
Nahit Emanet, Can Ozturan / Computing, 2004, Vol. 3, Issue 2, 81-87

 81

SOLVING THE RECTILINEAR STEINER MINIMAL TREE PROBLEM

WITH A BRANCH AND CUT ALGORITHM

Nahit Emanet 1), Can Ozturan 2)

1) Computer Engineering Department, Bogazici University, emanetn@boun.edu.tr, asma.cmpe.boun.edu.tr/~emanetn
2) Computer Engineering Department, Bogazici University, ozturaca@boun.edu.tr, asma.cmpe.boun.edu.tr/~ozturan

Abstract: This paper presents a new branch-and-cut algorithm that allows us to reduce the solution time of the
concatenation phase of the rectilinear Steiner minimal tree problem in the plane. Our branch-and-cut algorithm is
used on an integer programming formulation using what we call cutsec, and sec constraints. We present
implementation details of our branch-and-cut program called NEOSteiner and provide computational results on test
instances from the SteinLib library.

Keywords: Combinatorial problems, Minimum spanning hypertree, Submodular functions, Branch-and-cut algorithm,
Separation of cutting planes, Maximum flow network.

1. INTRODUCTION
Given a set V of points in a plane, the rectilinear

Steiner minimal tree (RSMT) problem asks for a
set S of Steiner points such that the total length of
the minimum spanning tree (MST) over VS U is
minimized. The points are connected in the plane by
using horizontal and vertical line segments. The
decision version of this problem has been shown to
be NP-complete by Garey and Johnson [1].

Much work has been devoted to the solution of
Steiner tree problems including exact algorithms and
heuristic procedures. Hwang, Richards and Winter
[2] surveyed the Steiner tree problem in detail in
their book. Surprisingly, in the benchmark tests, the
fastest algorithms in terms of average running time
are exact algorithms due to Warme, Winter and
Zachariasen [3], and Polzin and Daneshmand [4].
The average running time of their branch-and-cut
algorithm is better than the average running time of
the best heuristic algorithms: The Batched Iterated
1-Steiner (BI1S) algorithm of Robins [5], and the
primal-dual approximation algorithm of Mandiou,
Vazirani and Ganley [6].

The GeoSteiner code by Warme et al. [3] divides
the RSMT problem into two phases. In the FST
generation phase, a set of full Steiner trees (FSTs)
are identified by using a recursive sweep-line
algorithm. In the FST concatenation phase, an
RSMT is constructed from this set. Warme [7]
shows that the FST concatenation problem can be
reduced to finding an MST in a hypergraph, and
formulates the MST problem in a hypergraph as an

integer linear program using subtour elimination
constraints (sec), and cut constraints, and solves it
via branch-and-cut algorithm.

Our branch-and-cut algorithm differs
considerably from the GeoSteiner algorithm not only
in the formulation, but in the implementation, as
well. Although sec and cut contraints are used in
GeoSteiner to improve the relaxation problem, we
use sec and cutsec constraints, and to find these
constraints, we use the same maximum flow
network without using any heuristic procedures.
This approach enables us not only to write a simple
program, but also to reduce the time to find the
solution.

In the literature, two hyperedges are called
incompatible if they have two or more points in
common. If they have exactly one common point,
they are called compatible. We introduce the
concept of strong incompatibility that is defined as a
maximal clique of incompatible hyperedges. Strong
incompatibility refers to a complete subgraph
consisting of only incompatible hyperedges and not
contained in any other complete subgraph of
incompatible hyperedges. By means of strong
incompatibility, we improve the initial integer
formulation.

Section 2 gives the integer formulation of the
problem and defines certain aspects of the problem.
Section 3 derives the formulations that allow us to
use the same maximum flow network to solve the
separation problem easily and efficiently. Section 4
gives the implementation details of the program.
Section 5 compares our program with GeoSteiner

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

Nahit Emanet, Can Ozturan / Computing, 2004, Vol. 3, Issue 2, 81-87

 82

3.1 and STEINER software packages. GeoSteiner
3.1 was developed by Warme et al. [3] for solving
Euclidean and rectilinear Steiner problems, and
STEINER was developed by Polzin and
Daneshmand [7] for network Steiner problems.

