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Abstract. Simulation optimization (or optimization via simulation) is defined as the optimization of performance 
measures based on outputs from stochastic simulations. Although several articles on this topic have been published, the 
literature on optimization via simulation is still in its infancy. In this paper the research in this field is reviewed and 
some issues that have not received attention so far are highlighted. In particular, a survey of solution methodologies is 
presented, followed by a critical review of parallel computing strategies and commercial software packages. A 
particular emphasis is put on problems with discrete decision variables. 
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1. INTRODUCTION 
Several problems arising in complex system 

design and operations are characterized by a inherent 
stochastic nature. While analytical models are viable 
under relative easy assumptions, their use becomes 
more and more difficult as the complexity of the 
system increases. In such situations, we resort to 
simulation optimization modeling as an effective 
alternative. Simulation optimization (or optimization 
via simulation) is defined as the optimization of the 
performance measures of complex systems based on 
outputs from stochastic (primarily discrete-event) 
simulations (see Figure 1).  

More formally, the class of problems we are 
concerned amounts to finding a solution θ such that:  

)(min θ
θ

f
Θ∈

 (1) 

where f(θ)=E[L(θ,ω)], L is the sample performance 
measure, θ∈Θ represents the (vector of) input 
variables (or controllable parameter settings), and ω 
represents a sample path (simulation replication). A 
particular setting of the variables is usually called 
either a configuration or a design while outputs are 
named performance measures, criteria, or 
responses. The constraint set Θ may be either 
explicitly given or implicitly defined. For simplicity 
in exposition, we assume throughout that the 
minimum exists and is finite, e.g., Θ  is compact.  

 

 

 

 

 

 

 
Fig. 1 - Simulation-Optimization approach 
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The peculiar features of this class of problems set 
up a dichotomy not present in deterministic 
optimization: that of the search process versus the 
evaluation process. In other words, simulation 
optimization involves two important parts: generating 
candidate solutions and estimating their objective 
function value. Hence, the actual process of 
optimization can be divided into two parts: (i)  
generating candidate solutions; (ii) evaluating such 
solutions. In optimization simulation, most of the 
computation is expended in phase (ii), a reversal of the 
deterministic setting, where the search (i) is the 
primary computational burden.  

A major determinant of the computational cost for a 
simulation optimization algorithm is the number of 
simulation replications used to estimate J(θ) for each θ. 
There is no reason a priori to assume that the number 
of replications should be the same for all values of θ 
nor the same for each iteration in the search process. In 
sum, a key feature that is not a factor in deterministic 
settings is the trade-off between the amount of 
computational effort needed to estimate the 
performance at a particular solution versus the effort in 
finding improved solution points. Since evaluating and 
comparing are considered essentially the same step in 
the deterministic setting, currently implemented 
simulation optimization routines do not really address 
the notion of ordinal comparisons.  

Simulation optimization techniques can be 
classified based on the nature of the feasible region. If 
it is a continuous set, then it may be appropriate to use 
a gradient based search method (see Andradóttir, 1998, 
and Fu, 1994, 2002, for surveys). If it is finite and 
fairly small, then it is possible to use suitable statistics 
methods, whereas, if it is finite but combinatorially 
large, it is impracticable to evaluate every alternative 
and a metaheuristic may be appropriate. In the 
following, the discrete case is examined in greater 
detail since it is much more relevant in engineering 
applications (e.g., in the design of computer systems, 
communication networks, flexible manufacturing 
systems, production assembly lines and transportation 
systems). 
 
2. PROBLEMS WITH A "FAIRLY SMALL" 

NUMBER OF ALTERNATIVES 
If the optimization involves selecting the best of a 

few alternatives, say  
Θ={θ(1), θ(2), ..., θ(m)}, 

where m<30, then it may be possible to evaluate every 
solution and compare their performances. In the 
deterministic context this would be straightforward, 
but, since the performance must be estimated through 
stochastic simulations, some further analysis is needed 
to compare alternative solutions. Numerous different 
approaches have been developed to address this 
problem, including subset selection, indifference-zone 
ranking and selection (R&S), multiple comparisons 
procedures (MCPs), and decision theoretic methods.  

