
Valeriy Koval, Volodymyr Savyak / Computing, 2004, Vol. 3, Issue 2, 13-17

 13

INTELLIGENT SOLVING MACHINES ON MODERN PARALLEL
ARCHITECTURES

Valeriy N. Koval, Volodymyr V. Savyak

V.M.Glushkov Institute of Cybernetics. National Academy of Sciences of Ukraine. 40, Prospect Academika Glushkova,

03680, Kiev, Ukraine. e-mail: icdepval@ln.ua, fax: (044) 2664549

Abstract: The paper considers the creation of intelligent solving machines and the arrangement of parallel programming
in intelligent distributed multiprocessor systems based on them. There are proposed some main concepts. A system is
designed for programming in the C+Graph high-level language. The ideology proposed can be considered as an efficient
development of structural high-level language interpretation when applied to multi-microprocessor systems. Equipment
structure of the basic version of intelligent solving machines is considered and some characteristics are discussed.

Keywords: Intelligent solving machines, parallel architectures

1. INTODUCTION
Performance and intelligence are the most

important factors promoting the development of
modern universal computers. The first factor
resulted in the creation of parallel computer
architectures for which universal microprocessors
(MP) form the most expedient grounds. In such
multi-microprocessor systems computation is
arranged on the basis of distributed information
processing, and MPs simultaneously fulfill certain
integrated tasks, i.e. independent user program
branches.

The second factor becomes clear when the notion
of machine intellect (MI) is used. MI defines
“internal computer intelligence”, the colloquial
expression [1]. In this case, computer intelligence is
growing with the MI level enhancement.

For the last 5-6 years, V.M. Glushkov Institute of
Cybernetics of the National Academy of Sciences of
Ukraine has been carrying out the research aimed at
the development of new class of computers. These
computers have the broad range of configurations,
viz. from powerful workstations up to
supercomputers. They are characterized by high and
super-high performance as well as high level of MI.
Trends of computers of the new class being
developed can be seen only in the literature and
some conference papers. Therefore, in the world of
computer engineering industry the certain niche is
observed today, i.e. there are high-performance
intelligent computers. This direction is rather
promising.

Within the framework of the above-mentioned
global direction, the paper is focused on the design
of the distributed parallel knowledge-oriented
architectures, i.e. intelligent solving machines (ISM)
implementing high- and super-high-level languages
(HLL and SHLL) and effective operation with large-
size data- and knowledge bases, while the problems
of both conventional computation and artificial
intelligence (AI) are solved [1].

The great deal of work has been done at V.M.
Glushkov Institute of Cybernetics and the following
outcomes resulted:

1. Microprogram computer and multiprocessor
computer with developed internal languages
and flexible architectures oriented towards
specified problem classes (MIR, Ukraine, the
shared intelligent terminal for the Elbrus
supercomputer, Macroconveyor and others [9-
13].

2. The intelligent systems solving problems in
weakly formalised AI domains: classifying and
generating; operation scheduling; searching for
regularities; likelihood reasonings based on
inductive and deductive inference computation,
and so on [14-17].

The authors’ views were also affected by modern
parallel computation architectures, like SMP
(Symmetric Multiprocessor System) and MPP (Mass
Parallel Processing) [4].

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

Valeriy Koval, Volodymyr Savyak / Computing, 2004, Vol. 3, Issue 2, 13-17

 14

2. INFOMATION TECHNOLOGIES IN A
PROBLEM SOLVING FIELDS

Since the ISM-class computers solve AI
problems, the paper briefly considers the
information technology features dealing with AI
solutions. Table 1 compares conventional problem-
solving technologies with those of AI. The new
information technology (NIT) is the technology
based on the AI methods The main differences to
conventional technologies are in an interractive and
trial-and-error nature of an applications used for AI
solutions.

Table 1. Comparing the Technologies

Characteristics Conventional NIT
Application

domains
Strongly

formalised
Strongly and weakly

formalised

Solving method

Single run
Cyclic application of

trial-and-error method
Problem solving

process
computation stages

Program
execution

Design of problem
models.

