
Vladimir Vacic, Tarek M. Sobh / Computing, 2004, Vol. 3, Issue 2, 72-80

 72

VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

Vladimir Vacic and Tarek M. Sobh

Department of Computer Science and Engineering
University of Bridgeport, Bridgeport, CT 06604, USA

vladimir@vacic.org, sobh@bridgeport.edu

Abstract: The topic of this paper is a Genetic Algorithm solution to the Vehicle Routing Problem with Time Windows, a
variant of one of the most common problems in contemporary operations research. The paper will introduce the
problem starting with more general Traveling Salesman and Vehicle Routing problems and present some of the
prevailing strategies for solving them, focusing on Genetic Algorithms. At the end, it will summarize the Genetic
Algorithm solution proposed by K.Q. Zhu which was used in the programming part of the project.

Keywords: Vehicle Routing Problem with Time Windows, Genetic Algorithms

1. INTRODUCTION
Vehicle Routing Problem with Time Windows is

a variant of one of the most well known problems in
contemporary operations research. Informally, the
goal of the problem is to determine an optimal route
for delivery of packages to customers who have
specified when they will be available to receive their
packages, taking into consideration vehicle and
package size, and possibly some additional
constraints. A more formal definition of the problem
will be given in Section 5.

Interest in the Vehicle Routing Problem (VRP)
grew rapidly after World War II, following the
increase in postal traffic and catalog ordering of
goods from a remote retailer. VRP falls under a
broader category of transportation problems, which
also include fleet management, facility location,
traffic assignment, air traffic control etc. [5]

Vehicle Routing Problem has a historical and
theoretical background in the Traveling Salesman
Problem; both of these address the problem of
finding a minimal cost route within a predefined set
of points, given a set of constraints. Minimal cost
route is usually described as the shortest route in
terms of Euclidean distance.

A number of solving methodologies will be
explored in this paper, with Genetic Algorithms
(GA) being examined in greater detail. Finally, a GA
solution to the Vehicle Routing Problem with Time
Windows proposed by K.Q. Zhu [13] will be
presented.

2. TRAVELING SALESMAN PROBLEM
The Traveling Salesman Problem (TSP) can be

stated as: given a finite number of nodes (cities) and
the cost of travel between them (typically a function
of their geographical distance), find the least
expensive way to visit all nodes and return to the
starting node.

TSP traces its origin to the so-called Icosian
Game, invented in the 1880’s by the Irish
mathematician Sir William R. Hamilton. The goal is
to find a way to visit all 20 points of a two-
dimensional representation of an icosahedron,
without visiting any point more than once.

Fig. 1 - A solution to Hamilton’s Icosian Game

According to Applegate et al. [1] the largest

solved instance of the Traveling Salesman Problem
is a tour of 15,112 cities in Germany. The

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

Vladimir Vacic, Tarek M. Sobh / Computing, 2004, Vol. 3, Issue 2, 72-80

 73

computation was carried out on a network of 110
processors located at Rice and Princeton
Universities. The total computer time used in the
computation was 22.6 years, scaled to a Compaq
EV6 Alpha processor running at 500 MHz. The

optimal tour has a length of approximately
66,000 kilometers.

The Traveling Salesman Problem can be applied
to many industrial applications, such as
microprocessor manufacturing, transportation and
logistics problems, etc.

3 VEHICLE ROUTING PROBLEM

Vehicle Routing Problem (VRP) is one of the
most important topics in operations research. It deals
with determining least cost routes from a depot to a
set of scattered customers. The routes have to satisfy
the following set of constraints:

• Each customer is visited exactly once
• All routes start and end at the depot
• Sum of all demands on a route must not

exceed the capacity of a vehicle

Fig. 2 - An example solution to a Vehicle Routing

Problem

VRP is closely related to TSP, and according to
Bullheimer et al. [2], as soon as the customers of the
VRP are assigned to vehicles, the problem is
reduced to several TSPs.

