
Leonid Makhnist, Nikolaj Maniakov, Vladimir Rubanov / Computing, 2004, Vol. 3, Issue 1, 99-106

 99

SOME METHODS OF ADAPTIVE MULTILAYER

NEURAL NETWORKS TRAINING

Leonid Makhnist, Nikolaj Maniakov, Vladimir Rubanov

Brest State Technical University, Department of High Mathematics,
Moskovskaja 267, 22417, Brest, Republic of Belarus

Abstract: Is proposed two new techniques for multilayer neural networks training. Its basic concept is based on the
gradient descent method. For every methodic are showed formulas for calculation of the adaptive training steps.
Presented matrix algorithmizations for all of these techniques are very helpful in its program realization.

Keywords: Multilayer Neural Networks, Gradient Descent Method, Adaptive Training Step.

1. INTRODUCTION
Let examine multilayer neural network,

consisting of N neural blocks (Fig.1). Each of these
blocks has a structure described in Fig. 2.

Fig.1 – Multilayer neural network

Output values of each neural block are input
values for the next block; input values for the first
block are sequence of input
patterns () ()01 ,..., , 1,

Tk k k
mx x x k L= = . Output value

of in-th neuron of n-th block for a k-th pattern is
defined by recurring expression

()(), (),
n n

n k n k
i n iy F S= ,

where
1

1 1

1

(), () (1), ()

1

, 1, , 1,
n

n n n n n

n

m
n k n n k n

i i i i i n n
i

S w y T i m k L
−

− −

−

−

=

= − = =∑ .

Fig.2 – Architecture of n neural block

 So we form a vector

()(), (), (), (),
1 2 1

n

Tn k n k n k n k
mY y y y= −K .

The task of such neural networks’ training
consist in finding of weights’ coefficients matrix

1

1

1 1

() () ()
11 21 1
() () ()
12 22 2()

() () ()
1 2

n

n

n n n n n n

n n n
m

n n n
mn

n n n
m m m m m m

w w w
w w w

W

w w w

−

−

−
−×

 
 
 =  
  
 

K

K

K K K K

K

and vectors of thresholds

()() () () ()
1 2, ,...,

n

Tn n n n
mT T T T= , 1,n N= , which

minimize some network error ES. That error
characterizes deviation of network outcome values

(),
N

N k
iy from standard

N

k
it for each iN-th neural

element for k-th pattern. We take a mean-square
error as criterion function:

()2(),

1 1

1
2

N

N N

N

mL
N k k

S i i
k i

E y t
L = =

= −∑∑ .

2. TRAINING ALGORITHM

For a program realization of such neural
networks’ training process is very helpful its matrix
algorithmization [1], described by the next way:

Modifications of synaptic connection in
multilayer heterogeneous neural network are
produced accordance to the formulas:

() ()
1 1 1

() () () () () (1),

1

11
n n n n n n

L
n n n n n n k

j j j j j j
k

w t w t C M Y
L

α
− − −

−

=

+ = − ⋅ ⋅ ⋅ ⋅∑

 N
eu

ra
l b

lo
ck

 1

 N
eu

ra
l b

lo
ck

 2

 N
eu

ra
l b

lo
ck

 N

In

pu
t v

al
ue

s

O
ut

co
m

e

(1),
1

n ky −

(1),
2
n ky −

1

(1),
n

n k
my

−

−

(),
1

n kS

(),
2

n kS

(),
n

n k
mS

(),
1

n ky

(),
2
n ky

(),
n

n k
my

F1

F2

Fn

()
11

nw
()
21

nw

()
1n

n
mw

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

Leonid Makhnist, Nikolaj Maniakov, Vladimir Rubanov / Computing, 2004, Vol. 3, Issue 1, 99-106

100

() ()
1

() () () () () (1),
(1)

1

11
n n n n

L
n n n n n n k

j j j m
k

T t T t C M Y
L

α
−

−
+

=

+ = − ⋅ ⋅ ⋅ ⋅∑
where ()nC is calculated recurrently:

() (1) (1) (),n n n N k
n NC C W MF C MFε+ += ⋅ ⋅ = ⋅

() () ()()2 2

(2), (2), (2),
1 1 2 2

k k k k k k k
m my t y t y tε = − − −K ,

and

()
()

()

(),
1

(),
2

(),

0 0

0 0

0 0
n

n k
n

n k
n

n

n k
n m

F S

F SMF

F S

′ 
 
 ′
 =  
 
 ′ 
 

K

K

K K K K

K

 -

are n nm m× matrixes,
1

()
n n

n
j jM

−
 - are ()1 1n nm m −× +

matrixes consisting of zero elements with only
element in position 1n nj j − , which value is equal to
one.

Synaptic connection changes begin from the last
layer down to first.

Using such training methodic we can take a
training step ()nα like a constant or a adaptive. Last
case is more effective. For a twolayer neural
network we can take it in accordance to the one of
the next method: layerwise training, two-parameter
training and generalized method of fastest descent
[2]. But spreading some of them in to the neural
networks with more then two layers architecture
gives very complicated formulas. So we proposed
the next two methods, which basic principals deal
with matrix algorithmization and fastest descent
method.

3. TRAINING ALGORITHM BASED ON

THE NETWORKS’ ERROR
CONDITIONAL OPTIMIZATION

We proposed new heuristic method of neural
networks’ training process with use of adaptive
training step. Such method based on conditional
minimization of the each layers’ error. By use of this
method we consider each layer like onelayer neural
network, which training produced by gradient
descent method. And we aimed output of each layer
to the received “standard”. So, we must recalculate
“standard” values through all training process.

The algorithm of thus method can be described in
the next way:

Procedure Network training
begin
 set training accuracy ε
 repeat
 modification of N layer synaptic connection
 for n=N-1 down to 1 do
 begin
 for k=1 to L do
 begin

finding of “standard” output of n-th
layer for each pattern

 end
modification of n-th layer synaptic
connection

 end
 finding the training error ES
 until SE ε<
 end.
This algorithm is based on the next theorem.
Theorem. By using of above algorithm we must

calculate “standard” output values accordance to the
formulas

(), (), (1) (1) , 1,
n n n

n k n k n n n
j j j n nt y C W j mα + += − ⋅ ⋅ ⋅ ∆ = ,

with the next correction :

[]
(),

(), (), (),

(),

,
: , ,

,

n

n n n

n

n k
i

n k n k n k
i i i

n k
i

a if t a
t t if t a b

b if t b

β β
β β

β β

 + < +
= ∈ + −
 − > −

,

where parameter β must be taken by us as a small
number.