Program synthesis
and execution

 Program design
and execution order

Stages are
strictly divided

Stages may alternate
during problem

execution

Human-computer
operation style

Design of a
complete

problem model
and of a

program on
this basis;
interactive

interrelation is
for program

debugging only

Strong interactive
interrelation; models
are corrected during
problem design and

solution

The cyclically applied trial-and-error method is the

main method that solves AI problems because
different solving design strategies are used. Various
not fully certain situations (models) frequently
emerge in this case. During clarification, they also
frequently undergo different modifications.
Therefore, the program design and execution stages
alternate from time to time. Such stages are strictly
divided under the traditional solving technology, but
they are not divided under the technology used.

To support this new information technology
(NIT) the new architectural solutions were needed.
Thus, the authors attempted to implement them
within the ISMs, the universal computers with the
integrated architecture that combines the main
features of the conventional and special-purpose AI
problem-solving architectures.

3. ISMs: MAIN DESIGN PRINCIPLES

 The ISM architecture integrates four basic
properties:

•The hardware-software support for procedural
and declarative HLLs and SHLLs, applied
HLL is the basis in this case.

•The hardware-software support for operations on
distributed graph-type data- and knowledge
bases and on some other complicated data
structures (CDS);

•Combination of the centralized and decentralized
controls based on the two-stage interpretation;

•Distributed information processing, based on the
application of multiprocessor and multicluster
shared-memory architectures.

C+Graph, the basic input language in the ISM-
class computers, inherits the features of the C++ and
Java languages. It is also extended by the library
means used to perform parallel operations on graphs,
arrays and the centralized-decentralized control of
computation process.

The internal ISM language is the Java-like
HLL used to resolve one of the most critical
language problems: narrowing a semantic gap
between an initial user of HLL programs and their
internal representation in the machine; it is possible
to operate with knowledge like with CDSs, a user is
able not to take part in computation process
arrangement.

Knowledge and CDSs are represented in the
ISMs as oriented graphs. For each graph, as a
linking list there is the distributed representation (an
adjacency matrix, etc.). In addition, the graph may
be represented as a generalized object, i.e. without
an internal structure. A graph-object set may be a
semantic network, and it is possible to work with it
while there is no distributed representation.

The graphs play one key role. On the one hand, a
graph is a CDS, i.e. a data type characterised by its
objects and operations on them. On the other hand, it
may be a program being executed, i.e. type of
control.

The graphs can help to represent quite easily such
CDSs and knowledge structures as trees, including
binary trees or semantic networks which can vary
dynamically, to grow downward or widen and the like.

To process graph structures, C+Graph is
extended by the object-oriented means, i.e. the
graph-type class and its methods. These methods
form the set of operations and interaction
mechanisms used when graph-type variables are
operated on. As examples of such functions, the can
begraph creation and destruction, search along a
graph, inserting subgraphs into a graph, generation
of a new node or an arc and many others. C+Graph
contains a number of set-theoretic operations,
algebraic operations of ratios on graphs as on finite
automata, operations on relations on graph arcs,
control operations by connectors and some other

Valeriy Koval, Volodymyr Savyak / Computing, 2004, Vol. 3, Issue 2, 13-17

 15

operations.
The parallel model for programming in

C+Graph is based on the model of multiple-flow
monoprocessor programming of the basic Java
language. To transform this model in order to use it
in multiprocessor systems, the notion of a virtual
distributed computation space is introduced into
C+Graph. The mentioned space includes a set of
typical and interrelated virtual processors that have
a hierarchic memory, i.e. a processing processor and
a manager processor (MGP) (Figure 1).
 MP

MP

MP

MP

MP

MP

MP MP

MP MP

MP MP

 Manager processor (server)

I n t e r n a l H L L (C+G R A P H)

Input
HLL 1

Input
HLL n

Input
HLL

 C+GRAPH

 Cluster
In-cluster
decentra-
lized
management

 Intercluster
 decentra-
 lized
management

Manager
processor

Centralized
management

 - Thread dynamics objects
 - Physical field of MPs

Cluster

Cluster

Fig. 1 - Program Objects and Their Parallel
Execution.