Based on the following two criteria:

• Whether the vehicle is capacitated or

uncapacitated (is there a limit on how many
passengers or objects a vehicle can take at any given
time)

• Whether it has one or more starting
points (does the vehicle pick passengers or objects
from a central location (i.e. a bus terminal, or a
warehouse), or a pick-up can occur on a number of
places)

Gendreau and Potvin [5] devised a schematic to
classify VRP variants:

 many-to-

many
one-to-

many
Capacitated dial-a-

ride
feeder

system
Uncapacitated express

mail
delivery

courier
or repair
services

Fig. 3 - Vehicle Routing Problem classification

Many-to-many problems with capacity
constraints are typically the most difficult ones
because pick-up and delivery locations must be
located on the same line, and the pick-up point must
always precede the delivery location.

Dial-a-ride Problem (DARP), also known as the
Stacker Crane Problem, comes in two flavors
depending on whether the vehicle is allowed to leave
objects on intermediate locations and later pick them
up and deliver them. DARP arises in several
practical applications [3] such as transportation of
elderly or disabled persons, tele-buses and shared
taxi services.

Courier and Repair Services [5] should be
contrasted to the Traveling Salesman Problem with
Time Windows with respect to that the time
windows are specified by a central planner in order
to minimize the route cost. Another specific of the
Repair Services is that the service time is a
significant portion of the total schedule time.

4 VEHICLE ROUTING ALGORITHMS
Vehicle routing and dispatching problems are

topics of a great deal of ongoing research in the
operations research community since the late fifties,
which reflects VRP’s central role in distribution
management.

 According to one classification, proposed by
Fisher [4], vehicle routing algorithms fall into three
categories:

• Simple heuristics based on local search and

sweep, developed mostly in the 60’s and 70’s.
• Mathematical programming based

heuristics, which approximate VRP with generalized
assignment and set partitioning problems.

• Exact optimization (K-tree, Lagrangean
Relaxation) and artificial intelligence methods
(Simulated Annealing, Tabu Search, Ant System and
Genetic Algorithms).

The algorithm used in this project falls under the

Genetic Algorithms category. The following

Vladimir Vacic, Tarek M. Sobh / Computing, 2004, Vol. 3, Issue 2, 72-80

 74

sections will briefly describe each of the AI methods
mentioned.

4.1 Simulated Annealing
Simulated Annealing is a generalization of the

Monte Carlo method modeled after the way liquids
freeze in the process of annealing. A thermodynamic
system goes from a high-energy, disordered state
into a “frozen”, more ordered one. Using this
analogy a thermodynamic system corresponds to the
current solution of the combinatorial problem, the
energy equation for the thermodynamic system
corresponds to the objective function, and the
ground state is analogous to the global minimum.

Initially, a thermodynamic system starts at an
energy level E and temperature T. While T is being
kept constant, the initial configuration is perturbed
and changes in energy dE are observed. If the
change in energy is negative, new configuration is
accepted. If the change in energy is positive, new
configuration is accepted with probability:

T
dE

e
−

 (Boltzmann factor)

The process is then repeated until good sampling
statistics are gathered for the current temperature,
then the temperature is decreased and the whole
process is repeated until the frozen state is achieved.

Simulated annealing is used in various
combinatorial optimization problems, in particular in
circuit design problems.

4.2 Tabu Search
Glover [6] describes Tabu Search (TS) as a meta-

heuristic superimposed on another heuristic. The
high level approach is to prevent the algorithm from
going in cycles by forbidding or penalizing moves
which take the next iteration of the solution to points
in the solution space previously visited (those points
are declared "tabu").

Tabu method was modeled after observed human
behavior – given a similar set of circumstances,
humans will act slightly differently on different
occasions. This randomness might cause an error,
but may also be beneficial and cause an
improvement. TS operates in this fashion, except
that it does not make random choices, but operates
on the premises that there is no point in accepting a
poor solution unless it is to avoid a path already
investigated. This provides for investigation of new
regions of the problems solution space, avoiding
local minima and ultimately finding the desired
solution.

