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Abstract: This paper presents a new branch-and-cut algorithm that allows us to reduce the solution time of the 
concatenation phase of the rectilinear Steiner minimal tree problem in the plane. Our branch-and-cut algorithm is  
used on an integer programming formulation using what we call cutsec, and sec constraints. We present 
implementation details of our branch-and-cut program called NEOSteiner and provide computational results on test 
instances from the SteinLib library. 
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1. INTRODUCTION 
Given a set V of points in a plane, the rectilinear 

Steiner minimal tree (RSMT) problem asks for a 
set S of Steiner points such that the total length of 
the minimum spanning tree (MST) over VS U is 
minimized. The points are connected in the plane by 
using horizontal and vertical line segments. The 
decision version of this problem has been shown to 
be NP-complete by Garey and Johnson [1]. 

Much work has been devoted to the solution of 
Steiner tree problems including exact algorithms and 
heuristic procedures. Hwang, Richards and Winter 
[2] surveyed the Steiner tree problem in detail in 
their book. Surprisingly, in the benchmark tests, the 
fastest algorithms in terms of average running time 
are exact algorithms due to Warme, Winter and 
Zachariasen [3], and Polzin and Daneshmand [4]. 
The average running time of their branch-and-cut 
algorithm is better than the average running time of 
the best heuristic algorithms: The Batched Iterated 
1-Steiner (BI1S) algorithm of Robins [5], and the 
primal-dual approximation algorithm of Mandiou, 
Vazirani and Ganley [6]. 

The GeoSteiner code by Warme et al. [3] divides 
the RSMT problem into two phases. In the FST 
generation phase, a set of full Steiner trees (FSTs) 
are identified by using a recursive sweep-line 
algorithm. In the FST concatenation phase, an 
RSMT is constructed from this set. Warme [7] 
shows that the FST concatenation problem can be 
reduced to finding an MST in a hypergraph, and 
formulates the MST problem in a hypergraph as an 

integer linear program using subtour elimination 
constraints (sec), and cut constraints, and solves it 
via branch-and-cut algorithm. 

Our branch-and-cut algorithm differs 
considerably from the GeoSteiner algorithm not only 
in the formulation, but in the implementation, as 
well. Although sec and cut contraints are used in 
GeoSteiner to improve the relaxation problem, we 
use sec and cutsec constraints, and to find these 
constraints, we use the same maximum flow 
network without using any heuristic procedures. 
This approach enables us not only to write a simple 
program, but also to reduce the time to find the 
solution.  

In the literature, two hyperedges are called 
incompatible if they have two or more points in 
common. If they have exactly one common point, 
they are called compatible. We introduce the 
concept of strong incompatibility that is defined as a 
maximal clique of incompatible hyperedges. Strong 
incompatibility refers to a complete subgraph 
consisting of only incompatible hyperedges and not 
contained in any other complete subgraph of 
incompatible hyperedges.  By means of strong 
incompatibility, we improve the initial integer 
formulation.  

Section 2 gives the integer formulation of the 
problem and defines certain aspects of the problem. 
Section 3 derives the formulations that allow us to 
use the same maximum flow network to solve the 
separation problem easily and efficiently. Section 4 
gives the implementation details of the program. 
Section 5 compares our program with GeoSteiner 
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3.1 and STEINER software packages. GeoSteiner 
3.1 was developed by Warme et al. [3] for solving 
Euclidean and rectilinear Steiner problems, and 
STEINER was developed by Polzin and 
Daneshmand [7] for network Steiner problems. 
 

2. INTEGER PROGRAMMING 
FORMULATION 

In this section, we present the integer formulation 
of MST problem in hypergraphs that is solved with 
our branch-and-cut algorithm. 

Given a set V of points, and set of edges E for 
V . Let ),( EVH =  denote a hypergraph with the 
point set V and hyperedge set E . The polyhedron P  
defined by the following inequalities formulates the 
MST problem in hypergraph: 
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For each hyperedge Eie ∈ , a variable ix  indicates 

whether ie  is in the MST ( 1=ix ), or not ( 0=ix ). 

Let SVS −= . Thus, )(Sδ and )(Siδ  can be defined 

as { }00|)( ≠∩≠∩= SeandSeeS iiiδ  and 
{ })(|)( SeofindextheisiiS ii δδ ∈= , 

respectively. Similarly,C can be defined as the index 
set of maximal clique of incompatible hyperedges. 