The processing processors form a cluster
computation module. The clusters have their two-
way cluster-memory-type intra- and inter-cluster
communication channels. Any virtual processing
processor can communicate in parallel from one
cluster with any virtual processing processor in
another cluster in order to transfer data or control
information.

The MGP is chosen depending on accepted
computing network. It is connected with every
virtual processing processor as regards to control
and transferred data. The MGP specifies the
distributed control in a virtual computing network.

For the parallel distributed programming, the
following items are introduced into the library: 1)
Vprocessors (virtual processors), the new abstract
class; 2) the methods used to map virtual processors
onto physical processors; 3) the classes and methods
used to cover a virtual space by CDSs: DistrArray (an
array), DistrMatrix (a matrix), DistrVector (a vector),
DistRing (a ring), DistrStar (a star), DistrGrid (a
grid), DistrTree (a tree), DistrLinkedList (a linked
list), DistrGraph (a graph); 4) Thread and
ThreadGroups, i.e. the in-built flow generation and
control classes with their start() (start-up), run()
(running), stop() (stopping) and suspend(), resume(),
join(), wite() (synchronization) methods; 5) the

synchronized descriptor, etc. In addition, different in-
built and the new designed methods are also used for
operations on parallel objects (CDSs).

The extended library makes it possible to solve
broad range of problems without paying attention to
computation process arrangement details. Preliminary
CDS and program branch paralleling and distribution
across a virtual computation space are performed by
the extended library methods together with the input
C+Graph means and together with the standardised
multiprocessor operation system. The extended
library is compatible with this system.

The centralized-decentralized control in the
ISMs. The computer-aided programming functions
are performed by the compiler and by the interpreter.
They make up the virtual C+Graph machine. The
compiler compiles binary codes, and the interpreter
executes them by means of the MP commands,
specifically by means of low-level language.

To maintain the multiprocessor-based execution,
each physical MP is connected with one virtual
C+Graph machine or with several virtual C+Graph
machines. Therefore, it is necessary to create the
two-level internal language where each level is
implemented with the relevant hardware and
software components. The upper level is the input
algorithmic C+Graph language representation inside
the machine after compilation in the Class-file form.
This level fixes a machine purpose as a whole (Java
machine, for instance) and the centralized control
corresponding to the same level by means of the
MGP.

The internal language interpreter performs the
centralised control in accordance with a program
execution graph.

This graph is a dynamic object. Compiler initially
creates it when a program is transformed from an
external language into an internal one, and its
parallel branches are labelled. The same graph is
continuously transformed further depending on a
problem solving process. The program execution
graph is a CDS for the interpreter. Each node in this
graph is brought in correspondence with some
internal language program section, and some
separate sequence of nodes is brought in
correspondence with a parallel branch.

The lower level is usual MP command level. It
fixes direct information processing in an MP field,
i.e. it is the decentralized control. Specifically, it
captures the interpretation of the commands in
C+Graph by the MP commands, and the execution
of these commands is also fixed by it. Since there
are many operating MPs, then it is possible for
internal MP language objects to be interpreted in
parallel. The parallel interpreter of the internal
C+Graph language is as if distributed through the
whole cluster space.

Valeriy Koval, Volodymyr Savyak / Computing, 2004, Vol. 3, Issue 2, 13-17

 16

Thus, the two-stage interpretation is implemented
in the ISMs at the internal C+Graph interpreter level
in the first case, and, in the second case, the same
takes place at the virtual MP level where the virtual
MPs are located in the executing (physical) MP
memory. The notion of two-stage interpretation
when the parallel architecture with the internal two-
level language is controlled resulted accordingly.
Hence, it is possible to implement an HLL on a
parallel architecture.