TS first looks for a local minimum, and to avoid
repeating the solutions it already examined, it stores

them in one or more Tabu lists. The original intent
of the list was not to prevent a previous move from
being repeated, but rather to insure it was not
reversed. The role of the memory can change during
the course of the algorithm execution – at
initialization the goal is to make a coarse
examination of the solution space (referred to as
diversification), but as candidate locations are
identified the search is more focused to produce
local optimal solutions (referred to as
intensification). Different TS methods differ
primarily in the size and adaptability of the Tabu
memory, having them customized to a particular
problem.

The method is still actively researched, and is
constantly being improved. Tabu Search in being
used in integer programming problems, scheduling,
routing, traveling salesman and related problems.

4.3 Ant Systems
Bullheimer et al. [2] describe Ant Systems as a

distributed meta-heuristics for solving hard
combinatorial optimization problems, first used to
solve the TSP. They were introduced by Colorni,
Dorigo and Maniezzo, and are based on observed
behavior of real ant colonies in search of food.
Namely, ants communicate the information about
food sources by using pheromones to mark the paths
which lead to food. Fellow ants can follow the
pheromone trail and while following it they will
additionally mark it with new pheromones, thus
attracting more ants. In result, paths which quickly
lead to rich food sources will be reinforced.

In solving a problem, simulated ants are
searching the solution space, the quality and size of
the food source correspond to the objective values
that are being optimized, and adaptive memory plays
a role of the pheromone trail. Artificial ants are
heuristically searching through the solution space.

Ant Systems are used in timetabling, production
and route scheduling.

4.4 Genetic Algorithms
Genetic Algorithms (GA for short) are a class of

adaptive heuristics based on the Darwinian concept
of evolution – “survival of the fittest.” They have
been developed by J. Holland at the University of
Michigan in 1975. Solutions to a problem are
encoded as chromosomes, and based on their fitness
as evaluated by an evaluation function, good
properties of a generation of solutions are
propagated to a next generation.

Two main aspects of a GA, solution encoding
and evaluation function, are problem specific [12].
The most common way to encode a solution into a
chromosome is to discretize the variables which we

Vladimir Vacic, Tarek M. Sobh / Computing, 2004, Vol. 3, Issue 2, 72-80

 75

are trying to optimize on range of a power of 2 and
then represent them as bit strings. For example, if
the range of values a variable can take is from 0 to
32, we will then have to uses 5 bits to encode this
variable. Another popular encoding method is
permutation encoding, which is more suitable for
ordering problems. An evaluation function is used to
estimate how optimal a particular solution is.

Genetic algorithms typically have the following
structure:

initialize timer
generate a random population
evaluate fitness

while not terminated do
{
 increment timer
 select the fittest parents
 recombine genes of

selected parents
 introduce mutations
 evaluate fitness
 select survivors that will

become the next generation
}

A GA will start with a set of chromosomes called

the initial population. Each chromosome represents a
solution to the problem, and the initial population is
either randomly generated (in which case it would
take longer time for the algorithm to converge to the
solution) or generated using some form of heuristics
(in which case the population is already closer to the
solution, and would hence take less time to
converge).

A selection mechanism will then be used to select
the prospective parents based on their fitness, which
is computed by the evaluation function. Their
offspring will constitute the next generation.
Selection mechanisms will be explained better in
section 4.4.1. The selected parent chromosomes will
then be recombined via the crossover operator to
create a potential new population. Some crossover
operators will be examined in greater detail in
section 4.4.2.

The next step will be to mutate a small number of
the newly obtained chromosomes, in order to
introduce a level of randomness that will preserve
the GA from converging to a local optimum. A
mutation is typically a random swap in the gene
sequence, or a random negation of a bit if the
chromosome was bit-encoded.

Finally, new population will then be selected
based on the fitness of the candidate chromosomes.

The genetic algorithm will reiterate through this
process until a stoping criterion was met, which can
be one of the following:

• predefined number of generations has been
produced

• there was no improvement in the population,
which would mean that the GA has found an optimal
solution

• a predefined level of fitness has been
reached.