2. INTEGER PROGRAMMING
FORMULATION

In this section, we present the integer formulation
of MST problem in hypergraphs that is solved with
our branch-and-cut algorithm.

Given a set V of points, and set of edges E for
V . Let),(EVH = denote a hypergraph with the
point set V and hyperedge set E . The polyhedron P
defined by the following inequalities formulates the
MST problem in hypergraph:

}1||,...2,1,0{,1||)1|(| −=−=−∑

∈

EIVxe
Ii

ii (1)

VSSxSe

Ii
ii ⊆−≤−∩∑

∈

,1||)1||,0max((2)

∑
∈

⊂≥
)(

,1
Si

i
i

VSx
δ

 (3)

∑∑
∈∈

⊆≥+−∩
)(

|,|)1||,0max(
Si

i
Ii

ii
i

VSSxxSe
δ

(4)

∑
∈

⊆≤
Ci

i ICx ,1 (5)

Iixi ∈∀≤≤ ,10 (6)

For each hyperedge Eie ∈ , a variable ix indicates

whether ie is in the MST (1=ix), or not (0=ix).

Let SVS −= . Thus,)(Sδ and)(Siδ can be defined

as { }00|)(≠∩≠∩= SeandSeeS iiiδ and
{ })(|)(SeofindextheisiiS ii δδ ∈= ,

respectively. Similarly,C can be defined as the index
set of maximal clique of incompatible hyperedges.

The solution to the integer program,
)|min(ET Pxxc Ζ∩∈ where each element of Tc

is the length of each hyperedge, gives us the MST in
hypergraph.

Two well-known constraints for the MST,
subtour elimination constraints (sec) and cut
constraints, are shown in Equations (2) and (3),
respectively. We call the Equation (4) as the cutsec
constraints since cutsec constraints resemble a
combination of both cut and sec constraints. We

include all but the cut constraints in our integer
programming formulation.

Actually, sec constraints are facet defining.
Therefore, when we include them in our
formulation, we know that cut and cutsec constraints
become redundant. Initially, we included cut and
cutsec constraints into our formulation so that they
could speed up the convergence of the cutting plane
algorithm. Although we have observed speed
improvements by adding cutsec constraints into our
integer formulation, we have not gained any
improvement from cut constraints. Therefore, we
decided to exclude the cut constraints from our
integer formulation.

As an example, Fig. 1 shows rectilinear full
Steiner trees and the corresponding hypergraph

),(EVH = for seven points and five hyperedges.
Cut, sec and cutsec constraints for the point set

{ }6,4,3=S of Fig. 1 are defined as follows:

Cut constraint : 15432 ≥+++ xxxx (7)

 Sec Constraint : 22 31 ≤+ xx (8)

Cutsec Constraint : 322 54321 ≥++++ xxxxx (9)

1

2

3

4

5

6

7

S

V

1

2

3

4

5

6

7

S

V

Rectilinear full Steiner trees

(a)

Hyperedges of hypergraph

(b)
Fig.1 - Full Steiner trees and its hypergraph

3. GENERATING CUTTING PLANES
One of the crucial points in the branch-and-cut

algorithm is to exploit strong cutting planes. Due to
the theorem by Nemhauser and Wolsey [8], the
separation problem is equivalent to submodular
function minimization. In this section, we will give
a maximum flow formulation that solves the cutsec
separation problem in polynomial time. We define
the following function:

∑ ∑
∈ ∈

+−∩+−=
Ii Sii

iii xxSeSSf
)(

)1,0max()(
δ

(10)

Nahit Emanet, Can Ozturan / Computing, 2004, Vol. 3, Issue 2, 81-87

 83

It is trivial to check that)(Sf is a submodular
function. Thus, any 0)(,0 <≠ SfveS violates the
cutsec constraints.

Due to a proposition by Nemhauser and Wolsey
[8], when the submodular function)(Sf has the
following form:

VTcrrcSf T
STST

TTT ⊆≥+−= ∑∑
≠∩⊆

0,)(
0

(11)

The submodular function minimization or the
separation problem can be solved as a maximum
flow-minimum cut network problem.