Subset selection does not attempt to find the 
optimal solution but simply to reduce the set of 
candidate solutions to a (small) subset. Early work in 
this field have developed techniques that apply when 
(i) the simulation output is normal with common 
variance, (ii) the same number of simulation 
observations are used for each solution. These 
assumptions are rarely satisfied for simulation outputs 
and although many methods are quite robust with 
respect to the normality assumption, the assumption of 
common variance is quite restrictive and new 
techniques that do not require this assumption have 
been developed only recently (Nelson et al., 2001).  

R&S methods aim at determining a single best 
(optimal) solution. To this purpose, the most common 
approach is to define an indifference zone δ for the 
performance and develop a procedure that selects a 
solution with performance that is within δ units of the 
optimal performance with a given probability. That is, 
if θ* is the optimal solution and θ is the selected 
solution then 

Prob [ |f(θ) - f(θ*)| < δ] ≥ 1 - α, 
where 1−α is the desired probability. To achieve this 
guarantee, a two-stage procedure that prescribes how 
many simulation estimates are needed for each 
alternative is commonly applied. A discussion of 
alternative indifference-zone procedures can be found 
in Banks et al (2000) and Law and Kelton (2000). As 
subset selection and R&S procedures have 
complimentary functions, a natural approach is to use a 
subset selection procedure to remove clearly dominated 
solutions, followed by a R&S procedure to select the 
best solution (Nelson et al., 2001).  

Another approach for selecting the best solution is 
based on MCPs which calculate simultaneous 
confidence intervals for 

f(θ(i)) - f(θ*) (i = 1, ..., m), 
where θ*  is as before the optimal solution (Hochberg 
and Tamhane, 1987). These procedures are actually 
closely related to the R&S procedures as indifference-
zone procedures can automatically provide such 
confidence intervals with the width of the interval 
corresponding to the selected indifference zone 
(Matejcik and Nelson, 1995).  

Most of the statistical selection procedures 
mentioned above involve a two stage process where in 
the first stage the mean and the variance of each 
solution are estimated and those estimates used to 
determine how many additional simulations are needed 
to make the desired selection. In implementing such 
methods a key issue is how much effort to put into the 
first stage. If it is too little an inaccurate estimate may 
prescribe much more simulation runs in the second 
stage than is really needed and vice versa too much 
effort in the first stage may spend more simulation time 
on each solution than was needed. More recently there 
has been considerable effort devoted to developing 
sequential procedures that solve this problem. Kim and 
Nelson (2001) and Chen et al. (2000) show that these 
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methods perform very favorably when compared to the 
sequential procedures.   
 
3. PROBLEMS WITH A "FAIRLY LARGE" 

NUMBER OF ALTERNATIVES 
When the number of feasible solutions is "fairly 

large", a heuristic search need to be used in order to 
select a subset of good solutions to be compared 
through simulation. This can be done within several 
frameworks originally developed for solving 
deterministic combinatorial optimization problems.  

Random search typically involves an iterative 
process where at each iteration the search progresses to 
a new (possibly better) solution, randomly chosen in 
the neighborhood of the current solution. The various 
random search methods differ because of the 
neighborhood structure, the way a new solution is 
selected and the stopping criterion.    

In addition, various metaheuristics have been 
suggested for simulation optimization. Such methods 
include genetic algorithms, simulated annealing, tabu 
search, and neural networks (Glover and 
Kochenberger, 2003). Although not all these methods 
have a convergence guarantee, they have been quite 
successful when applied to simulation optimization.  