4.4.1. Selection Mechanisms

Roulette Wheel Selection

Roulette Wheel Selection (RWS) is one of the
most common proportionate selection schemes. Man
et al. [8] describe it in algorithmic fashion:

1. Sum the fitness of all population members,

let’s call it sumF .
2. Generate a random number between 0 and

sumF
3. Return the first population member whose

fitness, added to the fitness of the preceding
population members, is greater or equal to the
randomly generated number.

To illustrate RWS graphically, in the following

Fig. sumF corresponds to the circumference of the
Roulette wheel. Chromosome 3 being the fittest
occupies the largest interval on the

Fig. 4 - Roulette Wheel

circumference. A random number is generated and
the chromosome whose segment spans the random
number will be selected. This procedure will be
repeated until a sufficient number of chromosomes
is selected.

Vladimir Vacic, Tarek M. Sobh / Computing, 2004, Vol. 3, Issue 2, 72-80

 76

Tournament Selection

In Tournament Selection we keep two identical
(though differently ordered) copies of the
population. In every generation, we compare
adjacent chromosomes in one copy of the population
pair by pair, and select the chromosome with greater
fitness value, and then we proceed with the second
copy of the population to select the other half of the
selected population. The advantage of this
mechanism is that genetically fitter chromosomes
are given priority, but the average chromosomes
have some chances of being selected if they happen
to be compared with a less fit chromosome.

4.4.2. Crossover Operators
Crossover refers to the recombination of genetic

information between two chromosomes. Crossover
implementation heavily depends on the way the
chromosomes were encoded. This section will
present some of the most common crossover
operators. [8]

One-Point Crossover

This is the simplest crossover operator – a cut-off
point is randomly selected, and then the genes after
the cut-off point are swapped between the
chromosomes.

Fig. 5 - One-Point Crossover

Multi-Point Crossover

This is a slight modification of the previous
operator, the only difference being

that now we have more than one crossover point.

Fig. 6 - Multi-Point Crossover

One and Multi-Point Crossover operators are
useful in cases when chromosomes were bit
encoded.

Partially Mapped Crossover (PMX)

This crossover method is used when
chromosomes are permutation encoded. It preserves
the locations of as many genes in both chromosomes
as possible. For example:

Parent 1: H K C E | F D B

| L A I G J

Parent 2: A B C D | E F G

| H I J K L

Two random cut-off points and the segment
between them define a mapping (in this case,

E→F, F→D, G→B) which will be applied to
the genes of Parent 1 that have not been swapped.
This way the duplicate genes will be modified (so
the resulting chromosome would still be a
permutation), while the remaining ones will stay in
place.

Parent 1: H K C D | E F G

| L A I B J

Parent 2: A G C E | F D B

| H I J K L

Vladimir Vacic, Tarek M. Sobh / Computing, 2004, Vol. 3, Issue 2, 72-80

 77

Ordered Crossover

This crossover method preserves the relative
order of as many genes in both chromosomes as
possible. For example:

Parent 1: H K C E | F D B

| L A I G J

Parent 2: A B C D | E F G

| H I J K L

We select two random cut-off points, determine
the order of genes in a chromosome starting with the
first gene after the segment which is to be swapped
(for example, for Parent 1, that would be
LAIGJHKCEFDB), and then from the sequence we
will remove the genes which already are in the
swapped segment (in this example, those would be
EFG, so the remaining sequence would be
LAJHKCDB). The resulting offspring would be:

Parent 1: K C D B | E F G

| L A I J H

Parent 2: A C E G | F D B

| H I J K L

5 VEHICLE ROUTING PROBLEM WITH
TIME WINDOWS (VRPTW)

A formal definition of VRPTW can be stated as:
let G=(V, A) be a graph with node set

{ }0vVV N ∪= and arc set A, where

{ }niVvV iN ...,,2,1=∈= stand for customer

nodes and 0v stands for the central depot, where all
routes start and end. Each node Vvi ∈ has an
associated demand iq , service time is , service time
window],[ii le and an ordered pair of coordinates
()ii yx , . Based on the geographical coordinates, it is
possible to calculate the distance ijd between every

two distinct nodes iv and jv , and the corresponding

travel time ijt .
Under the time window constraints there may or

may not be a transition (an arc) between certain node
pairs. The set of arcs can be defined as

(){ }jijiijiji ltstVvvvvA ≤++∧∈= 0,, . If the

vehicle reaches the customer iv before the ie , a
waiting time occurs. The route’s schedule time is the

sum of the travel time, waiting time and the service
time.