 Adaptive training step can by taken in the next
way:

()

() () ()() ()

2(1)

1

(1) (1), (1)

1 1

n

n

n

n n

n n n n

n n

m
n n

j
j

m m Tn n n n k n n n
j j l l

j l

C P

C P P U P C P
α

+

=

+ + +

= =

⋅
=

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

∑

∑∑
,

where

() ()(), (1) (1), (1) (1)
T

n k n n k n n
n n nU W MF U W MF W MF+ + + +′ ′ ′′= ⋅ ⋅ ⋅ ⋅ + ⋅

()2
(), (),N k N k

N nU MF DE MF′ ′= + ⋅ ,

(1)
n n

n n n
j jP W += ⋅∆ ,

() () ()()2 2

(), (), (), (),
1 1 2 2

N k N k k N k k N k k
m mDE diag y t y t y t= − − −K

and
n

n
j∆ - zero vector-column with one element in a

position nj equal to 1.
Modification of weights and threshold is

produced accordance to
() ()

1 1 1

() () () (),1
n n n n n n

n n n n layer
j j j j j jw t w t Gα
− − −

+ = − ⋅ ,

() ()
1

() () () (),1
n n n n

n n n n layer
j j j jT t T t Gα

−
+ = − ⋅

for 1 11, , 1,n n n nj m j m− −= = , with adaptive training
step

()

()

1

1

1

1
1

1 11
1 1

1 2(),

1 1()
1

(), (),
()

, 1 , 1

n n

n n

n n

n n
n n

n n n nn l
n n n n

m m
n layer

j j
j jn

m m j jn layer n layer
l l n l ll l

j l j l

G

G S G
α

−

−

−

−
−

− −−
− −

+

= =
+

= =

=
⋅ ⋅

∑ ∑

∑ ∑
,

where
1 1

(), (), (),

1
n n n n

L
n layer n k n k

j j layer j j
k

G C K
− −

=

= ⋅∑ , (),n k k
layer n nC MFε ′= ⋅ ,

(), () (1),n k n n k
ij jiK M Y −= ⋅ ,

and

Leonid Makhnist, Nikolaj Maniakov, Vladimir Rubanov / Computing, 2004, Vol. 3, Issue 1, 99-106

101

() () ()1

1 11

2
(), (), (),

()
1

n n

n n n nn l

L Tj j n k n k n k
n l l n n j jl l

k

S K MF DE MF K−

− −− =

  ″′= ⋅ + ⋅ ⋅  
  

∑

1 1

(), () (1),
n n n n

n k n n k
j j j jK M Y
− −

−= ⋅ .
Proof. Let us examine n-th block of our multilayer
neural network (Fig. 2). We will consider it as
onelayer feedforward neural network with input
values ()1

(1), (1), (1), (1),
1 2 1

n

Tn k n k n k n k
mY y y y

−

− − − −= −K
and output described as follows.

The process of finding “standard” values (),
n

n k
it ,

1,n ni m= of outputs in n-th neural layer on the basis
of gradient descent method has the next form:

(), (),
(), , 1,

n n

n

k
n k n k s

j j n nn k
j

Et y j m
y

α ∂
= − ⋅ =

∂
.

Based on these formulas we denote finding
values ()(), 1

n

n k
jy t + as a "standard" (),

n

n k
it for the next

modification of synaptic connection in n-th layer.
Let’s find the partial derivations

()
()

2(),
(),

1 (),
(), (), (),

1

1
2

N

N N N
N N

N N

Nn n n

m
N k k

i i N kmk
i iN k ks

i in k n k n k
ij j j

y t
yE y t

y y y
=

=

 
∂ −  ∂∂  = = − ⋅ =

∂ ∂ ∂

∑
∑

() ()
(),

(), (),
(),

1

N
N

N N N

N n

N km
iN k k N k

i i N i n k
i j

S
y t F S

y=

∂′= − ⋅ ⋅ =
∂∑

() ()
1

1

1

1

(1),
(), (), ()

(),
1 1

N N
N

N N N N N

N N n

N km m
iN k k N k N

i i N i i i n k
i i j

y
y t F S w

y

−
−

−

−

−

= =

∂′= − ⋅ ⋅ ⋅ =
∂∑ ∑

() ()
1

1

1

(), (), ()

1 1

N N

N N N N N

N N

m m
N k k N k N

i i N i i i
i i

y t F S w
−

−

−= =

′= − ⋅ ⋅ ×∑ ∑

() ()1

1

(1),
(1), (),

1 (),
1

...
N

N

N N N

Nn

N k m
iN k N k k

N i i in k
ij

S
F S y t

y
−

−

−
−

−
=

∂′× ⋅ = = − ×
∂ ∑

() ()
1 1

1 1 1

1 1

(), () (1), (1)
1

1 1

...
N n

n

N N N N n n n

N n

m m
iN k N N k n

N i i i N i i i j
i i

F S w F S w δ
− +

− − +

− +

− +
−

= =

′ ′× ⋅ ⋅ ⋅ ⋅ ⋅ =∑ ∑
() (1)

1 ...
n

k N n n
N N N jMF W MF Wε +

−
′ ′= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ∆ =

(1) (1)
n

n n n
jC W+ += ⋅ ⋅ ∆ ,

where
() (1) (1) (),n n n N k

n N NC C W MF C MFε+ + ′ ′= ⋅ ⋅ = ⋅ ,
and

n

n
j∆ is zero vector-column of length n with only

element equal to one in position nj .
So the modification of “standard” values will be

held accordance to formulas:
(), (), (1) (1) , 1,
n n n

n k n k n n n
j j j n nt y C W j mα + += − ⋅ ⋅ ⋅ ∆ = ,

where training step α can be taken like a constant or
a adaptive.

But for all used function the domain of outcome
values is limited in to the interval ();a b . So, we
must observe that output values are finding in the

segment [];a bβ β+ + , where β is a little
threshold. Otherwise we must take boundary values
like (),

n

n k
it . Mathematically that expressed in the next

way:

[]
(),

(), (), (),

(),

,
: , ,

,

n

n n n

n

n k
i

n k n k n k
i i i

n k
i

a if t a
t t if t a b

b if t a

β β
β β

β β

 + < +
= ∈ + −
 − > −

.