Specifically, we focus on only the nonlinear
polynomial over binary programming problems of
the following form:

∑∑ ∏
∈⊆ ∈

+









−=

SjST Tj
jjjt sasqSf)(

 (12)
{ } 0,,1,0 ≥= jtj aqs

As can be seen easily, Equation (11) can be

shown to be equivalent to Equation (12) by taking

{ }jTsar

STsqc

jjT

jtT
Tj

=↔=

⊆= ∏
∈

,

,
 (13)

Therefore, what we want to find is a way to

express Equation (10) in the form of Equation (12).
)(Sf in Equation (10) can be rewritten as

()









+−∩

−−=

∑

∑

∈

∈

Ii

Ii

SxSe

xeSf

ii

ii

)0,1max(

1)(

 (14)

Let kpSf −=)(, where,

() ii xep
Ii
∑
∈

−= 1 (15)

∑
∈

+−∩=
Ii

SxSek ii)0,1max((16)

Let variable 1=js if Sj∈ , and 0=js otherwise.

Then, we can write k in terms of the js as follows:

() ∑∑ ∏∑
∈∈ ∈∈

+












+−














−=

ViIi iejiej
iijj sxssk 11

∑∑ ∏∑∑
∈∈ ∈∈∈

+












+−−=

ViIi iejiejiej
iijj sxss 11

() ∑∑ ∏∑
∈∈ ∈∈

+












+−−=

ViIi iejiej
iijji sxsse 1

() ∑∑ ∑ ∏∑∑
∈∈ ∈ ∈∈∈

+












+














−−=

ViIi Ii iejiejIi
iijijii sxsxsxe 1

()
{ }

∑∑ ∑ ∏∑∑
∈∈ ∈ ∈∈∈

+












+












−−=

ViVj Ii iejjiiIi
iijijii sxsxsxe

)(
1

δ

() ∑∑ ∑ ∏∑
∈∈ ∈ ∈∈

+













+−−=

ViVj Ii iejIi
iijjjii sxssbxe 1

() ()∑ ∑ ∏∑
∈ ∈ ∈∈ 













+−−−=

Vj Ii iejIi
ijjjii xssbxe 11

Since kpSf −=)(, and

{ }
∑

∈
=

)(jii
xb ij

δ
 then

()∑∑ ∏
∈∈ ∈

−+












−=

VjIi iej
jjji sbsxSf 1)((17)

This result concludes that Equation (17) has the
same form as Equation (12), and thus the separation
problem for the cutsec constraints can be solved by
finding maximum flow in the network D where

{ } { }()
{ }
{ }VjV

xEeV
AAAtsVVD

ii

∈=
>∈=

∪∪∪∪∪=

2

1

32121

0|
,

(){ }11 |, VXXsA ∈= with capacity iA xc =1

(){ }212 ,|, VYVXYXA ∈∈= with capacity ∞=2Ac

(){ }23 |, VYtYA ∈= with capacity 13 −= jA bc
sources =

ettt arg=

Variables js which take on value 1 in an optimal

solution to)(Sf correspond to the labelled vertices
when Ford and Furkerson [9] labelling procedure is
applied after the maximum flow has been found in

Nahit Emanet, Can Ozturan / Computing, 2004, Vol. 3, Issue 2, 81-87

 84

D. An example network can be seen in Fig. 2.

s t

1

2

3

4

5

2

1

3

4

5

6

7

A1

A2

A3

V1

V2
Fig.2 - A maximum flow network for Fig. 1.

Warme derived a similar result for the sec

constraints. He shows that minimizing)(Sf for the
sec constraints is equivalent to finding the minimum
of the nonlinear polynomial over 0-1 variables of the
form:

()∑∑ ∏
∈∈ ∈

−−+












−−=

VjIi iej
jjji sbsxSf)1(1)1()((18)

By means of equation (17) and (18), we observe

that the separation problem for the sec constraints
can be solved by using the same network D that we
use to find cutsec constraints. Thus, after solving the
maximum flow network problem in D , the variables
which are on the source and target side constructs
the sec and cutsec constraints, respectively. This
feature allows us to use the same maximum flow
network D to obtain both cutsec and sec constraints.