The objective of VRPTW is to service all
customers while minimizing the number of vehicles,
travel distance, schedule time and waiting time
without violating vehicles’ capacity constraints and
the customers’ time windows.

Some of the most useful applications of the
VRPTW include postal deliveries, industrial refuse
collection, national franchise restaurant services,
school bus routing, and security patrol services.

6 ALGORITHM DESCRIPTION

The algorithm used in the programming part of
the project was developed by K.Q. Zhu [13].

A solution to the problem is represented by an
integer string of length N, where N is the number of
customers which need to be served. All routes are
encoded together, with no special route termination
characters in between; chromosomes are decoded
back into routes based on the customers’ demand
and the vehicle capacity.

Part of the population is initialized using a
heuristic method, and part is initialized randomly.
Having a non-random part of the population greatly
reduces the time for the solution to converge, and
having a random part prevents converging to a local
optimum and not exploring the complete solution
space.

Candidates for mating are selected using the
tournament selection, and two kinds of crossover
operators are being used: heuristic and merge.

Heuristic crossover deals with distances
between nodes: for example, a random cut was made
on two chromosomes, and we will compare the
genes immediately after the cuts.

Parent 1: H K C E F D B

L A I G J

Parent 2: A B C D E F G

H I J K L

Let us say that B is to be the first gene in the

child. Gene G has to be swapped with B in Parent 2
to avoid subsequent repetition. After swapping, we
have:

Parent 1: H K C E F D B

L A I G J

Parent 2: A G C D E F B

H I J K L

Now we compare the distance between B and the

first two subsequent genes, L and H, and choose the

Vladimir Vacic, Tarek M. Sobh / Computing, 2004, Vol. 3, Issue 2, 72-80

 78

one which is geographically closer to B. Once again,
in Parent 2 we swap the gene which was chosen with
the remaining one, to avoid duplication. This process
is continued until a new chromosome of length N is
formed. A similar heuristic can be created by
deleting a gene from a parent, instead of swapping it.
We name those crossover operators
HeuristicCrossover 1 (H1) and HeuristicCrossover 2
(H2) respectively.

Merge crossover operates on the basis of time
precedence, defined by the time windows
corresponding to each node. Similarly, the first gene
is chosen randomly, and the following gene will be
the one whose time window comes earlier. Similar
to the heuristic case, once again we can either swap
or delete the gene in the other parent, and thus we
obtain MergeCrossover 1 (M1) and MergeCrossover
2 (M2).

Heuristic and Merge Crossover operators will
produce only one child each. Since geographic
distribution is equally important as time sequence,
from the same pair of parent chromosomes we will
create one child by using the Heuristic Crossover
and one child using the Merge Crossover. We now
have 4 possible combinations which would produce
the offspring: M1H1, M1H2, M2H1, M2H2.
Experiments have shown that the H1M2 performs
the best out of the four, as was reported in [13].

A probability that a pair of selected parents will
mate is called the probability of crossover. When a
couple of parent chromosomes is determined not to
mate, it will be copied verbatim into the next
generation.

Mutation schemes used are swap node and swap
sequence.

Zhu uses an adaptive mutation probability
scheme, which changes the mutation probability as
the standard deviation of the population fitness
changes. It is described as

)
1

)(
5(1.006.0

1

0
2

−

−
−⋅+=
∑ −

=

N

xx
P

N

j i
mutation

where ix is the fitness of a chromosome, x is the

mean fitness and N is the population size. We can
see that a mutation probability of 0.06 is always
guarantied.