Let’s find the second order partial derivations of
the error function by the output of n-th neural layer

(),
n

n k
it , 1,n ni m= :

() ()
2

(), (),
(), (), (),

1

N

N N N

Nn n n

mk
N k k N ks

i i N in k n k n k
ij l l

E y t F S
y y y =

∂ ∂ ′= − ⋅ ×∂ ∂ ∂ 
∑

()
1 1

1 1 1

1 1

() (1), (1)
1

1 1

...
N n

n

N N N n n n

N n

m m
iN N k n

i i N i i i j
i i

w F S w δ
− +

− − +

− +

− +
−

= =

′× ⋅ ⋅ ⋅ ⋅ =


∑ ∑

() ()
1

1

1

(),
(), ()

(),
1 1

N N
N N

N N N

N Nn

N k km m
i i N k N

N i i in k
i il

y t
F S w

y

−

−

−= =

 ∂ − ′= ⋅ ⋅ ×
 ∂
∑ ∑

()
1

1 1

1

(1), (1)
1

1

...
n

n

N n n n

n

m
iN k n

N i i i j
i

F S w δ
+

− +

+

− +
−

=

′× ⋅ ⋅ ⋅ +∑

() () 1

1

1

(),
(), ()

(),
1 1

N N
N

N N N N

N Nn

N km m
N iN k k N

i i i in k
i il

F S
y t w

y

−

−

−= =

′∂
+ − ⋅ ⋅ ×

∂∑ ∑

()
1

1 1

1

(1), (1)
1

1

...
n

n

N n n n

n

m
iN k n

N i i i j
i

F S w δ
+

− +

+

− +
−

=

′× ⋅ ⋅ ⋅ +∑

() ()
1

1

1

(), (), ()

1 1

N N

N N N N N

N N

m m
N k k N k N

i i N i i i
i i

y t F S w
−

−

−= =

′+ − ⋅ ⋅ ×∑ ∑

() 1
1

1

1

(1),
1 (1)

(),
1

... ...
n

N n

n n n

nn

N k m
N i in

i i jn k
il

F S
w

y
δ

+
−

+

+

−
− +

=

′∂
× ⋅ ⋅ ⋅ + +

∂ ∑

() ()
1

1

1

(), (), ()

1 1

N N

N N N N N

N N

m m
N k k N k N

i i N i i i
i i

y t F S w
−

−

−= =

′+ − ⋅ ⋅ ×∑ ∑

() () 1
1

1 1

1

(1),
1(1), (1)

1 (),
1

...
n

n n

N n n n

nn

n k m
n i iN k n

N i i i jn k
il

F S
F S w

y
δ

+
+

− +

+

+
+− +

−
=

′ ∂′ × ⋅ ⋅ ⋅ ⋅ =
∂


∑

()
1

1

1

(), ()

1 1

N N

N N N

N N

m m
N k N

N i i i
i i

F S w
−

−

−= =

  ′= ⋅ ×  
∑ ∑

()
1

1 1

1

(1), (1)
1

1

...
n

n

N n n n

n

m
iN k n

N i i i j
i

F S w δ
+

− +

+

− +
−

=

′× ⋅ ⋅ ⋅ ×


∑

() ()
1 1

1 1 1

1 1

(), () (1), (1)
1

1 1

...
N n

n

N N N N n n n

N n

m m
iN k N N k n

N i i i N i i i l
i i

F S w F S w δ
− +

− − +

− +

− +
−

= =

 ′ ′× ⋅ ⋅ ⋅ ⋅ ⋅ + 
 

∑ ∑

() ()(), (),

1

N

N N N

N

m
N k k N k

i i N i
i

y t F S
=

′′+ − ⋅ ×∑

()
1 1

1 1 1

1 1

() (1), (1)
1

1 1

...
N n

n

N N N n n n

N n

m m
iN N k n

i i N i i i j
i i

w F S w δ
− +

− − +

− +

− +
−

= =

 ′× ⋅ ⋅ ⋅ ⋅ × 
 
∑ ∑

Leonid Makhnist, Nikolaj Maniakov, Vladimir Rubanov / Computing, 2004, Vol. 3, Issue 1, 99-106

102

()
1 1

1 1 1

1 1

() (1), (1)
1

1 1

...
N n

n

N N N n n n

N n

m m
iN N k n

i i N i i i l
i i

w F S w δ
− +

− − +

− +

− +
−

= =

 ′× ⋅ ⋅ ⋅ ⋅ + 
 
∑ ∑

() () ()
1

1 1

1

(), (), () (1),
1

1 1

N N

N N N N N N

N N

m m
N k k N k N N k

i i N i i i N i
i i

y t F S w F S
−

− −

−

−
−

= =

′ ′′+ − ⋅ ⋅ ⋅ ×∑ ∑
2 1

2 1 1

2 1

(1) (1)

1

...
N n

n

N N n n n

N n

m m
iN n

i i i i j
i i

w w δ
− +

− − +

− +

− +

=

 
× ⋅ ⋅ × 
 
∑ ∑

2 1

2 1 1

2 1

(1) (1)

1

... ...
N n

n

N N n n n

N n

m m
iN n

i i i i l
i i

w w δ
− +

− − +

− +

− +

=

 
× ⋅ ⋅ + + 
 
∑ ∑

() () ()
1

1 1

1

(), (), () (1),
1

1 1

N N

N N N N N N

N N

m m
N k k N k N N k

i i N i i i N i
i i

y t F S w F S
−

− −

−

−
−

= =

′ ′+ − ⋅ ⋅ ⋅ ×∑ ∑

()
1 1

1 1 1

1 1

(1), (1) (1)
1

1 1
...

n n
n n

n n n n n n n

n n

m m
i in k n n

n i i i j i i l
i i

F S w wδ δ
+ +

+ + +

+ +

+ + +
+

= =

   ′× ⋅ ⋅ ⋅ ⋅ ⋅ =        
∑ ∑

() ()(1) (1), (1)
n n

Tn n n k n n
l jW U W+ + += ⋅ ∆ ⋅ ⋅ ⋅ ∆ ,

where

() ()(), (1) (1), (1) (1)
T

n k n n k n n
n n nU W MF U W MF W MF+ + + +′ ′ ′′= ⋅ ⋅ ⋅ ⋅ + ⋅

are calculated recurrently beginning from the

()2
(), (),N k N k

N nU MF DE MF′ ′= + ⋅ .

