
Gianpaolo Ghiani, Pasquale Legato, Roberto Musmanno, Francesca Vocaturo / Computing, 2004, Vol. 3, Issue 3, 7-12

 7

OPTIMIZATION VIA SIMULATION: SOLUTION CONCEPTS,
ALGORITHMS, PARALLEL COMPUTING STRATEGIES AND

COMMERCIAL SOFTWARE

Gianpaolo Ghiani1, Pasquale Legato2,
Roberto Musmanno2, Francesca Vocaturo2

1) Dipartimento di Ingegneria dell’Innovazione Università degli Studi di Lecce,

73100 Lecce, Italy gianpaolo.ghiani@unile.it
2) Dipartimento di Elettronica, Informatica e Sistemistica Università della Calabria,

87030 Rende (CS), Italy {legato,musmanno, vocaturo}@unical.it

Abstract. Simulation optimization (or optimization via simulation) is defined as the optimization of performance
measures based on outputs from stochastic simulations. Although several articles on this topic have been published, the
literature on optimization via simulation is still in its infancy. In this paper the research in this field is reviewed and
some issues that have not received attention so far are highlighted. In particular, a survey of solution methodologies is
presented, followed by a critical review of parallel computing strategies and commercial software packages. A
particular emphasis is put on problems with discrete decision variables.

Keywords: Stochastic Systems, Simulation Optimization, Metaheuristics, Parallelization Strategy

1. INTRODUCTION
Several problems arising in complex system

design and operations are characterized by a inherent
stochastic nature. While analytical models are viable
under relative easy assumptions, their use becomes
more and more difficult as the complexity of the
system increases. In such situations, we resort to
simulation optimization modeling as an effective
alternative. Simulation optimization (or optimization
via simulation) is defined as the optimization of the
performance measures of complex systems based on
outputs from stochastic (primarily discrete-event)
simulations (see Figure 1).

More formally, the class of problems we are
concerned amounts to finding a solution θ such that:

)(min θ
θ

f
Θ∈

 (1)

where f(θ)=E[L(θ,ω)], L is the sample performance
measure, θ∈Θ represents the (vector of) input
variables (or controllable parameter settings), and ω
represents a sample path (simulation replication). A
particular setting of the variables is usually called
either a configuration or a design while outputs are
named performance measures, criteria, or
responses. The constraint set Θ may be either
explicitly given or implicitly defined. For simplicity
in exposition, we assume throughout that the
minimum exists and is finite, e.g., Θ is compact.

Fig. 1 - Simulation-Optimization approach

Stochastic
discrete-event

simulator

Optimization
subroutine

candidate
solution

performance
estimate

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

Gianpaolo Ghiani, Pasquale Legato, Roberto Musmanno, Francesca Vocaturo / Computing, 2004, Vol. 3, Issue 3, 7-12

 8

The peculiar features of this class of problems set
up a dichotomy not present in deterministic
optimization: that of the search process versus the
evaluation process. In other words, simulation
optimization involves two important parts: generating
candidate solutions and estimating their objective
function value. Hence, the actual process of
optimization can be divided into two parts: (i)
generating candidate solutions; (ii) evaluating such
solutions. In optimization simulation, most of the
computation is expended in phase (ii), a reversal of the
deterministic setting, where the search (i) is the
primary computational burden.

A major determinant of the computational cost for a
simulation optimization algorithm is the number of
simulation replications used to estimate J(θ) for each θ.
There is no reason a priori to assume that the number
of replications should be the same for all values of θ
nor the same for each iteration in the search process. In
sum, a key feature that is not a factor in deterministic
settings is the trade-off between the amount of
computational effort needed to estimate the
performance at a particular solution versus the effort in
finding improved solution points. Since evaluating and
comparing are considered essentially the same step in
the deterministic setting, currently implemented
simulation optimization routines do not really address
the notion of ordinal comparisons.

Simulation optimization techniques can be
classified based on the nature of the feasible region. If
it is a continuous set, then it may be appropriate to use
a gradient based search method (see Andradóttir, 1998,
and Fu, 1994, 2002, for surveys). If it is finite and
fairly small, then it is possible to use suitable statistics
methods, whereas, if it is finite but combinatorially
large, it is impracticable to evaluate every alternative
and a metaheuristic may be appropriate. In the
following, the discrete case is examined in greater
detail since it is much more relevant in engineering
applications (e.g., in the design of computer systems,
communication networks, flexible manufacturing
systems, production assembly lines and transportation
systems).

