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Abstract: The topic of this paper is a Genetic Algorithm solution to the Vehicle Routing Problem with Time Windows, a 
variant of one of the most common problems in contemporary operations research. The paper will introduce the 
problem starting with more general Traveling Salesman and Vehicle Routing problems and present some of the 
prevailing strategies for solving them, focusing on Genetic Algorithms. At the end, it will summarize the Genetic 
Algorithm solution proposed by K.Q. Zhu which was used in the programming part of the project. 
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1. INTRODUCTION 
Vehicle Routing Problem with Time Windows is 

a variant of one of the most well known problems in 
contemporary operations research. Informally, the 
goal of the problem is to determine an optimal route 
for delivery of packages to customers who have 
specified when they will be available to receive their 
packages, taking into consideration vehicle and 
package size, and possibly some additional 
constraints. A more formal definition of the problem 
will be given in Section 5.  

Interest in the Vehicle Routing Problem (VRP) 
grew rapidly after World War II, following the 
increase in postal traffic and catalog ordering of 
goods from a remote retailer. VRP falls under a 
broader category of transportation problems, which 
also include fleet management, facility location, 
traffic assignment, air traffic control etc. [5] 

Vehicle Routing Problem has a historical and 
theoretical background in the Traveling Salesman 
Problem; both of these address the problem of 
finding a minimal cost route within a predefined set 
of points, given a set of constraints. Minimal cost 
route is usually described as the shortest route in 
terms of Euclidean distance. 

A number of solving methodologies will be 
explored in this paper, with Genetic Algorithms 
(GA) being examined in greater detail. Finally, a GA 
solution to the Vehicle Routing Problem with Time 
Windows proposed by K.Q. Zhu [13] will be 
presented.  

2. TRAVELING SALESMAN PROBLEM 
The Traveling Salesman Problem (TSP) can be 

stated as: given a finite number of nodes (cities) and 
the cost of travel between them (typically a function 
of their geographical distance), find the least 
expensive way to visit all nodes and return to the 
starting node.  

TSP traces its origin to the so-called Icosian 
Game, invented in the 1880’s by the Irish 
mathematician Sir William R. Hamilton. The goal is 
to find a way to visit all 20 points of a two-
dimensional representation of an icosahedron, 
without visiting any point more than once.  

 

 
 

Fig. 1 - A solution to Hamilton’s Icosian Game 
 
According to Applegate et al. [1] the largest 

solved instance of the Traveling Salesman Problem 
is a tour of 15,112 cities in Germany. The 

 

computing@tanet.edu.te.ua 
www.tanet.edu.te.ua/computing 

ISSN 1727-6209 
International  Scientific  

Journal  of  Computing 



Vladimir Vacic, Tarek M. Sobh / Computing, 2004, Vol. 3, Issue 2, 72-80 

 

 73

computation was carried out on a network of 110 
processors located at Rice and Princeton 
Universities. The total computer time used in the 
computation was 22.6 years, scaled to a Compaq 
EV6 Alpha processor running at 500 MHz. The 

optimal tour has a length of approximately 
66,000 kilometers.  

The Traveling Salesman Problem can be applied 
to many industrial applications, such as 
microprocessor manufacturing, transportation and 
logistics problems, etc. 

 
3  VEHICLE ROUTING PROBLEM 

Vehicle Routing Problem (VRP) is one of the 
most important topics in operations research. It deals 
with determining least cost routes from a depot to a 
set of scattered customers. The routes have to satisfy 
the following set of constraints: 

 
• Each customer is visited exactly once 
• All routes start and end at the depot 
• Sum of all demands on a route must not 

exceed the capacity of a vehicle 
 

 
Fig. 2 - An example solution to a Vehicle Routing 

Problem 

VRP is closely related to TSP, and according to 
Bullheimer et al. [2], as soon as the customers of the 
VRP are assigned to vehicles, the problem is 
reduced to several TSPs.  

Based on the following two criteria: 
 
• Whether the vehicle is capacitated or 

uncapacitated (is there a limit on how many 
passengers or objects a vehicle can take at any given 
time) 

• Whether it has one or more starting 
points (does the vehicle pick passengers or objects 
from a central location (i.e. a bus terminal, or a 
warehouse), or a pick-up can occur on a number of 
places) 

Gendreau and Potvin [5] devised a schematic to 
classify VRP variants: 

 
 many-to-

many 
one-to-

many 
Capacitated dial-a-

ride 
feeder 

system 
Uncapacitated express 

mail 
delivery 

courier 
or repair 
services 

Fig. 3 - Vehicle Routing Problem classification 

Many-to-many problems with capacity 
constraints are typically the most difficult ones 
because pick-up and delivery locations must be 
located on the same line, and the pick-up point must 
always precede the delivery location.  

