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Abstract: Previous code compression research on embedded systems was based on typical RISC instruction code. 
THUMB from ARM Ltd is a compacted 16-bits instruction set showing a great code density than its original 32-bits 
ARM instruction. Our research shows that THUMB code is compressible and a further 10-15% code size reduction on 
THUMB code can be expected using our proposed new architecture – Code Compressed THUMB Processor. In our 
proposal, Level 2 cache or additional RAM space is introduced to serve as the temporary storage for decompressed 
program blocks. A software implementation of the architecture is proposed and we have implemented a software 
prototype based on ARM922T processor, which runs on the ARMulator. 
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1. INTRODUCTION 
Memory is usually the main part of the system 

cost of an Embedded System. Applying lossless data 
compression to the program code [1-5] is an 
efficient way to reduce the main memory size, 
therefore, to reduce the system cost. The existing 
research was based on contemporary RISC 
architectures, which use 32- or 64-bit instruction 
sets. ARM and MIPS have introduced 16-bits ISAs, 
namely THUMB[6] in 1995 and MIP16 [7] in 1997,  
to improve the code density of their original 32-bit 
ISAs. Our research started with ARM’s THUMB 
instruction set. We analysed the compressibility of 
THUMB program code, and exposed that further 
code compression over THUMB code is achievable 
within an appropriate architecture. We have 
implemented a software demonstrator in C proving 
that the architecture is practicable.  

In the rest of this paper, Section 2 outlines the 
previous research works in the code compression 
area. Section 3 briefs our study result on the 
compressibility of THUMB code. Section 4 details 
our architecture approach. Section 5 describes 
experimental details of the software implementation 
of the architecture. Section 6 summarizes our current 
research and identifies the future work. 
 

2. RELATED WORK  
RISC processors are widely used in embedded 

systems. In recent years, the code density problem 

linked with RSIC architecture has worsened. Several 
methods have been proposed to improve the code 
density of the typical RISC instruction sets. One of 
them is the code compression approach, that is, 
storing the program code in compressed format and 
decompressing the instructions before the processor 
executes them.  

To clarify, the Compression Ratio (CR) in this 
paper will be calculated using the following 
equation: 

 

(1)                         
Size Original

Size Compressed
=CR

 
 
Mainly there are two types of code compression 

approaches, namely 
Block Compression: Wolfe and Chanin [1] 

applied compression techniques to instruction code 
by introducing Compressed Code RSIC Processor 
(CCRP) architecture. Within this architecture, 
original program blocks with the same size as the 
cache line length (32 bytes) are compressed at 
compile time and stored in the instruction memory. 
The compressed instruction blocks will be 
decompressed and fetched into L1 cache lines when 
cache misses occur. In their proposal, static Huffman 
algorithm was used to compress the program blocks. 
Their experiment showed an overall compression 
ratio of 0.73. Lekatsas and Wolf [2] investigated 
new compression algorithms to replace the classical 
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Fig.1 - Compression Ratios of THUMB Code 
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 Fig.1 – Compression Ratios of THUMB Code.

Huffman algorithm in CCRP. IBM CodePack [3] is 
another block compression approach based on the 
32-bit IBM PowerPC processor.  

Reuse of Common Sequences of Instructions: 
This type of approaches [4-5] is also called 
dictionary code compression architectures. The main 
idea is based on the fact that certain sequences of 
instructions were repeatedly found in the program 
image. A dictionary is used to hold all the common 
instruction sequences, and then replacing the 
common sequences in the program with short codes, 
which refer to the dictionary entries. Liao et al. [5] 
proposed to use a sub-routine call and Lefurgy et al. 
[4] proposed to use a codeword to replace each 
dictionary entry. The codeword method respectively 
achieved 0.61 and 0.66 compression ratios on 
PowerPC and ARM. 