Simulated annealing (SA) can be thought as a 
modification of the random search described above and 
can be adapted to simulation optimization (Haddock 
and Mittenhall, 1992). Starting with an initial solution, 
SA moves from one solution to the next, hopefully 
converging to the global optimum. SA attempts to 
avoid getting trapped into a local optima by accepting 
inferior solutions with certain probability. In particular, 
the candidate solution is always accepted if it is better 
than the current solution but it is also sometimes 
accepted even if it is inferior. The probability of 
accepting the inferior candidate is higher if the 
difference in performance is small, and it is higher if a 
parameter, called the temperature, is high. Usually, this 
temperature is allowed to decrease as the search 
progresses, the idea being that, after a while, no big 
moves up hill should be allowed and eventually no 
moves should be made to an inferior solution. 
However, in the context of simulation optimization 
there are indications that a constant temperature search 
may work as well or better (Alrefaei and Andradóttir, 
1999). Ghiani et al (2004) present an iterative method 
that combines the robustess of SA with a statistical 
procedure for comparing the solutions that are 
generated during the search process. 

Tabu search (Glover and Laguna, 1997) compares 
the current solution θ with its neighbors (solutions 
similar to θ) except those that have already visited 
recently (tabu solutions). Specifically, solutions are 
tabu if they require the reverse move of a recently 
made move, which forces the search to continue when 
it might otherwise get stuck at a local optimum. 
Although maintaining a list of tabu moves may be 
considered the main feature of the method, it has 

numerous other properties. This includes for example 
long term memory that allows the search to restart at a 
previously found good solution with a new list of tabu 
moves that forces a different search direction from this 
good starting point. More details on using tabu search 
for simulation optimization can be found in Glover, 
Kelly, and Laguna (1999) and April et al. (2001).  

Genetic algorithms (GA) and other evolutionary 
methods work with a population of solutions rather 
than a single solution. Thus, at each iteration, a new 
population is generated on the basis of the current 
solutions by means of cross-over and mutation 
operators. The cross-over operation typically takes two 
solutions having good performances from the current 
population and combines them to make two new 
solutions. This resembles an evolutionary process 
where two individuals are allowed to reproduce to 
generate offspring that resemble the parents. The 
mutation operator, on the other hand, takes a single 
high performing solution and alters it slightly.   

Scatter Search (Laguna, 1997) creates a set of 
solutions (the reference set) that guarantees a certain 
level of “quality” and of “diversity”. The iterative 
process consists in selecting a subset of the reference 
set, in combining the corresponding solutions, through 
a tailored strategy, in order to create new solutions, and 
in improving them through local optimization 
algorithms. The process is repeated, with the use of 
diversification techniques, until certain stopping 
criteria are met. 

Another random search metaheuristic is the Nested 
Partition (NP) method of Shi and Ólafsson (2000). 
This method takes a global approach to simulation 
optimization and generates iterative partitions of the 
entire feasible region. That is, at the k-th iteration there 
is some subset σ(k)⊆Θ  that is considered the most 
promising (σ(0)=Θ), and the method attempts to 
narrow the search by looking at subsets σi(k)⊆ σ(k), 
i∈{1, 2, ..., M} of this region while simultaneously 
looking at the surrounding region Θ/σ(k). Thus, it 
maintains a global perspective at every stage. If one of 
the subsets, say σl(k), is found to be best this becomes 
the most promising region during the next iteration 
(σ(k+1)=σl(k)), but, if the surrounding region is found 
to be best, the method backtracks (σ(k+1)=σ(k-1)). 
Statistical selection methods, such as those reviewed 
before, can be used to determine the amount of 
sampling needed from each region to assure a proper 
selection in each iteration. Specifically, given an 
indifference zone δ and the probability of selecting a 
solution whose performance is within δ units of the 
optimal performance, a statistical selection procedure 
is used to prescribe how many solutions need to be 
sampled from each of the subregions and the 
surrounding region.  
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4. PARALLELIZATION STRATEGIES 
When using a metaheuristic in a simulation-