Dial-a-ride Problem (DARP), also known as the 
Stacker Crane Problem, comes in two flavors 
depending on whether the vehicle is allowed to leave 
objects on intermediate locations and later pick them 
up and deliver them. DARP arises in several 
practical applications [3] such as transportation of 
elderly or disabled persons, tele-buses and shared 
taxi services. 

Courier and Repair Services [5] should be 
contrasted to the Traveling Salesman Problem with 
Time Windows with respect to that the time 
windows are specified by a central planner in order 
to minimize the route cost. Another specific of the 
Repair Services is that the service time is a 
significant portion of the total schedule time. 

 
4  VEHICLE ROUTING ALGORITHMS  
Vehicle routing and dispatching problems are 

topics of a great deal of ongoing research in the 
operations research community since the late fifties, 
which reflects VRP’s central role in distribution 
management.  

  According to one classification, proposed by 
Fisher [4], vehicle routing algorithms fall into three 
categories: 

 
• Simple heuristics based on local search and 

sweep, developed mostly in the 60’s and 70’s. 
• Mathematical programming based 

heuristics, which approximate VRP with generalized 
assignment and set partitioning problems. 

• Exact optimization (K-tree, Lagrangean 
Relaxation) and artificial intelligence methods 
(Simulated Annealing, Tabu Search, Ant System and 
Genetic Algorithms). 

 
The algorithm used in this project falls under the 

Genetic Algorithms category. The following 
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sections will briefly describe each of the AI methods 
mentioned. 

 
4.1 Simulated Annealing 
Simulated Annealing is a generalization of the 

Monte Carlo method modeled after the way liquids 
freeze in the process of annealing. A thermodynamic 
system goes from a high-energy, disordered state 
into a “frozen”, more ordered one. Using this 
analogy a thermodynamic system corresponds to the 
current solution of the combinatorial problem, the 
energy equation for the thermodynamic system 
corresponds to the objective function, and the 
ground state is analogous to the global minimum.  

Initially, a thermodynamic system starts at an 
energy level E and temperature T. While T is being 
kept constant, the initial configuration is perturbed 
and changes in energy dE are observed. If the 
change in energy is negative, new configuration is 
accepted. If the change in energy is positive, new 
configuration is accepted with probability:  

 

T
dE

e
−

 (Boltzmann factor) 
 

The process is then repeated until good sampling 
statistics are gathered for the current temperature, 
then the temperature is decreased and the whole 
process is repeated until the frozen state is achieved.  

Simulated annealing is used in various 
combinatorial optimization problems, in particular in 
circuit design problems.  

 
4.2 Tabu Search 
Glover [6] describes Tabu Search (TS) as a meta-

heuristic superimposed on another heuristic. The 
high level approach is to prevent the algorithm from 
going in cycles by forbidding or penalizing moves 
which take the next iteration of the solution to points 
in the solution space previously visited (those points 
are declared "tabu").  

Tabu method was modeled after observed human 
behavior – given a similar set of circumstances, 
humans will act slightly differently on different 
occasions. This randomness might cause an error, 
but may also be beneficial and cause an 
improvement. TS operates in this fashion, except 
that it does not make random choices, but operates 
on the premises that there is no point in accepting a 
poor solution unless it is to avoid a path already 
investigated. This provides for investigation of new 
regions of the problems solution space, avoiding 
local minima and ultimately finding the desired 
solution. 

TS first looks for a local minimum, and to avoid 
repeating the solutions it already examined, it stores 

them in one or more Tabu lists. The original intent 
of the list was not to prevent a previous move from 
being repeated, but rather to insure it was not 
reversed. The role of the memory can change during 
the course of the algorithm execution – at 
initialization the goal is to make a coarse 
examination of the solution space (referred to as 
diversification), but as candidate locations are 
identified the search is more focused to produce 
local optimal solutions (referred to as 
intensification). Different TS methods differ 
primarily in the size and adaptability of the Tabu 
memory, having them customized to a particular 
problem.  

The method is still actively researched, and is 
constantly being improved. Tabu Search in being 
used in integer programming problems, scheduling, 
routing, traveling salesman and related problems. 

 
4.3 Ant Systems 
Bullheimer et al. [2] describe Ant Systems as a 

distributed meta-heuristics for solving hard 
combinatorial optimization problems, first used to 
solve the TSP. They were introduced by Colorni, 
Dorigo and Maniezzo, and are based on observed 
behavior of real ant colonies in search of food. 
Namely, ants communicate the information about 
food sources by using pheromones to mark the paths 
which lead to food. Fellow ants can follow the 
pheromone trail and while following it they will 
additionally mark it with new pheromones, thus 
attracting more ants. In result, paths which quickly 
lead to rich food sources will be reinforced.  