Different from these compression approaches, 
some chip companies introduced compacted ISAs to 
improve the code density of their original RSIC 
ISAs. ARM announced a 16-bit ISA, THUMB, to 
replace the typical 32-bits ARM instruction set [6] 
which results an average program size saving of 
30%. Also, MIPS launched its 16-bits ISA: MIP16 
[7]. A disadvantage related to these compacted ISAs 
is that they increase the instruction number of the 
user program, which resulted in slower timing 
performance. It was reported in [6] that THUMB 
programs run 15%-20% slower than ARM 
programs. However, the reported poorer 
performance was on the basis of the non-cache 
presence architecture. Contemporary high 
performance system cores are usually integrated 
with L1 cache memories. As a THUMB instruction 
is half the size of the ARM instruction, a cache line 
holds a double number of THUMB instructions 
against ARM instructions. A consequence of this is a 
higher cache-hit rate, which results a higher 
performance. It has been demonstrated that THUMB 
programs with L1 caches run faster than ARM 
programs in most cases. 

 
3. COMPRESSIBILITY OF THUMB CODE 

Our research started with studying the 
compressibility of ARM/THUMB code. We initially 
took the concept of CCRP, as it does not restrict one 
to any specific compression algorithm or instruction 
length. 

We developed a test bench program to compress 
the ARM/THUMB program with a selection of 
block sizes using a number of compression 
algorithms:  

PPMZ [8], a state-of-art compression algorithm 
yields best compression on different data set 

LZS, a dictionary-based compression algorithm 
from Stac Electronics, USA 

ENC, a dictionary-based compression algorithm 
from provide by IBM 

XMatchRLI/XmatchVW [9], a fast dictionary-
based compression algorithm 

LZAri [8], an algorithm based on LZ77 [8] and 
combined with the arithmetic compression 

Huffman, a typical adaptive Huffman 
compression algorithm [8] 

ARM Ltd provided the benchmark programs 
which were compiled into ARM/THUMB images in 
ARM Developer Suit (ADS) 1.1. We attempted 
different block sizes to explore the best compression 
ratio. To simplify, the block sizes were set as integer 
powers of 2.  

Figure 1 illustrates the compression result of 
THUMB benchmarking programs. Surprisingly, the 
result shows that the THUMB code can be 
efficiently compressed with some algorithms at 
certain block sizes. Although the compression ration 
is not as good as the ones in the other code 
compression approaches, it should be noticed that 
our compression is based on the compacted THUMB 
code.  

Also, we compared the compression ratios of 
ARM and THUMB code. It is revealed that 
compressing THUMB code was always more 
efficient than compressing ARM code in terms of 
the overall compression ratio (Compressed THUMB 
program size/ARM program size). Taking 
XMatchRLI as an example, Figure 2 clearly 
demonstrates this fact. This motivated us to 
investigate into the THUMB code compression 
architecture. 

 
4. ARCHITECTURE APPROACH 

Our approach is to investigate into an architecture 
similar to CCRP, to support the compressed 
THUMB code. CCRP requires the block size same 
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Fig.2 - ARM/THUMB Code Compression 
Ratios with XMatchRLI
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Fig.2 - ARM/THUMB Code Compression 
Ratios with XMatchRLI. 

as the L1 cache line size (32 bytes in most ARM 

cores), which is no longer applicable to the THUMB 
code compression, as we have seen in Figure 1 that 
THUMB code is hardly compressed when the block 
size is 32 bytes. A larger block size must be 
employed in the new architecture. Seeking an 
appropriate block size is an important task:  

using small block sizes (e.g. 32 bytes), the little 
space saving is not worthwhile; a large block size 
will certainly cause significant latency on fetching 
an instruction where the block decompression is 
required. The trade-off would be between space 
saving and timing performance.  

In this paper, we do not intend to address 
choosing what block size and which algorithm, we 
are going to study the practicability of the 
architecture. We set the block size as 256 bytes and 
select the LZAri compression algorithm. In this 
configuration, the compression ratio on THUMB 
code is around 0.84. 