Extending error function in to the Taylor series
we receive

() () ()(), (), (), (),
(),

1

1
n

n n

n n

m k
n k n k n k n ks

s s j jn k
j j

EE t E t t y
y=

∂
+ = + ⋅ − +

∂∑

() ()
2

(), (), (), (),
(), (),

1 1

1
2

n n

n n n n

n n n n

m m k
n k n k n k n ks

j j l ln k n k
j l j l

E t y t y
y y= =

∂
+ ⋅ ⋅ − ⋅ − =

∂ ∂∑∑

()
2

(),
(),

1

n

n n

m k
n k s

s n k
j j

EE t
y

α
=

 ∂
= − ⋅ +  ∂ 

∑

2
2

(), (), (), (),
1 1

n n

n n n n n n

m m k k k
s s s

n k n k n k n k
j l j l j l

E E E
y y y y

α
= =

∂ ∂ ∂
+ ⋅ ⋅ ⋅ =

∂ ∂ ∂ ∂∑∑

() ()2(), (1) (1)

1

n

n

n

m
n k n n n

s j
j

E t C Wα + +

=

= − ⋅ ⋅ ⋅ ∆ +∑

()
2

(1) (1)

1 12

n n

n

n n

m m
n n n

j
j l

C Wα + +

= =

+ ⋅ ⋅ ⋅ ∆ ×∑∑

() ()()(1) (1), (1)
n n

Tn n n k n n
l jW U W+ + +× ⋅∆ ⋅ ⋅ ⋅ ∆ ×

() () ()2(1) (1) (), (1)

1

n

n n

n

m
n n n n k n n

l s j
j

C W E t C Pα+ + +

=

× ⋅ ⋅ ∆ = − ⋅ ⋅ +∑

() () ()() ()
2

(1) (1), (1)

1 12

n n

n n n n

n n

m m Tn n n n k n n n
j j l l

j l

C P P U P C Pα + + +

= =

+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅∑∑

where (1)
n n

n n n
j jP W += ⋅∆ .

Let’s find a such value of α , that minimize
network error. For that purposes we must compare to

zero the next expression:
() ()

(),
2(1)

1

1 n

n

n

n k m
s n n

j
j

E t
C P

α
+

=

∂ +
= − ⋅ +

∂ ∑

() () ()() ()(1) (1), (1)

1 1

n n

n n n n

n n

m m Tn n n n k n n n
j j l l

j l
C P P U P C Pα + + +

= =

+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅∑∑

And finally we receive

()

() () ()() ()

2(1)

1

(1) (1), (1)

1 1

n

n

n

n n

n n n n

n n

m
n n

j
j

m m Tn n n n k n n n
j j l l

j l

C P

C P P U P C P
α

+

=

+ + +

= =

⋅
=

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

∑

∑∑

Taking received values (),
n

n k
it like “standard” we

can find formulas for synaptic connection
modification in n-th neural layer.

Let us extend mean-square error of n-th layer in
the next way:

1

1 1

1

2

() () (1), () (),

1 1 1

1
2

n n

n n n n n

n n

m mL
n n n k n n k

S n i i i i i
k i i

E F w y T t
L

−

− −

−

−

= = =

  
= − − =     

∑∑ ∑

(),

1

1 L
n k

s
k

E
L =

= ∑ .

Then

()

1 1

2(), (),
(),

1
() ()

1
2

n

n n

n

n n n n

m
n k n k

i in k
is

n n
j j j j

y t
E
w w

− −

=

 
∂ − 

∂  = =
∂ ∂

∑

()
1

(),
(), (),

()
1

n
n

n n

n n n

n km
in k n k

i i n
i j j

y
y t

w
−=

∂
= − ⋅ =

∂∑

() ()
1

(),
(), (), (),

()
1

n
n

n n n

n n n

n km
in k n k n k

i i n i n
i j j

S
y t F S

w
−=

∂′= − ⋅ ⋅ =
∂∑

() () 1

(), (), (), (1),

1

n
n

n n n n n

n

m
in k n k n k n k

i i n i j j
i

y t F S y δ
−

−

=

′= − ⋅ ⋅ ⋅∑ ,

where
1 ,
0 ,

n

n

n ni
j

n n

i j
i j

δ
=

=  ≠
.

Using matrix algoritnmization we can rewrite
above formulas in the next way:

() () 1

1

(),
(), (), (), (1),

()
1

n
n

n n n n n

nn n

mn k
in k n k n k n ks

i i n i j jn
ij j

E y t F S y
w

δ
−

−

−

=

∂ ′= − ⋅ ⋅ ⋅ =
∂ ∑

1 1

() (1), (), (),
n n n n

k n n k n k n k
n n j j layer j jMF M Y C Kε

− −

−′= ⋅ ⋅ ⋅ = ⋅ .
In a similar manner

()2(), (),
(),

1
() ()

1
2

n

n n

n

n n

m
n k n k

i in k
is

n n
j j

y t
E
T T

=

 
∂ − 

∂  = =
∂ ∂

∑

Leonid Makhnist, Nikolaj Maniakov, Vladimir Rubanov / Computing, 2004, Vol. 3, Issue 1, 99-106

103

()
(),

(), (),
()

1

n
n

n n

n n

n km
in k n k

i i n
i j

y
y t

T=

∂
= − ⋅ =

∂∑

() ()
(),

(), (), (),
()

1

n
n

n n n

n n

n km
in k n k n k

i i n i n
i j

S
y t F S

T=

∂′= − ⋅ ⋅ =
∂∑

() () ()(), (), (),

1

1
n

n

n n n n

n

m
in k n k n k

i i n i j
i

y t F S δ
=

′= − ⋅ ⋅ − ⋅ =∑

1 1

() (1), (), (),
(1) (1)n n n n

k n n k n k n k
n n j m layer m jMF M Y C Kε

− −

−
+ +

′= ⋅ ⋅ ⋅ = ⋅ ,

where (),n k k
layer n nC MFε ′= ⋅ , (), () (1),n k n n k

ij jiK M Y −= ⋅ .
So, the formulas for weights and threshold

changes will be the next:

() ()
1 1 1

() () () (1),

1

11
n n n n n n

L
n n k n n k

j j j j n n j j
k

w t w t MF M Y
L

α ε
− − −

−

=

′+ = − ⋅ ⋅ ⋅ ⋅ ⋅∑

() ()
1

() () () (1),
(1)

1

11
n n n n

L
n n k n n k

j j n n j m
k

T t T t MF M Y
L

α ε
−

−
+

=

′+ = − ⋅ ⋅ ⋅ ⋅ ⋅∑

for 1 11, , 1,n n n nj m j m− −= = , or

() ()
1 1 1

() () (),11
n n n n n n

n n n layer
j j j j j jw t w t G

L
α

− − −
+ = − ⋅ ⋅ ,

() ()
1

() () (),11
n n n n

n n n layer
j j j jT t T t G

L
α

−
+ = − ⋅ ⋅ ,

where
1 1

(), (), (),

1
n n n n

L
n layer n k n k

j j layer j j
k

G C K
− −

=

= ⋅∑ .