4. IMPLEMENTATION DETAILS
Branch-and-cut algorithms are cutting plane

algorithms combined with branch-and-bound
algorithms. Actually, cutting plane algorithms
improve the relaxation of the integer programming
problem by starting with a small subset of
constraints. They try to find violated constraints for
the current LP solution. If they find one or more
violated constraints, they add them to the current LP
problem, and resolve the problem. If no constraint is
violated and the current solution is an integer
solution, then the current solution is the optimum
solution to the problem.

Sometimes, this method can not find the
optimum integer solution to the problem, or it needs
large amount of time to solve it. In that case, branch-
and-bound algorithms are applied by dividing the

main problem into smaller problems such that each
subproblem can be solved by cutting plane
algorithms individually in the same manner. Fig. 3
presents the main steps of our branch-and-cut
algorithm.

Algorithm BRANCH_AND_CUT()

 int status;
 Node node;
 begin

repeat forever

if then

else if then

else if then

end if
 if

else
break

end if
 end repeat
end.

(1)
(2)
(3)
(4) Initialize LP solver, and construct main node
(5)
(6) status = process_node();
(7) status = INFEASIBLE

delete node;
 status = INTEGRAL

Save best solution and change upper bound
 delete node;
 status = FRACTIONAL

Choose branching variable, and branch current node

(there is node to be processed)
 select(node);

 ;

(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)

Fig. 3 - Branch-and-cut algorithm

In step (4) of the branch-and-cut algorithm, the

LP solver is fed with the total degree constraints of
Equation (1), strong incompatibility constraints of
Equation (5), and cutsec constraints of Equation (4)
for each point with 1|| =S . We use Bron and
Kerbosch [10] algorithm to find strong
incompatibility constraints. Since the incompatible
hyperedges graph is sparse, finding these constraints
is not time consuming. We start separation and
branch-and-bound sequence in step (5). Step (6) tries
to find new violated constraints until the node in
process is either infeasible as in step (7), or a new
violated constraint is not found. If a new constraint
is not found and the solution vector is integer as in
step (9), we store the current solution vector as the
best solution, and update the upper bound. If the
solution vector is not integer as in step (12), we try
to find a good branching variable such that the
number of runs needed to solve the problem will be
small. We divide the current node at the branching
variable and add the child nodes into the branch-
and-bound tree. Finally, in step (16), we try to find
the best node to be processed next as the current
node until no node is available.

The algorithm in Fig. 4 helps us to process each
node of branch-and-cut algorithm. Processing a node
continues until the solution is infeasible or no new
constraint is found. In step (6), the current LP
problem is solved. If the current solution is feasible,
we try to exploit violated constraints by solving

Nahit Emanet, Can Ozturan / Computing, 2004, Vol. 3, Issue 2, 81-87

 85

maximum flow networks as in step (12). If we find
at least one violated constraint after solving the
maximum flow network, we add it to the LP table,
and resolve the newly constructed table in step (6).
Otherwise, we either find a new integer solution or
the solution is fractional. As can be seen in Fig. 4,
we don't use any procedure to fix the variables. Any
attempt to fix variables to either one or zero turned
out to be ineffective in our tests. So, we decided to
exclude variable fixing procedures in our program.

Algorithm int process_node()

 int status;
int number_violated_constraints;
bool is_solution_integer;
begin

repeat forever

if then
return

end if

if and then
return

end if
if then

return
end if

end repeat
end.

(1)

 status = lp_solve(is_solution_integer);
 status = INFEASIBLE
 INFEASIBLE; (* LP problem is infeasible *)

(* Find violated constraints by solving maximum flow network *)
 number_violated_constraints = generate_constraints();
 number_violated_constraints = 0 is_solution_integer
 INTEGRAL;

 number_violated_constraints = 0
 FRACTIONAL;

(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)

Fig. 4 - Processing a node in branch-and-cut algorithm

Given an LP solution Px∈ , the separation
problem asks for finding the most violated sec and
cutsec constraints (or prove that there is no such
violated constraint) by solving at most ||V
maximum flow problems. Since the same maximum
flow network is used to find both sec and cutsec
constraints, the time to find the rectilinear Steiner
tree is reduced. In our implementation, we use
maximum flow network to solve the separation
problem without using any heuristic procedures.