The solution to the integer program, 
)|min( ET Pxxc Ζ∩∈ where each element of Tc  

is the length of each hyperedge, gives us the MST in 
hypergraph. 

Two well-known constraints for the MST, 
subtour elimination constraints (sec) and cut 
constraints, are shown in Equations (2) and (3), 
respectively. We call the Equation (4) as the cutsec 
constraints since cutsec constraints resemble a 
combination of both cut and sec constraints. We 

include all but the cut constraints in our integer 
programming formulation. 

Actually, sec constraints are facet defining. 
Therefore, when we include them in our 
formulation, we know that cut and cutsec constraints 
become redundant. Initially, we included cut and 
cutsec constraints into our formulation so that they 
could speed up the convergence of the cutting plane 
algorithm. Although we have observed speed 
improvements by adding cutsec constraints into our 
integer formulation, we have not gained any 
improvement from cut constraints. Therefore, we 
decided to exclude the cut constraints from our 
integer formulation. 

As an example, Fig. 1 shows rectilinear full 
Steiner trees and the corresponding hypergraph 

),( EVH =  for seven points and five hyperedges. 
Cut, sec and cutsec constraints for the point set 

{ }6,4,3=S of Fig. 1 are defined as follows: 
 

Cut constraint : 15432 ≥+++ xxxx                   (7) 
 

 Sec Constraint : 22 31 ≤+ xx                               (8) 
 
Cutsec Constraint : 322 54321 ≥++++ xxxxx (9) 
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Fig.1 - Full Steiner trees and its hypergraph 

 
3. GENERATING CUTTING PLANES 
One of the crucial points in the branch-and-cut 

algorithm is to exploit strong cutting planes. Due to 
the theorem by Nemhauser and Wolsey [8], the 
separation problem is equivalent to submodular 
function minimization.  In this section, we will give 
a maximum flow formulation that solves the cutsec 
separation problem in polynomial time. We define 
the following function: 
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It is trivial to check that )(Sf  is a submodular 
function. Thus, any 0)(,0 <≠ SfveS violates the 
cutsec constraints. 

Due to a proposition by Nemhauser and Wolsey 
[8], when the submodular function )(Sf has the 
following form: 
 

VTcrrcSf T
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The submodular function minimization or the 
separation problem can be solved as a maximum 
flow-minimum cut network problem. 

Specifically, we focus on only the nonlinear 
polynomial over binary programming problems of 
the following form: 
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As can be seen easily, Equation (11) can be 

shown to be equivalent to Equation (12) by taking 
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Therefore, what we want to find is a way to 

express Equation (10) in the form of Equation (12). 
)(Sf  in Equation (10) can be rewritten as 
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Let kpSf −=)( , where, 
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Let variable 1=js  if Sj∈ , and 0=js  otherwise. 

Then, we can write k  in terms of the js  as follows: 
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This result concludes that Equation (17) has the 
same form as Equation (12), and thus the separation 
problem for the cutsec constraints can be solved by 
finding maximum flow in the network D  where 
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Variables js  which take on value 1 in an optimal 

solution to )(Sf  correspond to the labelled vertices 
when Ford and Furkerson [9] labelling procedure is 
applied after the maximum flow has been found in 
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D. An example network can be seen in Fig. 2. 
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Fig.2 - A maximum flow network for Fig. 1. 

 
Warme derived a similar result for the sec 

constraints. He shows that minimizing )(Sf  for the 
sec constraints is equivalent to finding the minimum 
of the nonlinear polynomial over 0-1 variables of the 
form: 
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By means of equation (17) and (18), we observe 

that the separation problem for the sec constraints 
can be solved by using the same network D  that we 
use to find cutsec constraints. Thus, after solving the 
maximum flow network problem in D , the variables 
which are on the source and target side constructs 
the sec and cutsec constraints, respectively. This 
feature allows us to use the same maximum flow 
network D  to obtain both cutsec and sec constraints. 
 

4. IMPLEMENTATION DETAILS 
Branch-and-cut algorithms are cutting plane 

algorithms combined with branch-and-bound 
algorithms. Actually, cutting plane algorithms 
improve the relaxation of the integer programming 
problem by starting with a small subset of 
constraints. They try to find violated constraints for 
the current LP solution. If they find one or more 
violated constraints, they add them to the current LP 
problem, and resolve the problem. If no constraint is 
violated and the current solution is an integer 
solution, then the current solution is the optimum 
solution to the problem. 