Let’s find second order partial derivatives of
error function:

1 1

2 (),

() ()
n n n n

n k
s

n n
j j l l

E
w w

− −

∂
=

∂ ∂

() () 1

1

(), (), (), (1),

1

n
n

n n n n n

nn n

m
in k n k n k n k

i i n i j j
il l

y t F S y
w

δ
−

−

−

=

 ∂ ′= − ⋅ ⋅ ⋅ = ∂  
∑

()() () 1

1

(), (),
(), (1),

1

n
n n n

n n n

n n n

n k n km
i i in k n k

n i j j
i l l

y t
F S y

w
δ

−

−

−

=

 ∂ − ′= ⋅ ⋅ ⋅ +
∂


∑

()
()()

1

1

(),

(), (), (1),n
n

n n n n

n n

n k
n i

in k n k n k
i i j j

l l

F S
y t y

w
δ

−

−

−

′ ∂ + − ⋅ ⋅ ⋅ =∂ 


()() () ()1 1

2
(), (1), (1),

1

n
n n

n n n n n

n

m
i in k n k n k

n i l l j j
i

F S y yδ δ
− −

− −

=

 ′= ⋅ ⋅ ⋅ ⋅ +


∑

() () () ())1 1

(), (), (), (1), (1),n n

n n n n n n n

i in k n k n k n k n k
i i n i l l j jy t F S y yδ δ

− −

− −″+ − ⋅ ⋅ ⋅ ⋅ ⋅ =

() ()1

2
() (1), (),
n n

Tn n k n k
l l n nM Y MF DE MF

−

−  ″′= ⋅ ⋅ + ⋅ × 
 

()1

() (1),
n n

n n k
j jM Y

−

−× ⋅ =

() ()1 1

2
(), (), (),
n n n n

Tn k n k n k
l l n n j jK MF DE MF K
− −

 ″′= ⋅ + ⋅ ⋅ 
 

.

In the same manner we receive

2 (),

() ()
n n

n k
s

n n
j l

E
T T
∂

=
∂ ∂

() ()1 1

2
(), (), (),
(1) (1)n n n n

Tn k n k n k
m l n n m jK MF DE MF K

− −+ +
 ″′= ⋅ + ⋅ ⋅ 
 

1

2 (),

() ()
n n n

n k
s

n n
j j l

E
w T

−

∂
=

∂ ∂

() ()1 1

2
(), (), (),
(1)n n n n

Tn k n k n k
m l n n j jK MF DE MF K

− −+
 ″′= ⋅ + ⋅ ⋅ 
 

.

After modification of n-th layer synaptic
connections the network error is changed accordance
to the formulas:

() () ()() (), (),

1 1

1 11 1
L L

n n k n k
S s s

k k

E t E t E t
L L= =

+ = ⋅ + = +∑ ∑

() ()()
1

1 1

1 1

(),
() ()

()
1 1 1

1 1
n n

n n n n

n n n n

m m n kL
n ns

j j j jn
j j k j j

E w t w t
L w

−

− −

− −= = =

  ∂
+ ⋅ ⋅ + − +    ∂ 

∑ ∑ ∑

() ()()
(),

() ()
()

1 1

1
n

n n

n n

m n kL
n ns

j jn
j k j

E T t T t
T= =

 ∂
+ ⋅ + − =   ∂  
∑ ∑

1 1

1 1 1 1

2 (),

() ()
1 1 1 1 1

1
2

n n n n

n n n n n n n n

m m m m n kL
s

n n
k j j l l j j l l

E
L w w

− −

− − − −= = = = =

 ∂
+ ⋅ × ∂ ∂

∑ ∑ ∑ ∑∑

() ()() () ()()1 1 1 1

() () () ()1 1
n n n n n n n n

n n n n
j j j j l l l lw t w t w t w t
− − − −

× + − ⋅ + − +

() ()()
1

1 1

1 1

2 (),
() ()

() ()
1 1 1

1
n n n

n n n n

n n n n n n

m m m n k
n ns

j j j jn n
j j l j j l

E w t w t
w T

−

− −

− −= = =

∂
+ ⋅ + − ×

∂ ∂∑ ∑∑

() ()()() ()1
n n

n n
l lT t T t× + − +

() ()()
1

1 1

2 (),
() ()

() ()
1 1 1

1
n n n

n n

n n n n n n

m m m n k
n ns

j jn n
j l l j l l

E T t T t
T w

−

− −= = =

∂
+ ⋅ + − ×

∂ ∂∑ ∑ ∑

() ()()1 1

() ()1
n n n n

n n
l l l lw t w t
− −

× + − +

() ()()
2 (),

() ()
() ()

1 1

1
n n

n n

n n n n

m m n k
n ns

j jn n
j l j l

E T t T t
T T= =

∂
+ ⋅ + − ×

∂ ∂∑∑

() ()())() ()1
n n

n n
l lT t T t× + − =

() ()
1

1

1

1 2() (),
2

1 1

1 n n

n n

n n

m m
n n layer

S j j
j j

E t G
L

α
−

−

−

+

= =

= − ⋅ ⋅ +∑ ∑

(
1 1

1

1 1

1 1
2 (),

3
1 1 1 1

1
2

n n n n

n n

n n n n

m m m m
n layer

l l
j j l l

G
L

α
− −

−

− −

+ +

= = = =


+ ⋅ ⋅ ×


∑ ∑ ∑ ∑

() ()1 1 1

2
(), (), (), (),

1
n n n n n n

L Tn k n k n k n layer
l l n n j j j j

k
K MF DE MF K G

− − −
=

  ″′× ⋅ + ⋅ ⋅ ⋅       
∑

Let’s find such point α, in which error function

reach it minimal value. For that purpose we mast
compare with zero the next expression