In solving a problem, simulated ants are 
searching the solution space, the quality and size of 
the food source correspond to the objective values 
that are being optimized, and adaptive memory plays 
a role of the pheromone trail. Artificial ants are 
heuristically searching through the solution space.  

Ant Systems are used in timetabling, production 
and route scheduling.  

 
4.4 Genetic Algorithms 
Genetic Algorithms (GA for short) are a class of 

adaptive heuristics based on the Darwinian concept 
of evolution – “survival of the fittest.” They have 
been developed by J. Holland at the University of 
Michigan in 1975. Solutions to a problem are 
encoded as chromosomes, and based on their fitness 
as evaluated by an evaluation function, good 
properties of a generation of solutions are 
propagated to a next generation. 

Two main aspects of a GA, solution encoding 
and evaluation function, are problem specific [12]. 
The most common way to encode a solution into a 
chromosome is to discretize the variables which we 
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are trying to optimize on range of a power of 2 and 
then represent them as bit strings. For example, if 
the range of values a variable can take is from 0 to 
32, we will then have to uses 5 bits to encode this 
variable. Another popular encoding method is 
permutation encoding, which is more suitable for 
ordering problems. An evaluation function is used to 
estimate how optimal a particular solution is.  

Genetic algorithms typically have the following 
structure: 

 
initialize timer 
generate a random population 
evaluate fitness 
 
while not terminated do 
{ 
  increment timer 
 select the fittest parents 
  recombine genes of 

selected parents 
 introduce mutations 
  evaluate fitness 
 select survivors that will 

become the next generation 
} 
 
A GA will start with a set of chromosomes called 

the initial population. Each chromosome represents a 
solution to the problem, and the initial population is 
either randomly generated (in which case it would 
take longer time for the algorithm to converge to the 
solution) or generated using some form of heuristics 
(in which case the population is already closer to the 
solution, and would hence take less time to 
converge).  

A selection mechanism will then be used to select 
the prospective parents based on their fitness, which 
is computed by the evaluation function. Their 
offspring will constitute the next generation. 
Selection mechanisms will be explained better in 
section 4.4.1. The selected parent chromosomes will 
then be recombined via the crossover operator to 
create a potential new population. Some crossover 
operators will be examined in greater detail in 
section 4.4.2. 

The next step will be to mutate a small number of 
the newly obtained chromosomes, in order to 
introduce a level of randomness that will preserve 
the GA from converging to a local optimum. A 
mutation is typically a random swap in the gene 
sequence, or a random negation of a bit if the 
chromosome was bit-encoded. 

Finally, new population will then be selected 
based on the fitness of the candidate chromosomes. 

The genetic algorithm will reiterate through this 
process until a stoping criterion was met, which can 
be one of the following: 

• predefined number of generations has been 
produced 

• there was no improvement in the population, 
which would mean that the GA has found an optimal 
solution 

• a predefined level of fitness has been 
reached. 
 

4.4.1. Selection Mechanisms 

Roulette Wheel Selection 

Roulette Wheel Selection (RWS) is one of the 
most common proportionate selection schemes. Man 
et al. [8] describe it in algorithmic fashion: 

 
1. Sum the fitness of all population members, 

let’s call it sumF .  
2. Generate a random number between 0 and 

sumF  
3. Return the first population member whose 

fitness, added to the fitness of the preceding 
population members, is greater or equal to the 
randomly generated number. 

 
To illustrate RWS graphically, in the following 

Fig. sumF  corresponds to the circumference of the 
Roulette wheel. Chromosome 3 being the fittest 
occupies the largest interval on the  

 

 
Fig. 4 - Roulette Wheel 

circumference. A random number is generated and 
the chromosome whose segment spans the random 
number will be selected. This procedure will be 
repeated until a sufficient number of chromosomes 
is selected. 
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Tournament Selection 

In Tournament Selection we keep two identical 
(though differently ordered) copies of the 
population. In every generation, we compare 
adjacent chromosomes in one copy of the population 
pair by pair, and select the chromosome with greater 
fitness value, and then we proceed with the second 
copy of the population to select the other half of the 
selected population. The advantage of this 
mechanism is that genetically fitter chromosomes 
are given priority, but the average chromosomes 
have some chances of being selected if they happen 
to be compared with a less fit chromosome. 