2. PROBLEMS WITH A "FAIRLY SMALL"

NUMBER OF ALTERNATIVES
If the optimization involves selecting the best of a

few alternatives, say
Θ={θ(1), θ(2), ..., θ(m)},

where m<30, then it may be possible to evaluate every
solution and compare their performances. In the
deterministic context this would be straightforward,
but, since the performance must be estimated through
stochastic simulations, some further analysis is needed
to compare alternative solutions. Numerous different
approaches have been developed to address this
problem, including subset selection, indifference-zone
ranking and selection (R&S), multiple comparisons
procedures (MCPs), and decision theoretic methods.

Subset selection does not attempt to find the
optimal solution but simply to reduce the set of
candidate solutions to a (small) subset. Early work in
this field have developed techniques that apply when
(i) the simulation output is normal with common
variance, (ii) the same number of simulation
observations are used for each solution. These
assumptions are rarely satisfied for simulation outputs
and although many methods are quite robust with
respect to the normality assumption, the assumption of
common variance is quite restrictive and new
techniques that do not require this assumption have
been developed only recently (Nelson et al., 2001).

R&S methods aim at determining a single best
(optimal) solution. To this purpose, the most common
approach is to define an indifference zone δ for the
performance and develop a procedure that selects a
solution with performance that is within δ units of the
optimal performance with a given probability. That is,
if θ* is the optimal solution and θ is the selected
solution then

Prob [|f(θ) - f(θ*)| < δ] ≥ 1 - α,
where 1−α is the desired probability. To achieve this
guarantee, a two-stage procedure that prescribes how
many simulation estimates are needed for each
alternative is commonly applied. A discussion of
alternative indifference-zone procedures can be found
in Banks et al (2000) and Law and Kelton (2000). As
subset selection and R&S procedures have
complimentary functions, a natural approach is to use a
subset selection procedure to remove clearly dominated
solutions, followed by a R&S procedure to select the
best solution (Nelson et al., 2001).

Another approach for selecting the best solution is
based on MCPs which calculate simultaneous
confidence intervals for

f(θ(i)) - f(θ*) (i = 1, ..., m),
where θ* is as before the optimal solution (Hochberg
and Tamhane, 1987). These procedures are actually
closely related to the R&S procedures as indifference-
zone procedures can automatically provide such
confidence intervals with the width of the interval
corresponding to the selected indifference zone
(Matejcik and Nelson, 1995).

Most of the statistical selection procedures
mentioned above involve a two stage process where in
the first stage the mean and the variance of each
solution are estimated and those estimates used to
determine how many additional simulations are needed
to make the desired selection. In implementing such
methods a key issue is how much effort to put into the
first stage. If it is too little an inaccurate estimate may
prescribe much more simulation runs in the second
stage than is really needed and vice versa too much
effort in the first stage may spend more simulation time
on each solution than was needed. More recently there
has been considerable effort devoted to developing
sequential procedures that solve this problem. Kim and
Nelson (2001) and Chen et al. (2000) show that these

Gianpaolo Ghiani, Pasquale Legato, Roberto Musmanno, Francesca Vocaturo / Computing, 2004, Vol. 3, Issue 3, 7-12

 9

methods perform very favorably when compared to the
sequential procedures.

3. PROBLEMS WITH A "FAIRLY LARGE"

NUMBER OF ALTERNATIVES
When the number of feasible solutions is "fairly

large", a heuristic search need to be used in order to
select a subset of good solutions to be compared
through simulation. This can be done within several
frameworks originally developed for solving
deterministic combinatorial optimization problems.

Random search typically involves an iterative
process where at each iteration the search progresses to
a new (possibly better) solution, randomly chosen in
the neighborhood of the current solution. The various
random search methods differ because of the
neighborhood structure, the way a new solution is
selected and the stopping criterion.

In addition, various metaheuristics have been
suggested for simulation optimization. Such methods
include genetic algorithms, simulated annealing, tabu
search, and neural networks (Glover and
Kochenberger, 2003). Although not all these methods
have a convergence guarantee, they have been quite
successful when applied to simulation optimization.