Zhu also adds hill-climbing in order to improve
the chromosomes obtained through crossover and
mutation. Hill-climbing is a scheme for randomly
selecting a portion of the population, decoding the
chromosomes into solutions and then improving
those solutions by a few iterations of removal and
reinsertion. To prevent the algorithm from

converging to a local optimum, chromosomes are
selected for hill-climbing with a probability 0.5.

And, at the end, to additionally improve the
quality of the population, the worst 4% of the
population will be replaced with the best 4% of the
parent population. Note that the percentage of
chromosomes to be improved needs to be less than
the mutation rate, otherwise no mutated
chromosomes will be able to escape the
improvement process.

The algorithm was tested on six Solomon’s [10]
VRPTW Benchmark Problem data sets (R1, C1,
RC1, R2, C2, RC2) with 25 customers, as reported
in [13].

7 CONCLUSION

Genetic Algorithms fall in the category of
methods known as “weak methods,” which are
robust, but take time to produce a solution. They
perform best in situations when it is either not clear
how to find a solution, or when there is little
information available about which parameters would
be good. Blind search which pure GAs offer does
not yield best solutions in situations in which we
know enough about the problem. Specifically, Tabu
Search shows the best performance for VRP, and
according to Bullnheimer et al. [2] the superiority of
this approach is due to the fact that there was more
VRP research involved with Tabu Search than with
any other method, and consequently TS solutions
have been constantly improved.

Almost by a rule, hybrid genetic algorithms, in
which pure GAs are combined with other methods to
produce a new approach, give better solutions that
strict GA.

However, the strictly GA algorithm devised by
Zhu [13] described in this paper offers solutions
competitive to the ones obtained by Tabu Search and
Simulated Annealing, and in 4 out of 56 cases of
Solomon’s [10] 100 VRPTW problems, it
outperformed or gave results equal to the best results
presented by Solomon.

REFERENCES
[1] Applegate D., R. Bixby, V. Chvátal, W.
Cook. (2002): Solving Traveling Salesman
Problems. http://www.math.princeton.edu/tsp/

[2] Bullnheimer B., R.F.Hartl, C. Strauss.
(1997): Applying the Ant System to the Vehicle

Routing Problem. Department of Management
Science, University of Vienna.

[3] Charikar M., Raghavachari B. The Finite
Capacity Dial-A-Ride Problem. Stanford University
and The University of Texas, Dallas.

Vladimir Vacic, Tarek M. Sobh / Computing, 2004, Vol. 3, Issue 2, 72-80

 79

[4] Fisher, M.L., K.O. Jornsten and O.B.G.
Mansen. (1992): Vehicle Routing with Time
Windows. Working paper.

[5] Gendreau M., J. Potvin. (1998): Dynamic
Vehicle Routing and Dispatching. NEC Research
Institute.

[6] Glover F. (1986): Future paths for Integer
Programming and Links to Artificial

Intelligence. Computers and Operations Research.

[7] Gray P., W. Hart, L. Painton, C. Phillips, M.
Trahan, J. Wagner. (1997): A Survey of Global
Optimization Methods. Sandia National
Laboratories.

[8] Man, K.F., K.S. Tang and S. Kwong.
(1999): Genetic Algorithms: Concepts and Designs.
Springer – Verlag London Limited.

[9] Louis, Sushil J., Xiangying Yin, Zhen Ya
Yuan. (1999): Multiple Vehicle Routing With Time
Windows Using Genetic Algorithms. Genetic
Adaptive Systems LAB. University of Nevada,
Reno.

[10] Solomon, Marius M. (2000): VRPTW
Benchmark Problems. http://web.cba.neu.edu/
~msolomon/problems.htm

[11] Tan, K.C., L.H. Lee and K.Q. Zhu. (1999):
Heuristic Methods for Vehicle Routing Problem with
Time Windows.

[12] Whitley, D. A Genetic Algorithm Tutorial.
University of Colorado.

[13] Zhu, Kenny Qili. (2000): A New Genetic
Algorithm for VRPTW. National University of
Singapore.