() ()
1

1

1

() 1 2(),
2

1 1

1 1 n n

n n

n n

n m m
S n layer

j j
j j

E t
G

Lα

−

−

−

+

= =

∂ +
= ⋅ +

∂ ∑ ∑

Leonid Makhnist, Nikolaj Maniakov, Vladimir Rubanov / Computing, 2004, Vol. 3, Issue 1, 99-106

104

(
1 1

1

1 1

1 1
(),

3
1 1 1 1

1 n n n n

n n

n n n n

m m m m
n layer

l l
j j l l

G
L

α
− −

−

− −

+ +

= = = =


+ ⋅ ⋅ ×


∑ ∑ ∑ ∑

() ()1 1 1

2
(), (), (), (),

1
n n n n n n

L Tn k n k n k n layer
l l n n j j j j

k
K MF DE MF K G

− − −
=

  ″′× ⋅ + ⋅ ⋅ ⋅       
∑

In that way we receive the next value

()

()

1

1

1

1
1

1 11
1 1

1 2(),

1 1
1

(), (),
()

, 1 , 1

n n

n n

n n

n n
n n

n n n nn l
n n n n

m m
n layer

j j
j j

m m j jn layer n layer
l l n l ll l

j l j l

L G

G S G
α

−

−

−

−
−

− −−
− −

+

= =
+

= =

⋅
=

⋅ ⋅

∑ ∑

∑ ∑
,

where

() () ()1

1 11

2
(), (), (),

()
1

n n

n n n nn l

L Tj j n k n k n k
n l l n n j jl l

k

S K MF DE MF K−

− −− =

  ″′= ⋅ + ⋅ ⋅  
  

∑

And finally

()

()

1

1

1

1
1

1 11
1 1

1 2(),

1 1()
1

(), (),
()

, 1 , 1

1

n n

n n

n n

n n
n n

n n n nn l
n n n n

m m
n layer

j j
j jn

m m j jn layer n layer
l l n l ll l

j l j l

G

L G S G
α α

−

−

−

−
−

− −−
− −

+

= =
+

= =

= ⋅ =
⋅ ⋅

∑ ∑

∑ ∑

■

4. LAYERWISE TRAINING OF THE

MULTILAYER NEURAL NETWORK WITH
USE OF THE ADAPTIVE TRAINING STEP

Let us represent layerwise training technique,
which is an extension from such method for
twolayer network [2]. The algorithm of thus method
can be represented in the next way:

Procedure Network training
begin
 set training accuracy ε
 repeat
 for n=N down to 1 do
 begin

finding the error ES for all training set;
modification of n-th layer synaptic
connection

 end
 until SE ε<
 end.
For the faster convergence of this algorithm we

can take a training step like adaptive. It calculation
is based on the next theorem.

Theorem. For the layerwise training methodic of
multilayer heterogeneous feedforward neural
network the adaptive training steps for each layer are
calculated accordance to the formulas

() ()()

1

1

1

1 1

1 1

1 1

() () (1),

1 1 1()

(), (), (),

1 1 1 1 1

n n

n n

n n

n n n n

n n n n

n n n n

m m L
n n n k

j j
j j kn

m m m m L Tn k n k n k
l l j j

j j l l k

L C M Y

K U K
α

−

−

−

− −

− −

− −

−

= = =

= = = = =

 ⋅ ⋅ ⋅ 
 =
 ⋅ ⋅ 
 

∑ ∑ ∑

∑ ∑ ∑∑ ∑

where

1 1

(), () (1),
n n n n

n k n n k
j j j jK M Y
− −

−= ⋅
and

() ()(), (1) (1), (1) (1)
T

n k n n k n n
n n nU W MF U W MF W MF+ + + +′ ′ ′′= ⋅ ⋅ ⋅ ⋅ + ⋅

are computed recurrently from the

()2
(), (),N k N k

N nU MF DE MF′ ′= + ⋅ .

Proof. Accordance to [1] we have:

()

1 1

2(),
()

1
() ()

1
2

N

N N

N

n n n n

m
N k k

i ik
is

n n
j j j j

y t
E

w w
− −

=

 
∂ − 

∂  = =
∂ ∂

∑

() () ()
1

1 1

1

(), (), () (1),
1

1 1

...
N N

N N N N N N

N N

m m
N k k N k N N k

i i N i i i N i
i i

y t F S w F S
−

− −

−

−
−

= =

′ ′= − ⋅ ⋅ ⋅ ⋅ ⋅∑ ∑

() ()1 1 1

(1), (1) (), (1),
1

1

...
n

n

n n n n n n

n

m
in k n n k n k

n i i i n i j j
i

F S w F S y δ
+ + −

+ + −
+

=

′ ′⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =∑

1

() () (1),
n n

n n n k
j jC M Y

−

−= ⋅ ⋅ ,
and by the analogy

1

()
() () (1),

(1)() n n

n

k
n n n ks

j mn
j

E C M Y
T −

−
+

∂
= ⋅ ⋅

∂
.

Let’s find second order partial derivation of error
function:

() ()
1 1 1

2 ()
(), (),

() () ()
1

N

N N N

Nn n n n n n

mk
N k k N ks

i i N in n n
ij j l l l l

E y t F S
w w w

− − − =

∂ ∂ ′= − ⋅ ×∂ ∂ ∂ 
∑

()
1

1 1

1

() (1),
1

1

...
N

N N N

N

m
N N k

i i N i
i

w F S
−

− −

−

−
−

=

′× ⋅ ⋅ ⋅∑

() ()1 1 1

(1), (1) (), (1),
1

1

...
n

n

n n n n n n

n

m
in k n n k n k

n i i i n i j j
i

F S w F S y δ
+ + −

+ + −
+

=

′ ′⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =


∑

() () ()
1

1 1

11

(),
(), () (1),

1()
1 1

...
N N

N N

N N N N

N Nn n

N k km m
i i N k N N k

N i i i N in
i il l

y t
F S w F S

w

−

− −

−−

−
−

= =

 ∂ − ′ ′= ⋅ ⋅ ⋅ ⋅ ⋅
 ∂
∑ ∑

() ()1 1 1

(1), (1) (), (1),
1

1

...
n

n

n n n n n n

n

m
in k n n k n k

n i i i n i j j
i

F S w F S y δ
+ + −

+ + −
+

=

′ ′⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +∑

() () ()
1

1 1

11

(),
(), () (1),

1()
1 1

...
N N

N

N N N N N

N Nn n

N km m
N iN k k N N k

i i i i N in
i il l

F S
y t w F S

w

−

− −

−−

−
−

= =

′∂ ′+ − ⋅ ⋅ ⋅ ⋅ ⋅
∂∑ ∑

() ()1 1 1

(1), (1) (), (1),
1

1

...
n

n

n n n n n n

n

m
in k n n k n k

n i i i n i j j
i

F S w F S y δ
+ + −

+ + −
+

=

′ ′⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +∑

() () ()1
1

1

1 1

(1),
1(), (), ()