Simulated annealing (SA) can be thought as a
modification of the random search described above and
can be adapted to simulation optimization (Haddock
and Mittenhall, 1992). Starting with an initial solution,
SA moves from one solution to the next, hopefully
converging to the global optimum. SA attempts to
avoid getting trapped into a local optima by accepting
inferior solutions with certain probability. In particular,
the candidate solution is always accepted if it is better
than the current solution but it is also sometimes
accepted even if it is inferior. The probability of
accepting the inferior candidate is higher if the
difference in performance is small, and it is higher if a
parameter, called the temperature, is high. Usually, this
temperature is allowed to decrease as the search
progresses, the idea being that, after a while, no big
moves up hill should be allowed and eventually no
moves should be made to an inferior solution.
However, in the context of simulation optimization
there are indications that a constant temperature search
may work as well or better (Alrefaei and Andradóttir,
1999). Ghiani et al (2004) present an iterative method
that combines the robustess of SA with a statistical
procedure for comparing the solutions that are
generated during the search process.

Tabu search (Glover and Laguna, 1997) compares
the current solution θ with its neighbors (solutions
similar to θ) except those that have already visited
recently (tabu solutions). Specifically, solutions are
tabu if they require the reverse move of a recently
made move, which forces the search to continue when
it might otherwise get stuck at a local optimum.
Although maintaining a list of tabu moves may be
considered the main feature of the method, it has

numerous other properties. This includes for example
long term memory that allows the search to restart at a
previously found good solution with a new list of tabu
moves that forces a different search direction from this
good starting point. More details on using tabu search
for simulation optimization can be found in Glover,
Kelly, and Laguna (1999) and April et al. (2001).

Genetic algorithms (GA) and other evolutionary
methods work with a population of solutions rather
than a single solution. Thus, at each iteration, a new
population is generated on the basis of the current
solutions by means of cross-over and mutation
operators. The cross-over operation typically takes two
solutions having good performances from the current
population and combines them to make two new
solutions. This resembles an evolutionary process
where two individuals are allowed to reproduce to
generate offspring that resemble the parents. The
mutation operator, on the other hand, takes a single
high performing solution and alters it slightly.

Scatter Search (Laguna, 1997) creates a set of
solutions (the reference set) that guarantees a certain
level of “quality” and of “diversity”. The iterative
process consists in selecting a subset of the reference
set, in combining the corresponding solutions, through
a tailored strategy, in order to create new solutions, and
in improving them through local optimization
algorithms. The process is repeated, with the use of
diversification techniques, until certain stopping
criteria are met.

Another random search metaheuristic is the Nested
Partition (NP) method of Shi and Ólafsson (2000).
This method takes a global approach to simulation
optimization and generates iterative partitions of the
entire feasible region. That is, at the k-th iteration there
is some subset σ(k)⊆Θ that is considered the most
promising (σ(0)=Θ), and the method attempts to
narrow the search by looking at subsets σi(k)⊆ σ(k),
i∈{1, 2, ..., M} of this region while simultaneously
looking at the surrounding region Θ/σ(k). Thus, it
maintains a global perspective at every stage. If one of
the subsets, say σl(k), is found to be best this becomes
the most promising region during the next iteration
(σ(k+1)=σl(k)), but, if the surrounding region is found
to be best, the method backtracks (σ(k+1)=σ(k-1)).
Statistical selection methods, such as those reviewed
before, can be used to determine the amount of
sampling needed from each region to assure a proper
selection in each iteration. Specifically, given an
indifference zone δ and the probability of selecting a
solution whose performance is within δ units of the
optimal performance, a statistical selection procedure
is used to prescribe how many solutions need to be
sampled from each of the subregions and the
surrounding region.

Gianpaolo Ghiani, Pasquale Legato, Roberto Musmanno, Francesca Vocaturo / Computing, 2004, Vol. 3, Issue 3, 7-12