Vladimir Vacic was born

on August 12, 1978 in
Belgrade, Serbia and
Montenegro. In 1997, he
graduated from the School of
Mathematics, Belgrade,
Serbia, a specialized school
whose curriculum
emphasizes the natural
sciences, Mathematics and

Computer Science. The topic of his final thesis
was in the area of Projective Geometry.

In 1998, He enrolled in the University of
Bridgeport (Connecticut), and moved to the
United States. For a year and a half, he was the
webmaster of the University of Bridgeport. After

that, he was the Director of Technology for
Artxone, Inc., a small B2C and B2B e-commerce
company in Westport, Connecticut, specializing in
limited edition art gifts and collectibles. He also
worked as a Java Developer at Divine Enterprise
Portals (formerly Sagemaker) in Fairfield,
Connecticut, focusing on J2EE development. He
was a President of the Upsilon Pi Epsilon (The
Honor Society of the Computing Sciences)
Connecticut Delta Chapter at the University of
Bridgeport, and a member of the Phi Kappa Phi
Honor Society. In 2002, He obtained his Bachelor
of Science Degree from the University of
Bridgeport, double majoring in Computer Science
and Mathematics. In 2004,he obtained his Master
of Science Degree from Temple University,
Philadelphia. Mr. Vacic is interested in electronic
music, reading, traveling, Aikido, 20th century
architecture, contemporary visual and conceptual
arts, urbanism, cycling, philosophy, Slavic and
Norse mythology, dancing, hiking, theatre, magick
and cooking.

He maintains www.yutechno.org, a web site
dedicated to the Serbian electronic music scene.

Professor Tarek M. Sobh

received the B.Sc. in
Engineering degree with
honors in Computer Science
and Automatic Control from
the Faculty of Engineering,
Alexandria University, Egypt
in 1988, and M.S. and Ph.D.
degrees in Computer and
Information Science from the School of
Engineering, University of Pennsylvania in 1989
and 1991, respectively. He is currently the Dean
of the School of Engineering at the University of
Bridgeport, Connecticut; the Founding Director of
the Interdisciplinary Robotics, Intelligent Sensing,
and Control (RISC) laboratory; a Professor of
Computer Science, Computer Engineering,
Electrical and Mechanical Engineering; and the
Chairman of the Prototyping Technical Committee
of the IEEE Robotics and Automation Society. He
was the Interim Chairman of Computer Science
and Computer Engineering and the Director of
External Engineering

Programs at the University of Bridgeport. He
was an Associate Professor of Computer Science
and Computer Engineering at the University of
Bridgeport from 1995 -- 1999, a Research
Assistant Professor of Computer Science at the
Department of Computer Science, University of
Utah from 1992 -- 1995, and a Research Fellow
at the General Robotics and Active Sensory
Perception (GRASP) Laboratory of the University
of Pennsylvania from 1989 -- 1991.

Vladimir Vacic, Tarek M. Sobh / Computing, 2004, Vol. 3, Issue 2, 72-80

 80

He was the Chairman of the Discrete Event
and Hybrid Systems Technical Committee of the
IEEE Robotics and Automation Society from
1992- 1999. His background is in the fields of
computer science and engineering, control theory,
robotics, automation, manufacturing, AI, computer
vision and signal processing. He has published
over 100 journal and conference papers, and
book chapters in these and other areas.

Dr. Sobh has been awarded many grants to
pursue his research.

Dr. Sobh is a Licensed Professional Electrical
Engineer (P.E.) and a Certified Manufacturing
Engineer (CMfgE) by the Society of
Manufacturing Engineers, a member of Tau Beta
Pi (The Engineering Honor Society),Sigma Xi
(The Scientific Research Society), Phi Beta Delta
(The International Honor Society), Upsilon Pi
Epsilon (The Computing HonorSociety) and Delta
Mu Delta (The Business Adminstration Honor
Society). Dr. Sobh was the recipient of the Best
Paper Award at the World Automation Congress
Conference (WAC 98) in Anchorage, Alaska.