Most of the time, it is helpful to decompose a
large graph into manageable pieces so that it can be
processed one component at a time. Warme [7]
suggested two theorems for connected and bi-
connected components that can be used to find sec
constraints. We have extended these theorems to
find cutsec constraints. If a graph has a violated
cutsec constraint, at least one of the connected or bi-
connected components of the graph also has a
violated constraint. Since solving a maximum flow
network problem is very costly and in our program it
is the only mechanism used to find violated
constraints, we try to reduce the time to solve the
maximum flow problem by reducing the size of the
problem.

In addition to these decomposition algorithms,
we applied a decomposition algorithm for both sec
and cutsec constraints similar to terminal
elimination algorithm which was originally

suggested by Padberg and Wolsey [11]. However,
our decomposition algorithm does not eliminate any
point from consideration. We can define the
congestion level of a point Vj∈ as defined in
Equation (17),

{ }
∑

∈
=

)(jii
ij xb

δ
. Thus, congested and

uncongested points can be defined as points with
1≥jb and 1<jb , respectively. Our decomposition

method splits the components into two
subcomponents such that while one component that
is composed of only uncongested points is used to
find the violated cutsec constraints, the other
component that is composed of only the congested
points is used to find the violated sec constraints.

In step (4) of the Fig. 5, we find all
subcomponents of the current LP solution. These
include connected, bi-connected, and congested and
uncongested components. For each component
generated, we first construct a maximum flow
network in step (9), and try to find at least one
violated sec and cutsec constraints in step (11). After
examining all components, we add violated
constraints into the LP solver and return the number
of violated constraints. One important thing that
should be taken into consideration is the constant
value of MAX_COMPONENT_SIZE. It discards
components whose sizes are greater than a certain
value. This allows us to design a branch-and-cut
algorithm such that we emphasize either cutting
plane algorithm or branch-and-bound algorithm.
When we set the MAX_COMPONENT_SIZE to 1,
we are bound to use branch-and-bound algorithm,
and when we set the MAX_COMPONENT_SIZE to
the size of the original graph, we are bound to use
the cutting plane algorithm. Thus,
MAX_COMPONENT_SIZE allows us to adjust the
branch-and-cut algorithm.

Algorithm int generate_constraints()

int number_violations = 0;
begin

while
if < then

end if

end while

return
end.

(1)

 (* Generate all subcomponents, and put them into List *)
 Iterator p = make_components();
 (* Iterate all subcomponents in the list *)
 (there is an element in the List)
 p.component_size MAX_COMPONENT_SIZE
 (* Construct a max-flow network *)
 max_flow = construct_maxflow_network();
 (* Find violated constraints if one exists *)
 number_violations +=

 p.move(); (* Move iterator to the next element *)

 add_violated_constraints_to_LP();
 number_violations;

(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11) minimize_submodular_function(p);
(12)
(13)
(14)
(15)
(16)
(17)

Fig. 5 - Generating violated constraints

There is a wide variety of branching variable
selection strategies in the literature. We apply a

Nahit Emanet, Can Ozturan / Computing, 2004, Vol. 3, Issue 2, 81-87

 86

strategy similar to the one suggested by Applegate,
Bixby, Chvatal and Cook [12]. We choose a set of
variables 6.04.0| ≤≤= ii xxC as a branching
variable candidate set. We then solve two LP
problems)|min(PxxcT ∈ for each value of the
variable 0=ix or 1=ix using a limited number of
simplex iterations, and represent the objective
function values as 0

iv and 1
iv , respectively. We finally

select the branching variableb such that it satisfies
the following condition:

},{min},max{ 1010

iiCxbb vvvv
i∈

= (19)

For the node selection strategy, we use the best
node selection strategy. We always choose the node
with the lowest objective value.