 10

4. PARALLELIZATION STRATEGIES
When using a metaheuristic in a simulation-

optimization setting, a parallel implementation is
usually needed in order to make computation time
acceptable. The parallelization of a metaheuristic can
be accomplished in a number of ways depending on
problem structure and hardware at hand. Crainic et al
(1997) classify parallel TS procedures according to
three criteria: Search Control Cardinality, Search
Control Type, Search Differentiation. The first
criterion indicates whether the control of the parallel
search is performed by a single processor (1-control, 1-
C), or distributed among several processors (p-control,
p-C). The second measure denotes the way
(synchronous or asynchronous) communication is
performed among processors. Synchronous
communication can be independent of computation
status (rigid synchronization, RS) or not (knowledge-
based synchronization, KS). In asynchronous
communication, a processor that finds a new best
solution broadcasts a message to the other processors.
In the simplest case, the single solution is sent
(collegial communication, C) while in {knowledge-
based collegial} communication (KC) additional
information are transmitted to the receivers. Finally,
the third criterion accounts for the way different
searches are carried on. Four alternatives are available:
Single Initial Point - Single Strategy (SPSS) if a single
search is performed; Single Initial Point - Multiple
Strategies (SPMS) when each processor carries out a
different search starting from the same initial solution;
Multiple Initial Points - Single Strategy (MPSS) if each
processor performs the same search starting from
different initial solutions; Multiple Initial Points -
Multiple Strategies} (MPMS) if each processor is in
charge of a different search starting from a different
initial solution. In SPMS and MPMS, the searches may
be performed by different algorithms or, more
commonly, by the same algorithm with different
parameters. Not every combination of such parameters
is feasible (e.g., 1-C/C/MPMS does not make any
sense). The most common configurations are:

(i) 1-C/RS/SPSS (or master-slave) strategy. A
single search is performed by a single processor (called
master) which dispatches time-consuming tasks to the
other processors (called slaves). There is no
communication among the slaves.

(ii) 1-C/KS/SPSS strategy. Compared to 1-
C/RS/SPSS, the slaves (which still do not
communicate among themselves) can be required by
the master to stop computing. This is usually the case
when each slave is assigned a relatively simple search.

(iii) p-C/RS/MPSS, p-C/RS/SPMS and p-
C/RS/MPMS strategies. Several independent searches

(with different initial points or parameters) are
executed in parallel. There is no communication among
processors except at the end of the computations when
the best solution is selected.

(iv) p-C/C/SPMS, p-C/C/MPSS and p-C/C/MPMS
strategies. Each processor performs a different search.
Once a processor finds a new best solution, it sends it
to the other processors that re-initialize their searches.

Ghiani et al (2004) have implemented three
parallelization strategies in a SA framework where
solutions are compared by means of the Rinott (1978)
procedure. The first implementation is a 1-C/RS/SPSS
master-slave approach in which different simulation
runs are executed in parallel. The remaining
parallelization approaches are two multi-thread
synchronous procedures in which, at each
synchronization point, the new current solution is the
best solution found so far or a random solution,
respectively. Computational results showed that the
multi-thread parallelization were able to provide
slightly superior solutions (less than 3% on average) at
the expense of much larger computing times (often
several hundred hours even for moderately sized
instances). They also showed that the speed-up (the
ratio between the computing time provided by the
sequential code and the computing time of the parallel
code), which is ideally equal to the number of
processors, decreases as the number of processors
increases. When 2 or 4 processors were used, the
speed-up was close to its ideal value; with 8
processors, the speed-up was relatively close to its
ideal value; instead, with 16 processors the ideal speed-
up was rarely achieved. The performance deterioration
is due to two main reasons:
• if the number of processors increases then

comunication overhead between master and slaves
increases;
• during the first-stage of the Rinott procedure,

workload is perfectly balanced among processors since
the initial number of simulation runs for each is a
multiple of the number of processors); however, in the
second-stage this isn’t always true. As a result, if the
number of additional simulation replications is small,
the more processors are used the more processors
remain idle on average.

5. COMMERCIAL CODES
At present, nearly every commercial discrete-event

simulation software package contains a module that
performs some sort of “optimization” rather than just
pure statistical estimation (see Table 1). This is in
contrast with the status in 1990, when no package
included such an option.

Table 1 - Optimization for Simulation: Commercial Software Packages
Optimization package Simulation platform Primary search strategy

AutoStat AutoMod Genetic algorithm, evolutionary strategy
Optimiz Simul8 Neural network

OptQuest Arena, Crystal Ball, etc. Scatter search, tabu search, neural network

Gianpaolo Ghiani, Pasquale Legato, Roberto Musmanno, Francesca Vocaturo / Computing, 2004, Vol. 3, Issue 3, 7-12

 11

SimRunner ProModel Genetic algorithm, evolutionary strategy
Optimizer Witness Simulated annealing, tabu search