Initially, we revised the CCRP architecture [1] to 
achieve THUMB code compression. We call the 
new architecture Code Compressed THUMB 
Processor  (CCTP).  

As mentioned earlier, a larger block size must be 
employed in order to achieve a good memory 
saving. Consequently, managing a larger block size 
is the main feature of the CCTP architecture. We set 
the block size as a number equal to n (n is an integer, 
usually the integer power of 2) times the cache line 
length.  A Compressed Block Address Table 
(CBAT) with the same function as the LAT [1] is 
used to translate the compressed block address space 
to the uncompressed one. 

The decompression of the compressed block is 
invoked when an instruction cache miss occurs. As a 
decompressed block consists of a number of cache 
lines, there are 3 options for the cache line refilling: 

Refill multiple cache lines with the decompressed 
block 

Refill the requested cache line and discard the 
rest part of decompressed block 

Refill the requested cache line and hold the rest 
part of the decompressed block in a temporary 
memory for reuse 

Option 1 is equivalent to increasing the cache 
line size. As the cache line size of a processor core is 
the optimum value, increasing it increases the cache 
miss penalty [10]. Option 2 wastes the cycles spent 
on block decompression. Ignoring the complexity 
that may be increased in the system architecture, 
Option 3 appears a preferable option. Then, the 
question is: Where to store the decompressed 
blocks? 

One choice is to introduce the L2 cache memory 
in the architecture as shown in Figure 2. As the L2 
cache line is m times larger than the L1 cache line, 
we can use L2 cache to store the recently 
decompressed blocks. To simplify the management, 
we set the block size equal to the L2 cache line size.  

Figure 3 depicts the initial CCTP architecture. 
Compared with CCRP, using L2 cache also brings 
another benefit: CLB [1] is no longer needed as the 
recently used blocks are in the L2 cache.  

The behaviour of CCTP will be: 
The CPU normally operates out of the L1 cache; 
When the L1 cache miss occurs, the L2 cache 

management unit is to find the requested cache line 
in the L2 cache; 

If found, move on to 5; 
The decompression engine is activated to 

decompress the corresponding compressed block in 
the main memory and load the decompressed block 
to the L2 cache; 

Fetch requested cache line from L2 to L1 cache; 
Go to 1. 

 
Data   Memory 
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Decompressed 
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Fig. 4 - Revised CCTP Architecture 
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Fig. 3 - Initial CCTP Architecture. Fig. 3 - Initial CCTP Architecture. 

The main overhead of the initial CCTP 
architecture will be the L2 cache. Firstly, the L2 
cache needs to be large enough to reduce the L2 
cache miss rate, whereas the memory space saving 
requirements of CCTP demands the L2 cache as 
small as possible. Another trade-off between the 
compression and timing performances need to be 
pursued in the architecture. Secondly, use of L2 
cache increases the complexity of the system.  

One alternative solution is to use additional piece 
of RAM memory instead of the L2 cache in CCTP. 
We call this memory space as the Decompressed 
Block Buffer (DBB). The DBB will play the same 
role as the L2 cache. Although use of the DBB 
decreases the timing performance, it greatly reduces 
the system design complexity. Figure 4 illustrates 
the revised CCTP architecture. 

In our study, another issue raised is the 
requirement of decompression of the data inside the 
instruction memory. After analysing the real ARM 
and THUMB program image, we found that not only 
instructions but also constant data reside in the 
instruction memory. These data is classified into two 
types: 

The global variables of the program, presenting 
as constant addresses. 

The literal data 
Consequently, the data cache miss sometimes 

demands a block decompression operation. That is 
why we see that there is a connection line between 
the L1 Data Cache and the Decompression Engine in 
Figure 4. 