()
1 1

...
N N

N

N N N N N

N N n n

N km m
N iN k k N k N

i i N i i i n
i i l l

F S
y t F S w

w

−
−

−

− −

−
−

= =

′∂′+ − ⋅ ⋅ ⋅ ⋅ ⋅
∂∑ ∑

Leonid Makhnist, Nikolaj Maniakov, Vladimir Rubanov / Computing, 2004, Vol. 3, Issue 1, 99-106

105

() ()1 1 1

(1), (1) (), (1),
1

1

...
n

n

n n n n n n

n

m
in k n n k n k

n i i i n i j j
i

F S w F S y δ
+ + −

+ + −
+

=

′ ′⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +∑
...+ +

() () ()
1

1 1

1

(), (), () (1),
1

1 1

...
N N

N N N N N N

N N

m m
N k k N k N N k

i i N i i i N i
i i

y t F S w F S
−

− −

−

−
−

= =

′ ′+ − ⋅ ⋅ ⋅ ⋅ ⋅∑ ∑

() ()
1 1 1

1

(),
(1), (1) (1),

1 ()
1

...
n

n n

n n n n n

n n n

n km
n i in k n n k

n i i i j jn
i l l

F S
F S w y

w
δ

+ + −

−

+ + −
+

=

′ ∂′ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =
∂


∑

() ()
1

1 1

1

(), () (1),
1

1 1

N N

N N N N

N N

m m
N k N N k

N i i i N i
i i

F S w F S
−

− −

−

−
−

= =

  ′ ′= ⋅ ⋅ ×  
∑ ∑

()1 1

(1) (), (1),

1

...
n

n

n n n n n

n

m
in n k n k

i i n i j j
i

w F S y δ
+ −

+ −

=

′× ⋅ ⋅ ⋅ ⋅ ×


∑

() ()
1

1 1

1

(), () (1),
1

1

N

N N N N

N

m
N k N N k

N i i i N i
i

F S w F S
−

− −

−

−
−

=

 ′ ′× ⋅ ⋅ ×


∑

()1 1

(1) (), (1),

1

...
n

n

n n n n n

n

m
in n k n k

i i n i l l
i

w F S y δ
+ −

+ −

=

′× ⋅ ⋅ ⋅ ⋅ +


∑

() ()(), (),

1

N

N N N

N

m
N k k N k

i i N i
i

y t F S
=

′′+ − ⋅ ×∑

()
1

1 1

1

() (1),
1

1

...
N

N N N

N

m
N N k

i i N i
i

w F S
−

− −

−

−
−

=

 ′× ⋅ ⋅ ×

∑

()1 1

(1) (), (1),

1

n
n

n n n n n

n

m
in n k n k

i i n i j j
i

w F S y δ
+ −

+ −

=

′× ⋅ ⋅ ⋅ ×


∑

()
1

1 1

1

() (1),
1

1

...
N

N N N

N

m
N N k

i i N i
i

w F S
−

− −

−

−
−

=

 ′× ⋅ ⋅ ×

∑

()1 1

(1) (), (1),

1

n
n

n n n n n

n

m
in n k n k

i i n i l l
i

w F S y δ
+ −

+ −

=

′× ⋅ ⋅ ⋅ +


∑

() () ()
1

1 1

1

(), (), () (1),
1

1 1

N N

N N N N N N

N N

m m
N k k N k N N k

i i N i i i N i
i i

y t F S w F S
−

− −

−

−
−

= =

′ ′′+ − ⋅ ⋅ ⋅ ×∑ ∑

()1 1

(1) (), (1),

1

...
n

n

n n n n n

n

m
in n k n k

i i n i j j
i

w F S y δ
+ −

+ −

=

 ′× ⋅ ⋅ ⋅ ⋅ × 
 

∑

()1 1

(1) (), (1),

1

... ...
n

n

n n n n n

n

m
in n k n k

i i n i l l
i

w F S y δ
+ −

+ −

=

 ′× ⋅ ⋅ ⋅ ⋅ + + 
 

∑

() () ()
1

1 1

1

(), (), () (1),
1

1 1
...

N N

N N N N N N

N N

m m
N k k N k N N k

i i N i i i N i
i i

y t F S w F S
−

− −

−

−
−

= =

′ ′+ − ⋅ ⋅ ⋅ ⋅ ×∑ ∑

() ()1 1

(1), (1) (),
1

1

...
n

n n n n

n

m
n k n n k

n i i i n i
i

F S w F S
+ +

+ +
+

=

′ ′′× ⋅ ⋅ ⋅ ×∑

() ())1 1

(1), (1),n n

n n n n

i in k n k
j j l ly yδ δ
− −

− −× ⋅ ⋅ ⋅ =

() ()1 1

() (1), (), () (1),
n n n n

Tn n k n k n n k
l l j jM Y U M Y

− −

− −= ⋅ ⋅ ⋅ ⋅ =

() ()1 1

(), (), (),
n n n n

Tn k n k n k
l l j jK U K
− −

= ⋅ ⋅ ,

where

1 1

(), () (1),
n n n n

n k n n k
j j j jK M Y
− −

−= ⋅

and

() ()(), (1) (1), (1) (1)
T

n k n n k n n
n n nU W MF U W MF W MF+ + + +′ ′ ′′= ⋅ ⋅ ⋅ ⋅ + ⋅

are computed recurrently from the

()2
(), (),N k N k

N nU MF DE MF′ ′= + ⋅ .

By the same manner we receive:

() ()1 1

1

2 ()
(), (), (),
(1)() () n n n n

n n n

k Tn k n k n ks
m l j jn n

j j l

E K U K
w T − −

−

+
∂

= ⋅ ⋅
∂ ∂

,

() ()()1 1

2 ()
(), (), (),
(1) 1() () n n n n

n n

k Tn k n k n ks
m l m jn n

j l

E K U K
T T − −+ +

∂
= ⋅ ⋅

∂ ∂
.