4.4.2. Crossover Operators 
Crossover refers to the recombination of genetic 

information between two chromosomes. Crossover 
implementation heavily depends on the way the 
chromosomes were encoded. This section will 
present some of the most common crossover 
operators. [8] 

 
One-Point Crossover 

This is the simplest crossover operator – a cut-off 
point is randomly selected, and then the genes after 
the cut-off point are swapped between the 
chromosomes. 

 

 
Fig. 5 - One-Point Crossover 

 
Multi-Point Crossover 

This is a slight modification of the previous 
operator, the only difference being  

 
that now we have more than one crossover point. 

 

 
Fig. 6 - Multi-Point Crossover 

One and Multi-Point Crossover operators are 
useful in cases when chromosomes were bit 
encoded.  

 
Partially Mapped Crossover (PMX) 

This crossover method is used when 
chromosomes are permutation encoded. It preserves 
the locations of as many genes in both chromosomes 
as possible. For example: 

 
Parent 1: H   K  C   E       |       F   D   B       

|       L  A   I   G   J   
 
Parent 2:  A   B   C   D      |       E   F   G       

|       H   I   J   K  L 
 

Two random cut-off points and the segment 
between them define a mapping (in this case,  

E→F, F→D, G→B) which will be applied to 
the genes of Parent 1 that have not been swapped. 
This way the duplicate genes will be modified (so 
the resulting chromosome would still be a 
permutation), while the remaining ones will stay in 
place. 

 
Parent 1: H   K  C   D        |        E   F   G        

|        L   A   I   B   J    
 
Parent 2:  A   G   C   E       |        F   D   B        

|        H   I    J   K   L 
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Ordered Crossover 

This crossover method preserves the relative 
order of as many genes in both chromosomes as 
possible. For example: 

 
Parent 1: H   K  C   E        |        F   D   B        

|        L  A   I   G   J      
 
Parent 2:  A   B   C   D       |        E   F   G        

|        H   I   J   K   L 
 

We select two random cut-off points, determine 
the order of genes in a chromosome starting with the 
first gene after the segment which is to be swapped 
(for example, for Parent 1, that would be 
LAIGJHKCEFDB), and then from the sequence we 
will remove the genes which already are in the 
swapped segment (in this example, those would be 
EFG, so the remaining sequence would be 
LAJHKCDB). The resulting offspring would be: 

 
Parent 1: K   C   D   B       |        E   F   G        

|        L  A   I   J   H   
 
Parent 2:  A   C   E   G       |        F   D   B        

|        H   I   J   K   L 
 

5 VEHICLE ROUTING PROBLEM WITH 
TIME WINDOWS (VRPTW) 

A formal definition of VRPTW can be stated as: 
let G=(V, A) be a graph with node set 

{ }0vVV N ∪=  and arc set A, where 

{ }niVvV iN ...,,2,1=∈=  stand for customer 

nodes and 0v  stands for the central depot, where all 
routes start and end. Each node Vvi ∈  has an 
associated demand iq , service time is , service time 
window ],[ ii le  and an ordered pair of coordinates 
( )ii yx , . Based on the geographical coordinates, it is 
possible to calculate the distance ijd  between every 

two distinct nodes iv  and jv , and the corresponding 

travel time ijt .  
Under the time window constraints there may or 

may not be a transition (an arc) between certain node 
pairs. The set of arcs can be defined as 

( ){ }jijiijiji ltstVvvvvA ≤++∧∈= 0,, . If the 

vehicle reaches the customer iv  before the ie , a 
waiting time occurs. The route’s schedule time is the 

sum of the travel time, waiting time and the service 
time.  

The objective of VRPTW is to service all 
customers while minimizing the number of vehicles, 
travel distance, schedule time and waiting time 
without violating vehicles’ capacity constraints and 
the customers’ time windows. 

Some of the most useful applications of the 
VRPTW include postal deliveries, industrial refuse 
collection, national franchise restaurant services, 
school bus routing, and security patrol services. 

 
6  ALGORITHM DESCRIPTION 

The algorithm used in the programming part of 
the project was developed by K.Q. Zhu [13].  

A solution to the problem is represented by an 
integer string of length N, where N is the number of 
customers which need to be served. All routes are 
encoded together, with no special route termination 
characters in between; chromosomes are decoded 
back into routes based on the customers’ demand 
and the vehicle capacity.  

Part of the population is initialized using a 
heuristic method, and part is initialized randomly. 
Having a non-random part of the population greatly 
reduces the time for the solution to converge, and 
having a random part prevents converging to a local 
optimum and not exploring the complete solution 
space.  

Candidates for mating are selected using the 
tournament selection, and two kinds of crossover 
operators are being used: heuristic and merge.  