5. COMPUTATIONAL RESULTS
In this section, we compare our program,

NEOSteiner 2.0 (which is available for downloading
at Emanet [13]), with GeoSteiner 3.1 and STEINER
programs, which are written by Warme et al. [3],
and Polzin and Daneshmand [4], respectively. As a
test data, we use ES1000 test instances from the
SteinLib library by Koch and Martin [14] which is
accessible from the World Wide Web.

The FSTs that are used by the concatenation
phase of the GeoSteiner 3.1 and NEOSteiner 2.0 are
produced by applying the FST generation phase of

GeoSteiner 3.1 with the pruning step enabled.
Pruning step reduces the set of FSTs generated by
the FST generation phase while retaining at least one
optimal solution. This step reduces the solution time
of the concatenation phase of the rectilinear Steiner
minimal tree problem considerably.

All tests for GeoSteiner 3.1 and NEOSteiner 2.0
programs were performed on a PC with an AMD
Athlon 1.4 GHz processor and 1 GB main memory
running Mandrake Linux 9.0 operating system. We
used the GNU gcc 3.2 compiler and CPLEX 8.0 LP
solver. The same optimization options were used for
both programs. The MAX_COMPONENT_SIZE
was selected as 230 for NEOSteiner 2.0 program.

In Table 1, we compare the running time of
GeoSteiner 3.1, STEINER and NEOSteiner 2.0 for
the exact solution of the ES1000 test instances. We
present the running time of STEINER as it is in
Polzin and Daneshmand [4] article due to the
unavailability of STEINER program. All tests in
Polzin and Daneshmand article were performed on a
PC with an AMD Athlon 1800+ processor and 1 GB
of main memory. They used the gcc 2.94 compiler
and CPLEX 7.0 LP solver on Linux 2.4.9 operating
system. Our program is on average and on most of
the test cases faster than GeoSteiner 3.1. Although
results of NEOSteiner 2.0 are comparable with
STEINER on most of the cases, there are a few cases
where NEOSteiner 2.0 performs worse than
STEINER.

Table 1. Comparison of GeoSteiner 3.1, STEINER and NEOSteiner 2.0 on ES1000FST instances

Instances Optimum GeoSteiner 3.1 STEINER NEOSteiner 2.0
ES1000FST01 230535806 12.08 11.55 27.41

ES1000FST02 227886471 7.63 7.79 6.06

ES1000FST03 227807756 118.31 11.29 2.77

ES1000FST04 230200846 7.66 12.52 2.70

ES1000FST05 228330602 81.08 8.50 2.22

ES1000FST06 231028456 423.25 16.13 114.69

ES1000FST07 230945623 102.77 4.80 4.07

ES1000FST08 230639115 141.12 12.32 28.76

ES1000FST09 227745838 19.70 12.72 4.17

ES1000FST10 229267101 114.30 4.76 6.18

ES1000FST11 231605619 18.28 8.13 7.56

ES1000FST12 230904712 611.79 16.47 13.59

ES1000FST13 228031092 2.64 4.62 4.28

ES1000FST14 234318491 760.27 14.92 25.17

ES1000FST15 229965775 7.90 7.59 1.79

Averages: 161.92 (s) 10.27 (s) 16.76 (s)

Nahit Emanet, Can Ozturan / Computing, 2004, Vol. 3, Issue 2, 81-87

87

6. CONCLUSION
Our aim in this work is twofold. One is to design

simple and reusable branch-and-cut algorithm that
can be used to solve the RSMT problem as a stand
alone sequential program or as a main part of a
parallel algorithm. In this paper, we only presented
the sequential algorithm. The parallel algorithm is
explained in detail in another paper by Emanet and
Ozturan [15]. The other aim is to reduce the time to
solve the problem.

Test results show us that our branch-and-cut
algorithm outperforms the GeoSteiner 3.1 in most of
the test cases, even though our code is implemented
in C++ with liberal use of object oriented features
which may introduce some overheads. The
STEINER program performs better than NEOSteiner
2.0. However, this is mainly due to the extensive use
of strong reduction techniques in STEINER
program. STEINER can be considered as a middle
phase between FST generation and FST
concatenation phase of Steiner minimal tree problem
with its extended reduction tests like terminal
separator technique, which reduces the size of a test
instance by ensuring at least one optimal solution. In
the future, one can easily integrate these reduction
techniques into the NEOSteiner program, which has
already been designed and implemented for
including new algorithms, to obtain better results for
large instances of Steiner minimal tree problem.