optimization setting, a parallel implementation is 
usually needed in order to make computation time 
acceptable. The parallelization of a metaheuristic can 
be accomplished in a number of ways depending on 
problem structure and hardware at hand. Crainic et al 
(1997) classify parallel TS procedures according to 
three criteria: Search Control Cardinality, Search 
Control Type, Search Differentiation. The first 
criterion indicates whether the control of the parallel 
search is performed by a single processor (1-control, 1-
C), or distributed among several processors (p-control, 
p-C). The second measure denotes the way 
(synchronous or asynchronous) communication is 
performed among processors. Synchronous 
communication can be independent of computation 
status (rigid synchronization, RS) or not (knowledge-
based synchronization, KS). In asynchronous 
communication, a processor that finds a new best 
solution broadcasts a message to the other processors. 
In the simplest case, the single solution is sent 
(collegial communication, C) while in {knowledge-
based collegial} communication (KC) additional 
information are transmitted to the receivers. Finally, 
the third criterion accounts for the way different 
searches are carried on. Four alternatives are available: 
Single Initial Point - Single Strategy (SPSS) if a single 
search is performed; Single Initial Point - Multiple  
Strategies (SPMS) when each processor carries out a 
different search starting from the same initial solution; 
Multiple Initial Points - Single Strategy (MPSS) if each 
processor performs the same search starting from 
different initial solutions; Multiple Initial Points - 
Multiple Strategies} (MPMS) if each processor is in 
charge of a different search starting from a different 
initial solution. In SPMS and MPMS, the searches may 
be performed by different algorithms or, more 
commonly, by the same algorithm with different 
parameters. Not every combination of such parameters 
is feasible (e.g., 1-C/C/MPMS does not make any 
sense). The most common configurations are: 

(i) 1-C/RS/SPSS (or master-slave) strategy. A 
single search is performed by a single processor (called 
master) which dispatches time-consuming tasks to the 
other processors (called slaves). There is no 
communication among the slaves. 

(ii) 1-C/KS/SPSS strategy. Compared to 1-
C/RS/SPSS, the slaves (which still do not 
communicate among themselves) can be required by 
the master to stop computing. This is usually the case 
when each slave is assigned a relatively simple search. 

(iii) p-C/RS/MPSS, p-C/RS/SPMS and p-
C/RS/MPMS strategies. Several independent searches 

(with different initial points or parameters) are 
executed in parallel. There is no communication among 
processors except at the end of the computations when 
the best solution is selected. 

(iv) p-C/C/SPMS, p-C/C/MPSS and p-C/C/MPMS 
strategies. Each processor performs a different search. 
Once a processor finds a new best solution, it sends it 
to the other processors that re-initialize their searches. 

Ghiani et al (2004) have implemented three 
parallelization strategies in a SA framework where 
solutions are compared by means of the Rinott (1978) 
procedure. The first implementation is a 1-C/RS/SPSS 
master-slave approach in which different simulation 
runs are executed in parallel. The remaining 
parallelization approaches are two multi-thread 
synchronous procedures in which, at each 
synchronization point, the new current solution is the 
best solution found so far or a random solution, 
respectively. Computational results showed that the 
multi-thread parallelization were able to provide 
slightly superior solutions (less than 3% on average) at 
the expense of much larger computing times (often 
several hundred hours even for moderately sized 
instances). They also showed that the speed-up (the 
ratio between the computing time provided by the 
sequential code and the computing time of the parallel 
code), which is ideally equal to the number of 
processors, decreases as the number of processors 
increases. When 2 or 4 processors were used, the 
speed-up was close to its ideal value; with 8 
processors, the speed-up was relatively close to its 
ideal value; instead, with 16 processors the ideal speed-
up was rarely achieved. The performance deterioration 
is due to two main reasons: 
• if the number of processors increases then 

comunication overhead between master and slaves 
increases; 
• during the first-stage of the Rinott procedure, 

workload is perfectly balanced among processors since 
the initial number of simulation runs for each is a 
multiple of the number of processors); however, in the 
second-stage this isn’t  always true. As a result, if the 
number of additional simulation replications is small, 
the more processors are used the more processors 
remain idle on average.  
 

5. COMMERCIAL CODES 
At present, nearly every commercial discrete-event 

simulation software package contains a module that 
performs some sort of “optimization” rather than just 
pure statistical estimation (see Table 1). This is in 
contrast with the status in 1990, when no package 
included such an option. 