The revised CCTP brings the chance of 
implementing the CCTP architecture in software, 
namely, block decompression, L1 cache refill and 
DBB management will be all in software. We call 
this Software CCTP. Pure software implementation 
is desirable, but not achievable.  

Software CCTP requires some hardware supports 
in the following two ways [11]: 

Raise Cache Miss Exception: Cache miss 
exception needs to be raised by hardware. This is the 
key to connect the hardware (the L1 cache miss) and 
software (the cache miss exception handler) 
together.   

Provide Instruction(s) for Cache Line 
Replacement: Software CCTP needs new 
instructions for loading the decompressed 
instructions from the DBB into the L1 cache. 

To prove the practicability of the CCTP 
architecture, in the next section, our experiment is to 
implement a demonstrator of the Software CCTP. 

 
5. EXPERIMENT 

Our software is developed under the ADS version 
1.1 and simulated on ARMulator. ARMulator is a 
software simulator for ARM architecture. It provides 
cycle accurate simulation on ARM/THUMB 
instruction set and supports the whole range of ARM 
processors. It also provides a platform for simulation 
of the L1 cache, memory and other peripheries. The 
ADS has a number of debug tools which working 
with ARMulator.  

Firstly, we need to seek the hardware support 
mentioned in Section 4. Within the ADS 
environment, the ARMulator stands for the 
hardware. The ADS provides means for configuring 
the memory, L1 cache and other peripherals. Also, 
the source code of some ARMulator models is 
available; we can modify these models to customise 
the ARMulator functions.   

The ARMulator provides a mechanism for 
broadcasting events, which includes cache miss 
events (MMUEvent_ILineFetch and 
MMUEvent_DLineFetch). The ARMulator also 
allows users to create a handler to process the event. 
The event handler can be easily programmed in C 
language, and runs on the host machine as part of the 
ARMulator.  We utilise this feature to raise the 
cache miss exception: when the event handler 
catches cache miss events from the ARMulator core 
models, it invokes a cache miss interrupt (normal 
interrupt); the interrupt will be seized by the 
interrupt handler where the cache miss is to be 
processed. 

Employing a normal interrupt to serve as a cache 
miss exception caused a significant problem with the 
data decompression. As discussed in Section 4, the 
data cache miss exception needs to be handled on 
the execution of the data access instruction. 
However, the interrupt mechanism is much slower 
than the pipeline operation, therefore the data 
decompression is always behind the data access. 
Consequently, the data access instructions 
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sometimes operate on the compressed data, which 
causes wrong results.  

We do not have any other better solution to 
replace the interrupt one with current ARMulator 
version. We tried to find other solutions in ARM 
code software side, that is, to avoid causing the data 
decompression request. It is possible to manage the 
global variable, as we can simply move the global 
variables to the uncompressed program section (e.g. 
the system initialisation section). However, it is not 
easy to do with the literal data. It is not natural to ask 
the software programmers to put all the literal 
information to the uncompressed section. We hope 
that the new version of ARMulator can help with 
this.  

Besides, unfortunately, ADS 1.1 does not provide 
the facility for modifying the ARMulator L1 cache 
model. It means that the demands for the L1 cache 
replacement hardware support cannot be met.  In our 
experiment, we sought the software emulation 
instead. We noticed that the cache operations of the 
ARM processor take virtual addresses (VA) rather 
than physical addresses when fetching the 
instructions to the L1 cache. With the memory page 
table supports provided by ARM922T, we can map 
the instruction VA space of the compressed memory 
to the decompressed block in the DBB, then the 
decompressed instructions can be fetched into the L1 
cache during the normal cache fetching. 

Under this solution, the DBB consists of one or 
more memory page(s). As the DBB is much smaller 
than the program VA space, the page tables need to 
be frequently modified to map correctly. The 
performance overhead is the cycles spent on page 
table access and the memory walks [12] for page 
mapping. Another issue is that decompressed blocks 
must be placed at the fixed position in one DBB 
page for the reason of exactly mapping. This forces 
the DBB to be managed on a schedule that is similar 
to the cache direct mapping. As a result, a slower 
performance is expected. 