While developing NEOSteiner program, we do
not sacrifice software issues such as modifiability,
reusability, maintainability, and portability for
performance. These are the issues often a branch-
and-cut program fails to satisfy due to the
complexity of the problem.

7. REFERENCES
[1] M.R. Garey. D.S. Johnson. The rectilinear
Steiner problem is NP-Complete, SIAM J. Appl.
Math. 32 (1977). p. 826-834.
[2] F.K. Hwang. D.S. Richards. P. Winter. The
Steiner tree problem. Elsevier Science Publishers.
Amsterdam, The Netherlands, 1990.
[3] D.M. Warme. P. Winter. M. Zachariasen.
Exact algorithms for plane Steiner tree problems: A
computational study. in: D-Z. Du. J.M. Smith. J.H.
Rubinstein. (Editors), Advances in Steiner Trees.
Kluwer Academic Publishers. Massachusetts, 2000.
p. 81-116.
[4] T. Polzin. S.V. Daneshmand. On Steiner
trees and minimum spanning trees in hypergraphs,
Operations Research Letters 31 (2003). p. 12-20.
[5] G. Robins. On optimal interconnections,
PhD thesis, Department of Computer Science,
UCLA, 1992.
[6] I. Mandiou. V. Vazirani. J. Ganley. A new

heuristic for rectilinear Steiner trees. IEEE
Transactions on CAD, 19 (2000). 1129-1139.
[7] D.M. Warme. Spanning trees in hypergraphs
with applications to Steiner trees, PhD thesis,
Department of Computer Science, The University of
Virginia, 1998.
[8] G.L. Nemhauser. L.A. Wolsey. Integer and
Combinatorial Optimization. Wiley-Interscience
Publication, 1988.
[9] L.R. Ford. D.R. Fulkerson. Flows in
Network. Princeton University Press, New Jersey,
1962.
[10] C. Bron. J. Kerbosch. Finding of all cliques
of an undirected graph, Comm. ACM. 16 (1973) p.
575-577.
[11] M. Padberg. L. Wolsey. Trees and cuts,
Annals of Discrete Mathematics, 17 (1983).
[12] D. Applegate. R. Bixby. V. Chvatal. W.
Cook. Finding cuts in the TSP, Technical Report,
Mathematics, AT&T Bell Laboratories, NJ, 1994.
[13] N. Emanet. NEOSteiner program.
http://asma.cmpe.boun.edu.tr/~emanetn/NEO.html.
[14] T. Koch. A. Martin. SteinLib.
http://elib.zib.de/steinlib/steinlib.php.
[15] N. Emanet. C. Ozturan. Dogrulu Steiner
agac problemlerinin seri ve paralel algoritmalar ile
cozumu, in: F.E. Sevilgen. H. Sadikouglu. (Editors),
Yuksek Performansli Bilisim Sempozyumu, Gebze
YTE, Kocaeli, 2002. p. 35-38.

After graduating from Istanbul
Ataturk Science High School, Nahit
Emanet enrolled Bogazici University
Computer Engineering department.
He earned B.S. and M.Sc. degrees
from this department. Today, he is
pursuing his Ph.D. thesis on
“Parallel and Sequential Algorithms

for Steiner Tree Problems”. At the same time, he is
doing research on computer controlled machine
automation and optimization in a private company. His
research interests include parallel and sequential
algorithm design, real-time operating systems,
embedded systems, computer architecture and
organization, VLSI design automation, and compiler
design.

Dr. Can Özturan earned his PhD
degree from the Computer Science
Department of Rensselaer
Polytechnic Institute in 1995. After
spending one year as a postdoc staff
scientist at ICASE, NASA Langley
Research Center, he joined Bogazici
University in Istanbul, Turkey as a
faculty member in 1996. Today, he is an associate
professor in the Department of Computer Engineering.
His research interests are parallel processing, grid
computing, scientific computing and graph algorithms.