Sometimes, this method can not find the 
optimum integer solution to the problem, or it needs 
large amount of time to solve it. In that case, branch-
and-bound algorithms are applied by dividing the 

main problem into smaller problems such that each 
subproblem can be solved by cutting plane 
algorithms individually in the same manner. Fig. 3   
presents the main steps of our branch-and-cut 
algorithm. 
 

Algorithm BRANCH_AND_CUT()

 int status;
 Node node;
 begin

repeat forever

if then
             

else if then
             

else if then
             

end if
       if 

else
break

end if
   end repeat
end.

(1)
(2)
(3)
(4)    Initialize LP solver, and construct main node
(5)         
(6)         status = process_node();
(7)          status = INFEASIBLE 

delete node;
          status  = INTEGRAL 

Save best solution and change upper bound
             delete node;
        status = FRACTIONAL 

Choose branching variable, and branch current node
       

(there is node to be processed)
             select(node);
       
           ;
        

(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)  

Fig. 3 - Branch-and-cut algorithm 

 
In step (4) of the branch-and-cut algorithm, the 

LP solver is fed with the total degree constraints of 
Equation (1), strong incompatibility constraints of 
Equation (5), and cutsec constraints of Equation (4) 
for each point with 1|| =S . We use Bron and 
Kerbosch [10] algorithm to find strong 
incompatibility constraints. Since the incompatible 
hyperedges graph is sparse, finding these constraints 
is not time consuming. We start separation and 
branch-and-bound sequence in step (5). Step (6) tries 
to find new violated constraints until the node in 
process is either infeasible as in step (7), or a new 
violated constraint is not found. If a new constraint 
is not found and the solution vector is integer as in 
step (9), we store the current solution vector as the 
best solution, and update the upper bound. If the 
solution vector is not integer as in step (12), we try 
to find a good branching variable such that the 
number of runs needed to solve the problem will be 
small. We divide the current node at the branching 
variable and add the child nodes into the branch-
and-bound tree. Finally, in step (16), we try to find 
the best node to be processed next as the current 
node until no node is available. 

The algorithm in Fig. 4 helps us to process each 
node of branch-and-cut algorithm. Processing a node 
continues until the solution is infeasible or no new 
constraint is found. In step (6), the current LP 
problem is solved. If the current solution is feasible, 
we try to exploit violated constraints by solving 
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maximum flow networks as in step (12). If we find 
at least one violated constraint after solving the 
maximum flow network, we add it to the LP table, 
and resolve the newly constructed table in step (6). 
Otherwise, we either find a new integer solution or 
the solution is fractional. As can be seen in Fig. 4, 
we don't use any procedure to fix the variables. Any 
attempt to fix variables to either one or zero turned 
out to be ineffective in our tests. So, we decided to 
exclude variable fixing procedures in our program. 

 
Algorithm int process_node()

 int status;
int number_violated_constraints;
bool is_solution_integer;
begin

repeat forever

if then
return

end if
       

if and then
return

end if
if then

return
end if 

end repeat
end.

(1)

    
       status = lp_solve(is_solution_integer);
        status = INFEASIBLE 
            INFEASIBLE; (* LP problem is infeasible *)        
       

(* Find violated constraints by solving maximum flow network *)
       number_violated_constraints = generate_constraints();
        number_violated_constraints = 0  is_solution_integer 
            INTEGRAL;
        
        number_violated_constraints = 0 
            FRACTIONAL;
       
    

(2) 
(3) 
(4) 
(5)
(6)
(7)
(8)
(9)
(10)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20) 

 
Fig. 4 - Processing a node in branch-and-cut algorithm 

Given an LP solution Px∈ , the separation 
problem asks for finding the most violated sec and 
cutsec constraints (or prove that there is no such 
violated constraint) by solving at most ||V  
maximum flow problems. Since the same maximum 
flow network is used to find both sec and cutsec 
constraints, the time to find the rectilinear Steiner 
tree is reduced. In our implementation, we use 
maximum flow network to solve the separation 
problem without using any heuristic procedures. 

