y y y

−
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and output described as follows.  

The process of finding “standard” values ( ),
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1,n ni m=  of outputs in n-th neural layer on the basis 
of gradient descent method has the next form: 
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Based on these formulas we denote finding 
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modification of synaptic connection in n-th layer.  
Let’s find the partial derivations 
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where training step α  can be taken like a constant or 
a adaptive.  

But for all used function the domain of outcome 
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Let’s find the second order partial derivations of 
the error function by the output of n-th neural layer 
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are calculated recurrently beginning from the 
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where ( 1)
n n

n n n
j jP W += ⋅∆ . 

Let’s find a such value of α , that minimize 
network error. For that purposes we must compare to 

zero the next expression: 
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And finally we receive 
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Taking received values ( ),
n

n k
it  like “standard” we 

can find formulas for synaptic connection 
modification in n-th neural layer.  

Let us extend mean-square error of n-th layer in 
the next way: 
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Using matrix algoritnmization we can rewrite 
above formulas in the next way: 
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In a similar manner 
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So, the formulas for weights and threshold 

changes will be the next: 
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Let’s find second order partial derivatives of 
error function: 
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In the same manner we receive 
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After modification of n-th layer synaptic 
connections the network error is changed accordance 
to the formulas: 
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Let’s find such point α, in which error function 

reach it minimal value. For that purpose we mast 
compare with zero the next expression 
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In that way we receive the next value 
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And finally 
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■ 
 
4. LAYERWISE TRAINING OF THE 

MULTILAYER NEURAL NETWORK WITH 
USE OF THE ADAPTIVE TRAINING STEP  

Let us represent layerwise training technique, 
which is an extension from such method for 
twolayer network [2]. The algorithm of thus method 
can be represented in the next way: 

Procedure Network training 
begin  
  set training accuracy ε  
  repeat 
      for n=N down to 1 do 
       begin 

finding the error ES  for all training set;   
modification of n-th layer synaptic 
connection 

        end 
   until SE ε<  
 end. 
For the faster convergence of this algorithm we 

can take a training step like adaptive. It calculation 
is based on the next theorem. 

Theorem. For the layerwise training methodic of 
multilayer heterogeneous feedforward neural 
network the adaptive training steps for each layer are 
calculated accordance to the formulas 
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are computed recurrently from the  
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Proof. Accordance to [1] we have: 
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Let’s find second order partial derivation of error 
function: 
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Let’s extend error function in to the Taylor 
series: 
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For finding minima of error function we take a 
first derivation by ( )nα  and equal it to zero. So, we 
receive: 
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5. EXPERIMENTS AND DISCUSSION  
The results of use of the above training methods 

for training of twolayer feedforward neural networks 
with architecture 3-4-1 with sigmoid element in a 
hidden layer for Henon attractor forecasting are 
presented below. After 100 iteration was received 
the next middle square errors: for constant training 
steps 1 0.02α = , 2 0.02α =  - 0.3433; for constant 
training step 1 0.01α = , 2 0.02α =  - 0.3127; for 
constant training step 1 0.02α = , 2 0.05α =  - 0.3165; 
for a adaptive training step, used in Matlab Neural 
Network Toolbox – 0.5094; for training with Rprop 
– 0.09722; for training algorithm based on the 
networks’ error conditional optimization – 0.2715; 
for layerwise training with use of the adaptive 
training step – 0.0025. For some constant training 
step was observed divergence of the training 
process. Above results shows that proposed in this 
paper algorithms give good convergence in the set of 
gradient descent methods. The same distinction of 
MSE was also obtained for other training sets. 

 
6. CONCLUSION  

Implementation of such training methodics for 
neural network training gives a good result in a time 
of convergence. The matrix algorithmization of the 
training process is very helpful in its program 
realization.  
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