4. ISM EQUIPMENT STRUCTURE
The ISM equipment was designed in order to

provide the hardware support for an internal
language and graph operation mechanisms and, in
addition, to exercise efficiently the centralized-
decentralized control. Like some other high-
performance systems, the ISM equipment uses the
cluster principle of system assembly. However, one
specifically provided (or one connected) MGP and
the intercluster switching facilities are already
present in this case (Fig. 2).

The cluster is the parallel and symmetric SMP-
type architecture into which several buses are
included for traffic improvement. Taken together,
the clusters have the MPP-architecture features [3]
and uses high-performance internode
communication [2]. Each cluster can contain 2-8 MP
modules built on different-type MPs, i.e. on RISC-,
SISC-, digital, signal and other processors. The
clusters communicate with each other by means of
the switches of two types: a short-message switch
(SMS) and an intercluster channel switch (ICS).
Single switch model also can be used. In that case
intercluster channel switch combines short-message
and large volume data exchange functionality.

Anticipated basic characteristics of ISM-class
computer version are given in Table 2. As it is seen,

they fit present-day views about high-performance
distributed architectures that meet, in their turn, high-
performance computing requirements. Although,
additional features were provided in the ISM. They
promote the ISM universality, and human-computer
interaction efficiency is also enhanced. Everything
becomes clear when both traditional and AI problems
are solved.

Table 2. Basic ISM-Class Computer Characteristics

Parameter Name Parameter Values
MP type AMD
Number of MPs in a cluster 2
Number of clusters in ISM 4
ISM memory capacity
(Gbytes) 4
ISM disk memory capacity
(Gbytes)

160

Operating system Linux
Message Passing Interface MPI
Basic language and extension
means

Java, С+Graph

All the main technical solutions have been

approved analytically as well as by the simulation
means. In addition, they have been proved
experimentally on the manufactured operating
machine model with the minimal configuration (4
clusters, 8 microprocessors).

5. CONCLUSION
The paper discusses basic ISM-class computer

design principles. User programming methods and
computer-aided (internal) programming tools are
considered. In general, the ISM-class computers are
fit for parallel programming in multiprocessor
distributed computation environments. C+Graph, the
input language, is proposed

Fig. 2 - ISM Hardware Sample.

Valeriy Koval, Volodymyr Savyak / Computing, 2004, Vol. 3, Issue 2, 13-17

 17

for user of parallel programming. User
communicates with the multiprocessor system
exclusively in HLLs while the multiprocessor
system components operate in low-level languages.
Moreover, a user does not take part in physical
computation process arrangement at all. The present
approach may be considered as successful extension
of the known structural HLL interpretation principle.
Therefore, it may now be called the structural-
program distributed HLL interpretation principle.

6. REFERENCES

[1] Koval V.N. Bulavenko O.N., Rabinovich Z.L.
Parallel Architectures and Their Development on
the Basis of Intelligent Solving Machines,
Warsaw, 2002.

[2] Savyak V.V. Internode communication
interfaces,. Computer Review, #18-19, May 15,
2002.

[3] Savyak V.V. Effective clustering In-Depth,
Networks & Telecommunication, #2, March 8,
2002.

[4] Voevodin V.V., Voevodin Vl.V. Parallel
Computations, BHV, pp.120-180, 2002.

Volodymyr Savyak was born
in June 25,1975.

He has graduated National
Technical University of Ukraine
“Kiev Polytechnical Institute” and
obtained Master’s degree on
Computer Systems and Networks
(system analytics, computer
systems and network architecture,

artificial intelligence).
Now he as a graduate student of Glushkov

Institute of Cybernetics NAS Ukraine and work as
technical director of USTAR (http://www.ustar.ua).
The company is engaged in a computer systems
integration, high performance and high availability
systems design and manufacturing.

Areas of scientific interests: high availability and
high performance computer systems design.

Hobbi: sports activities (wide range of extreme
sports), traveling, musiс.