Most of the time, it is helpful to decompose a 
large graph into manageable pieces so that it can be 
processed one component at a time. Warme [7] 
suggested two theorems for connected and bi-
connected components that can be used to find sec 
constraints. We have extended these theorems to 
find cutsec constraints. If a graph has a violated 
cutsec constraint, at least one of the connected or bi-
connected components of the graph also has a 
violated constraint. Since solving a maximum flow 
network problem is very costly and in our program it 
is the only mechanism used to find violated 
constraints, we try to reduce the time to solve the 
maximum flow problem by reducing the size of the 
problem. 

In addition to these decomposition algorithms, 
we applied a decomposition algorithm for both sec 
and cutsec constraints similar to terminal 
elimination algorithm which was originally 

suggested by Padberg and Wolsey [11]. However, 
our decomposition algorithm does not eliminate any 
point from consideration. We can define the 
congestion level of a point Vj∈ as defined in 
Equation (17), 

{ }
∑

∈
=

)( jii
ij xb

δ
. Thus, congested and 

uncongested points can be defined as points with 
1≥jb  and 1<jb , respectively. Our decomposition 

method splits the components into two 
subcomponents such that while one component that 
is composed of only uncongested points is used to 
find the violated cutsec constraints, the other 
component that is composed of only the congested 
points is used to find the violated sec constraints. 

In step (4) of the Fig. 5, we find all 
subcomponents of the current LP solution. These 
include connected, bi-connected, and congested and 
uncongested components. For each component 
generated, we first construct a maximum flow 
network in step (9), and try to find at least one 
violated sec and cutsec constraints in step (11). After 
examining all components, we add violated 
constraints into the LP solver and return the number 
of violated constraints. One important thing that 
should be taken into consideration is the constant 
value of MAX_COMPONENT_SIZE. It discards 
components whose sizes are greater than a certain 
value. This allows us to design a branch-and-cut 
algorithm such that we emphasize either cutting 
plane algorithm or branch-and-bound algorithm. 
When we set the MAX_COMPONENT_SIZE to 1, 
we are bound to use branch-and-bound algorithm, 
and when we set the MAX_COMPONENT_SIZE to 
the size of the original graph, we are bound to use 
the cutting plane algorithm. Thus, 
MAX_COMPONENT_SIZE allows us to adjust the 
branch-and-cut algorithm. 

 
Algorithm int generate_constraints()

int number_violations = 0;
begin

while
if < then

end if

end while

return
end.

(1) 

   (* Generate all subcomponents, and put them into List *)
   Iterator p = make_components();
   (* Iterate all subcomponents in the list *)
    (there is an element in the List)
        p.component_size MAX_COMPONENT_SIZE 
            (* Construct a max-flow network *)
           max_flow = construct_maxflow_network();
           (* Find violated constraints if one exists *)   
           number_violations += 
      
      p.move(); (* Move iterator to the next element *)
  
  add_violated_constraints_to_LP();
   number_violations;

(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9)  
(10) 
(11) minimize_submodular_function(p);      
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 

 
Fig. 5 - Generating violated constraints 

There is a wide variety of branching variable 
selection strategies in the literature. We apply a 
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strategy similar to the one suggested by Applegate, 
Bixby, Chvatal and Cook [12]. We choose a set of 
variables 6.04.0| ≤≤= ii xxC as a branching 
variable candidate set. We then solve two LP 
problems )|min( PxxcT ∈ for each value of the 
variable 0=ix or 1=ix using a limited number of 
simplex iterations, and represent the objective 
function values as 0

iv and 1
iv , respectively. We finally 

select the branching variableb such that it satisfies 
the following condition: 

 
},{min},max{ 1010

iiCxbb vvvv
i∈

=                           (19) 
 

For the node selection strategy, we use the best 
node selection strategy. We always choose the node 
with the lowest objective value. 
 

5. COMPUTATIONAL RESULTS 
In this section, we compare our program, 

NEOSteiner 2.0 (which is available for downloading 
at Emanet [13]), with GeoSteiner 3.1 and STEINER 
programs, which are written by Warme et al. [3], 
and Polzin and Daneshmand [4], respectively. As a 
test data, we use ES1000 test instances from the 
SteinLib library by Koch and Martin [14] which is 
accessible from the World Wide Web. 