Let’s extend error function in to the Taylor
series:

() () ()
1 1

1 11 1
L L

k k
S s s

k k
E t E t E t

L L= =

+ = ⋅ + = +∑ ∑

() ()()
1

1 1

1 1

() ()
()

1 1 1

1 1
n n

n n n n

n n n n

m m kL
n ns

j j j jn
j j k j j

E w t w t
L w

−

− −

− −= = =

  ∂
+ ⋅ ⋅ + − +    ∂ 

∑ ∑ ∑

() ()()() ()
()

1 1

1
n

n n

n n

m kL
n ns

j jn
j k j

E T t T t
T= =

 ∂
+ ⋅ + − =   ∂  
∑ ∑

1 1

1 1 1 1

2

() ()
1 1 1 1 1

1
2

n n n n

n n n n n n n n

m m m m kL
s

n n
k j j l l j j l l

E
L w w

− −

− − − −= = = = =

 ∂
+ ⋅ × ∂ ∂

∑ ∑ ∑ ∑∑

() ()() () ()()1 1 1 1

() () () ()1 1
n n n n n n n n

n n n n
j j j j l l l lw t w t w t w t
− − − −

× + − ⋅ + − +

() ()()
1

1 1

1 1

2
() ()

() ()
1 1 1

1
n n n

n n n n

n n n n n n

m m m k
n ns

j j j jn n
j j l j j l

E w t w t
w T

−

− −

− −= = =

∂
+ ⋅ + − ×

∂ ∂∑ ∑∑

() ()()() ()1
n n

n n
l lT t T t× + − +

() ()()
1

1 1

2
() ()

() ()
1 1 1

1
n n n

n n

n n n n n n

m m m k
n ns

j jn n
j l l j l l

E T t T t
T w

−

− −= = =

∂
+ ⋅ + − ×

∂ ∂∑ ∑ ∑

() ()()1 1

() ()1
n n n n

n n
l l l lw t w t
− −

× + − +

() ()()
2

() ()
() ()

1 1

1
n n

n n

n n n n

m m k
n ns

j jn n
j l j l

E T t T t
T T= =

∂
+ ⋅ + − ×

∂ ∂∑∑

() ()())() ()1
n n

n n
l lT t T t× + − =

()
1

1

1

() () () (1),
2

1 1 1

1 n n

n n

n n

m m L
n n n n k

S j j
j j k

E t C M Y
L

α
−

−

−

−

= = =

 = − ⋅ ⋅ ⋅ ⋅ + 
 

∑ ∑ ∑

() () ()()1 1

1 1

1 1

2() (), (), (),
3

1 1 1 1 1

1
2

n n n n

n n n n

n n n n

m m m m L Tn n k n k n k
l l j j

j j l l k

K U K
L

α
− −

− −

− −= = = = =

 + ⋅ ⋅ ⋅ ⋅ 
 

∑ ∑ ∑ ∑ ∑

For finding minima of error function we take a
first derivation by ()nα and equal it to zero. So, we
receive:

() ()()

1

1

1

1 1

1 1

1 1

() () (1),

1 1 1()

(), (), (),

1 1 1 1 1

n n

n n

n n

n n n n

n n n n

n n n n

m m L
n n n k

j j
j j kn

m m m m L Tn k n k n k
l l j j

j j l l k

L C M Y

K U K
α

−

−

−

− −

− −

− −

−

= = =

= = = = =

 ⋅ ⋅ ⋅ 
 =
 ⋅ ⋅ 
 

∑ ∑ ∑

∑ ∑ ∑∑ ∑

Leonid Makhnist, Nikolaj Maniakov, Vladimir Rubanov / Computing, 2004, Vol. 3, Issue 1, 99-106

106

5. EXPERIMENTS AND DISCUSSION
The results of use of the above training methods

for training of twolayer feedforward neural networks
with architecture 3-4-1 with sigmoid element in a
hidden layer for Henon attractor forecasting are
presented below. After 100 iteration was received
the next middle square errors: for constant training
steps 1 0.02α = , 2 0.02α = - 0.3433; for constant
training step 1 0.01α = , 2 0.02α = - 0.3127; for
constant training step 1 0.02α = , 2 0.05α = - 0.3165;
for a adaptive training step, used in Matlab Neural
Network Toolbox – 0.5094; for training with Rprop
– 0.09722; for training algorithm based on the
networks’ error conditional optimization – 0.2715;
for layerwise training with use of the adaptive
training step – 0.0025. For some constant training
step was observed divergence of the training
process. Above results shows that proposed in this
paper algorithms give good convergence in the set of
gradient descent methods. The same distinction of
MSE was also obtained for other training sets.

6. CONCLUSION

Implementation of such training methodics for
neural network training gives a good result in a time
of convergence. The matrix algorithmization of the
training process is very helpful in its program
realization.

7. REFERENCES
 [1] N. Maniakov, L. Makhnist. Matrix
algorithmization of multilayer neural networks’
training process with use of gradient descents
methods, Vestnik BGTU 5 (17) (2002). p. 60-64
[2] V. Golovko, N. Maniakov, L. Makhnist.
Multilayer Neural Networks Training Methodic.
Proceedings of the Second IEEE International
Workshop on Intelligent Data Acquisition and
Advanced Computing Systems: Technology and
Applications (IDAACS’2003), Lviv, Ukraine, 8-10
September 2003, pp. 185-190

Leonid Makhnist completed studies
in the mechanical-mathematical
faculty of Belarusian State University
in 1982. From 1992 he worked at
the Brest branch of Institute of
Technical Cybernetic. Since 1994 he
worked in Brest State Technical
University. In 1999 he received PhD

degree. From 2000 Leonid Makhnist worked as
Assistant Professor at the Department of High
Mathematics of BSTU. He has published over 60

journal and conference paper. His current research
area includes neural networks training methodics,
optimization theory, programming methodology.

Nikolaj Maniakov graduated
mechanical-mathematical faculty
of Belarusian State University in
1998. At present he worked as
senior lecturer at the High
Mathematical Department of Brest
State Technical University and
makes his PhD research. He is co-
author of about 30 papers. His
interests are in the field of neural networks, fuzzy
logic, evolutional computation and wavelets theory.

Dr. Vladimir Rubanov graduated
mechanical-mathematical faculty
of Belarusian State University in
1977. From 1977 he worked as a
lecturer at Brest State Technical
University. Since 1997 he is a
head of High Mathematics
department. He has published

over 50 scientific papers. His research interesting
includes differential geometry, nonlinear dynamics
and chaotic process.