The software algorithm is outlined as follows: 
When a L1 cache miss occurs, the system raises a 

cache miss exception; 
The cache miss exception interrupts the CPU 

from executing the current instruction; 
The CPU turns to execute the exception handler; 
The exception handler tests if the requested cache 

line is in the DBB, if yes, move on to (6); 
The exception handler invokes the 

decompression procedure to decompress the 
corresponding block and the decompressed block is 
placed in the DBB; 

The exception handler fetches the requested 
cache line from the DBB to the L1 cache; 

The CPU returns to the normal execution from 
the exception handler. 

At the running time, the layout of the instruction 
memory of the Software CCTP will look like Figure 
5.  

The Initialization Code initializes the system, 
which includes loading the address of the CBAT 
to the register, loading the Interrupt Catcher and 
Decompressor to the on-chip-memory or L1 
cache, etc. Finally, it leads to the user program 
entry. 

The Interrupt Catcher catches all the interrupt 
exceptions and only decompression exception will 
be processed locally. All other exceptions will be 
passed to user-defined exception handler. The 
decompression exception handler will manage the 
L1 cache uploading and the block decompression. 

The Decompressor can be based on any efficient 
compression algorithm. In our experiment, we chose 
LZAri. The decompression part of LZAri program 
was revised and compiled it into THUMB code as 
the Decompressor. 

During execution, the Interrupt Catcher and the 
Decompressor are used to upload the requested 
instructions to the L1 cache when the cache miss 
occurs. This requires that they do not affect the L1 
instruction cache status during execution.  The 
solution would be that they are either locked down 
in the L1 cache or resided in the on-chip-memory, 
which is accessed by the CPU directly rather than 
through the L1 cache. We choose the on-chip-
memory solution to leave more L1 cache space for 
the user program. 

The user program can be developed in the normal 
way except that the interrupt exception handler 
entries must be defined in the Interrupt Catcher 
model. After compiling and linking, the whole 
system code image for the embedded system is 
created in the ELF format. We have a compression 
program (developed based on the compression part 
of LZAri program), which is to compress the user 
program code on the block basis. 

In the experiment, there are two parameters to be 
set. They are the DBB size and the program block 
size.  We set the DBB size as 1K Bytes, which is the 

Initialization 
Code          

 
User 

Program 
(Compresse

Decompressor
Interrupt 

L1 Cache 
Or 

On-Chip-

CBAT

Fig. 5 - Instruction Memory 
Layout of the software CCTP. - Instruction Memory Layout of the software 

CCTP.

Fig. 5 - Instruction Memory Layout of the 
software CCTP. 
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smallest memory page size under the ARM 
architecture. The block size was set as 256 bytes. 
This means that 4 decompressed blocks can be 
accommodated in the DBB.  

We took a number of examples of user programs 
to test our software CCTP architecture. The user 
programs were running smoothly when the data 
decompression was avoided. As expected, the 
performance was much slower (10-40 times) than 
the normal system.  The major reason is the slow 
cache line replacement, where the page table 
mapping between the VA space and the DBB was 
frequently modified therefore the CPU must spend a 
great amount of time on the address seeking [12].  

 
6. CONCLUSION AND FUTURE WORK 

This paper proposes the code compression 
architecture to yield the memory saving on THUMB 
code. Implementing this architecture in software was 
experimented by a prototype running on ARMulator. 
The experiment result shows that the concept of 
CCTP is practical. 

Software CCTP needs supports from some 
simple hardware mechanisms. As the ARMulator 
cannot provide the requested support, the software 
prototype runs slowly in the current experiment. The 
next step of our work will be to build up a new 
simulation model to precisely evaluate the timing 
performance of the CCTP architecture and explore 
the overall memory saving efficiency. 
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