The FSTs that are used by the concatenation 
phase of the GeoSteiner 3.1 and NEOSteiner 2.0 are 
produced by applying the FST generation phase of 

GeoSteiner 3.1 with the pruning step enabled. 
Pruning step reduces the set of FSTs generated by 
the FST generation phase while retaining at least one 
optimal solution. This step reduces the solution time 
of the concatenation phase of the rectilinear Steiner 
minimal tree problem considerably. 

All tests for GeoSteiner 3.1 and NEOSteiner 2.0 
programs were performed on a PC with an AMD 
Athlon 1.4 GHz processor and 1 GB main memory 
running Mandrake Linux 9.0 operating system. We 
used the GNU gcc 3.2 compiler and CPLEX 8.0 LP 
solver. The same optimization options were used for 
both programs. The MAX_COMPONENT_SIZE 
was selected as 230 for NEOSteiner 2.0 program. 

In Table 1, we compare the running time of 
GeoSteiner 3.1, STEINER and NEOSteiner 2.0 for 
the exact solution of the ES1000 test instances. We 
present the running time of STEINER as it is in 
Polzin and Daneshmand [4] article due to the 
unavailability of STEINER program. All tests in 
Polzin and Daneshmand article were performed on a 
PC with an AMD Athlon 1800+ processor and 1 GB 
of main memory. They used the gcc 2.94 compiler 
and CPLEX 7.0 LP solver on Linux 2.4.9 operating 
system. Our program is on average and on most of 
the test cases faster than GeoSteiner 3.1. Although 
results of NEOSteiner 2.0 are comparable with 
STEINER on most of the cases, there are a few cases 
where NEOSteiner 2.0 performs worse than 
STEINER.  

 

Table 1. Comparison of GeoSteiner 3.1, STEINER and NEOSteiner 2.0 on ES1000FST instances 

Instances Optimum GeoSteiner 3.1 STEINER NEOSteiner 2.0 
ES1000FST01 230535806 12.08 11.55 27.41 

ES1000FST02 227886471 7.63 7.79 6.06 

ES1000FST03 227807756 118.31 11.29 2.77 

ES1000FST04 230200846 7.66 12.52 2.70 

ES1000FST05 228330602 81.08 8.50 2.22 

ES1000FST06 231028456 423.25 16.13 114.69 

ES1000FST07 230945623 102.77 4.80 4.07 

ES1000FST08 230639115 141.12 12.32 28.76 

ES1000FST09 227745838 19.70 12.72 4.17 

ES1000FST10 229267101 114.30 4.76 6.18 

ES1000FST11 231605619 18.28 8.13 7.56 

ES1000FST12 230904712 611.79 16.47 13.59 

ES1000FST13 228031092 2.64 4.62 4.28 

ES1000FST14 234318491 760.27 14.92 25.17 

ES1000FST15 229965775 7.90 7.59 1.79 

Averages:               161.92 (s) 10.27 (s) 16.76 (s) 
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6. CONCLUSION 
Our aim in this work is twofold. One is to design 

simple and reusable branch-and-cut algorithm that 
can be used to solve the RSMT problem as a stand 
alone sequential program or as a main part of a 
parallel algorithm. In this paper, we only presented 
the sequential algorithm. The parallel algorithm is 
explained in detail in another paper by Emanet and 
Ozturan [15]. The other aim is to reduce the time to 
solve the problem. 

Test results show us that our branch-and-cut 
algorithm outperforms the GeoSteiner 3.1 in most of 
the test cases, even though our code is implemented 
in C++ with liberal use of object oriented features 
which may introduce some overheads. The 
STEINER program performs better than NEOSteiner 
2.0. However, this is mainly due to the extensive use 
of strong reduction techniques in STEINER 
program. STEINER can be considered as a middle 
phase between FST generation and FST 
concatenation phase of Steiner minimal tree problem 
with its extended reduction tests like terminal 
separator technique, which reduces the size of a test 
instance by ensuring at least one optimal solution. In 
the future, one can easily integrate these reduction 
techniques into the NEOSteiner program, which has 
already been designed and implemented for 
including new algorithms, to obtain better results for 
large instances of Steiner minimal tree problem. 

While developing NEOSteiner program, we do 
not sacrifice software issues such as modifiability, 
reusability, maintainability, and portability for 
performance. These are the issues often a branch-
and-cut program fails to satisfy due to the 
complexity of the problem. 
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