Table 1 - Optimization for Simulation: Commercial Software Packages 
Optimization package Simulation platform Primary search strategy 

AutoStat AutoMod Genetic algorithm, evolutionary strategy 
Optimiz Simul8 Neural network 

OptQuest Arena, Crystal Ball, etc. Scatter search, tabu search, neural network 
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SimRunner ProModel Genetic algorithm, evolutionary strategy 
Optimizer Witness Simulated annealing, tabu search 

 
The optimization routine in AutoStat (Bitron, 2000) 

incorporates an evolutionary strategy algorithm (a 
genetic algorithm variation) and handles multiple 
objectives by requiring weights to form a fitness 
function. For each input variable the user wishes to 
optimize, the user specifies a range or set of values. For 
each performance measure, the user specifies its 
relative importance (with respect to other performance 
measures) and a minimization or maximization goal. 
The user also specifies the number of simulation 
replications to use for each iteration in the search 
algorithm. Further options include specifying the 
maximum number of total replications per 
configuration, the number of parents in each 
generation, and the stopping criteria, which is of two 
forms: termination after a maximum number of 
generations or when a specified number of generations 
results in less than a specified threshold level of 
percentage improvement. While the optimization is in 
progress, the software displays a graph of the objective 
function value for four measures as a function of the 
generation number: overall best, best in current 
generation, parents’ average, and children’s average. 
When complete, the top 30 configurations are 
displayed, along with various summary statistics from 
the simulation replications.  

Optmiz proceeds using neural networks: “Optmiz 
searches for the best solution. Give Optmiz 
information about what to optimize (maybe a service 
level of 95%). Give it a list of the resources and other 
variables you are prepared to see change (maybe some 
factors are fixed but you could buy more machinery, or 
some types of labor). You can also give constraints on 
how much these factors are allowed to change. Optmiz 
uses Simul8’s ‘trials’ facility multiple times to build an 
understanding of the simulation’s ‘response  surface’ 
(the effect that the variables, in combination, have on 
the outcome). It does this very quickly because it does 
not run every possible combination! It uses neural 
network technology to learn the shape of the response 
surface from a limited set of simulation runs. It then 
uses more runs to obtain more accurate information as 
it approaches potential optimal solutions.”  

OptQuest is a stand-alone optimization software 
routine that can be bundled with a number of 
commercial simulation environments, such as Arena 
and Crystal Ball. The algorithm incorporates a 
combination of strategies based on scatter search and 
tabu search, along with neural networks for screening 
out candidates likely to be poor. Scatter search is also a 
population-based evolutionary search strategy like 
GAs. However, Glover, Kelly, and Laguna (1999) 
claim that whereas naïve GAs produce offspring 
through random combination of components of the 
parents, scatter search produces offspring more 
intelligently by incorporating history (i.e., past 

evaluations). In other words, diversity is preserved, but 
natural selection is used in reproduction prior to being 
evaluated. This is clearly more important in the 
simulation setting, where estimation costs are so much 
higher than search costs. The neural network serves as 
a metamodel representation. Since it is clearly a rough 
approximation, both in approximating the objective 
function and in the uncertainty associated with the 
simulation outputs, OptQuest incorporates a notion of a 
risk metric, defined in terms of standard deviations. If 
the neural network predicts an objective function value 
for the candidate solution that is worse than the best 
solution up to that point by an amount exceeding the 
risk level, then the candidate solution is discarded 
without performing any simulation.    
 

6. CONCLUSIONS 
In this paper we have surveyed the main issues 

related to simulation optimization, with an emphasis on 
problems with discrete decision variables. Our analysis 
of the literature have shown that although several 
articles on this topic have been published, there is large 
room for improvements. In particular, we have 
underlined that very limited computational results have 
been obtained so far, so that it is not clear at present 
which algorithmic strategies should be used in real-
world applications. In addition, we have remarked that 
devising tailored parallelization strategies for 
simulation optimization algorithms is still in its infancy 
although it is expected to be very beneficial in practice. 
Finally, we have surveyed commercial software 
packages which have recently started to include some 
(naive) simulation optimization tools.  
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