Heuristic crossover deals with distances 
between nodes: for example, a random cut was made 
on two chromosomes, and we will compare the 
genes immediately after the cuts. 

 
Parent 1: H   K   C   E   F   D  B   

L   A   I   G   J   
 
Parent 2:  A   B   C   D   E   F  G   

H   I   J   K   L 
 
Let us say that B is to be the first gene in the 

child. Gene G has to be swapped with B in Parent 2 
to avoid subsequent repetition. After swapping, we 
have: 

 
Parent 1: H   K   C   E   F   D  B   

L   A   I   G   J   
 
Parent 2:  A   G   C   D   E   F  B   

H   I   J   K   L 
 
Now we compare the distance between B and the 

first two subsequent genes, L and H, and choose the 
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one which is geographically closer to B. Once again, 
in Parent 2 we swap the gene which was chosen with 
the remaining one, to avoid duplication. This process 
is continued until a new chromosome of length N is 
formed. A similar heuristic can be created by 
deleting a gene from a parent, instead of swapping it. 
We name those crossover operators 
HeuristicCrossover 1 (H1) and HeuristicCrossover 2 
(H2) respectively. 

Merge crossover operates on the basis of time 
precedence, defined by the time windows 
corresponding to each node. Similarly, the first gene 
is chosen randomly, and the following gene will be 
the one whose time window comes earlier. Similar 
to the heuristic case, once again we can either swap 
or delete the gene in the other parent, and thus we 
obtain MergeCrossover 1 (M1) and MergeCrossover 
2 (M2).  

Heuristic and Merge Crossover operators will 
produce only one child each. Since geographic 
distribution is equally important as time sequence, 
from the same pair of parent chromosomes we will 
create one child by using the Heuristic Crossover 
and one child using the Merge Crossover. We now 
have 4 possible combinations which would produce 
the offspring: M1H1, M1H2, M2H1, M2H2. 
Experiments have shown that the H1M2 performs 
the best out of the four, as was reported in [13]. 

A probability that a pair of selected parents will 
mate is called the probability of crossover. When a 
couple of parent chromosomes is determined not to 
mate, it will be copied verbatim into the next 
generation. 

Mutation schemes used are swap node and swap 
sequence. 

Zhu uses an adaptive mutation probability 
scheme, which changes the mutation probability as 
the standard deviation of the population fitness 
changes. It is described as  

 

)
1

)(
5(1.006.0

1

0
2

−

−
−⋅+=
∑ −

=

N

xx
P

N

j i
mutation  

 
where ix  is the fitness of a chromosome, x is the 

mean fitness and N is the population size. We can 
see that a mutation probability of 0.06 is always 
guarantied. 

Zhu also adds hill-climbing in order to improve 
the chromosomes obtained through crossover and 
mutation. Hill-climbing is a scheme for randomly 
selecting a portion of the population, decoding the 
chromosomes into solutions and then improving 
those solutions by a few iterations of removal and 
reinsertion. To prevent the algorithm from 

converging to a local optimum, chromosomes are 
selected for hill-climbing with a probability 0.5. 

And, at the end, to additionally improve the 
quality of the population, the worst 4% of the 
population will be replaced with the best 4% of the 
parent population. Note that the percentage of 
chromosomes to be improved needs to be less than 
the mutation rate, otherwise no mutated 
chromosomes will be able to escape the 
improvement process. 

The algorithm was tested on six Solomon’s [10] 
VRPTW Benchmark Problem data sets (R1, C1, 
RC1, R2, C2, RC2) with 25 customers, as reported 
in [13]. 

 
7 CONCLUSION 

Genetic Algorithms fall in the category of 
methods known as “weak methods,” which are 
robust, but take time to produce a solution. They 
perform best in situations when it is either not clear 
how to find a solution, or when there is little 
information available about which parameters would 
be good. Blind search which pure GAs offer does 
not yield best solutions in situations in which we 
know enough about the problem. Specifically, Tabu 
Search shows the best performance for VRP, and 
according to Bullnheimer et al. [2] the superiority of 
this approach is due to the fact that there was more 
VRP research involved with Tabu Search than with 
any other method, and consequently TS solutions 
have been constantly improved. 

Almost by a rule, hybrid genetic algorithms, in 
which pure GAs are combined with other methods to 
produce a new approach, give better solutions that 
strict GA.  

However, the strictly GA algorithm devised by 
Zhu [13] described in this paper offers solutions 
competitive to the ones obtained by Tabu Search and 
Simulated Annealing, and in 4 out of 56 cases of 
Solomon’s [10] 100 VRPTW problems, it 
outperformed or gave results equal to the best results 
presented by Solomon.  
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