The optimization routine in AutoStat (Bitron, 2000)

incorporates an evolutionary strategy algorithm (a
genetic algorithm variation) and handles multiple
objectives by requiring weights to form a fitness
function. For each input variable the user wishes to
optimize, the user specifies a range or set of values. For
each performance measure, the user specifies its
relative importance (with respect to other performance
measures) and a minimization or maximization goal.
The user also specifies the number of simulation
replications to use for each iteration in the search
algorithm. Further options include specifying the
maximum number of total replications per
configuration, the number of parents in each
generation, and the stopping criteria, which is of two
forms: termination after a maximum number of
generations or when a specified number of generations
results in less than a specified threshold level of
percentage improvement. While the optimization is in
progress, the software displays a graph of the objective
function value for four measures as a function of the
generation number: overall best, best in current
generation, parents’ average, and children’s average.
When complete, the top 30 configurations are
displayed, along with various summary statistics from
the simulation replications.

Optmiz proceeds using neural networks: “Optmiz
searches for the best solution. Give Optmiz
information about what to optimize (maybe a service
level of 95%). Give it a list of the resources and other
variables you are prepared to see change (maybe some
factors are fixed but you could buy more machinery, or
some types of labor). You can also give constraints on
how much these factors are allowed to change. Optmiz
uses Simul8’s ‘trials’ facility multiple times to build an
understanding of the simulation’s ‘response surface’
(the effect that the variables, in combination, have on
the outcome). It does this very quickly because it does
not run every possible combination! It uses neural
network technology to learn the shape of the response
surface from a limited set of simulation runs. It then
uses more runs to obtain more accurate information as
it approaches potential optimal solutions.”

OptQuest is a stand-alone optimization software
routine that can be bundled with a number of
commercial simulation environments, such as Arena
and Crystal Ball. The algorithm incorporates a
combination of strategies based on scatter search and
tabu search, along with neural networks for screening
out candidates likely to be poor. Scatter search is also a
population-based evolutionary search strategy like
GAs. However, Glover, Kelly, and Laguna (1999)
claim that whereas naïve GAs produce offspring
through random combination of components of the
parents, scatter search produces offspring more
intelligently by incorporating history (i.e., past

evaluations). In other words, diversity is preserved, but
natural selection is used in reproduction prior to being
evaluated. This is clearly more important in the
simulation setting, where estimation costs are so much
higher than search costs. The neural network serves as
a metamodel representation. Since it is clearly a rough
approximation, both in approximating the objective
function and in the uncertainty associated with the
simulation outputs, OptQuest incorporates a notion of a
risk metric, defined in terms of standard deviations. If
the neural network predicts an objective function value
for the candidate solution that is worse than the best
solution up to that point by an amount exceeding the
risk level, then the candidate solution is discarded
without performing any simulation.

6. CONCLUSIONS
In this paper we have surveyed the main issues

related to simulation optimization, with an emphasis on
problems with discrete decision variables. Our analysis
of the literature have shown that although several
articles on this topic have been published, there is large
room for improvements. In particular, we have
underlined that very limited computational results have
been obtained so far, so that it is not clear at present
which algorithmic strategies should be used in real-
world applications. In addition, we have remarked that
devising tailored parallelization strategies for
simulation optimization algorithms is still in its infancy
although it is expected to be very beneficial in practice.
Finally, we have surveyed commercial software
packages which have recently started to include some
(naive) simulation optimization tools.

REFERENCES
M. H. Alrefaei and S. Andradottir. 1999. A simulated

annealing algorithm with constant temperature for
discrete stochastic optimization. Management Science 45,
748-764.

Andradóttir, S. 1998. Simulation optimization.
Chapter 9 in J. Banks, ed. Handbook of Simulation:
Principles, Methodology, Advances, Applications, and
Practice. John Wiley & Sons, New York.

April, J., F. Glover, J. Kelly, and M. Laguna. 2001.
“Simulation/Optimization using “Real-World”
Applications,” in Proceedings of the 2001Winter
Simulation Conference, 134-138.

Banks, J., J. S. Carson, B. L. Nelson, D. M. Nicol.
2000. Discrete Event Systems Simulation, 3rd ed.
Prentice Hall, Englewood Cliffs, NJ.

Bitron, J. 2000. Optimizing AutoMod Models with
Auto-Stat. AutoFlash Monthly Newsletter,
AutoSimulations, Inc., Bountiful, UT.

Chen, H. C., C. H. Chen, E. Yücesan. 2000.
Computing efforts allocation for ordinal optimization and

Gianpaolo Ghiani, Pasquale Legato, Roberto Musmanno, Francesca Vocaturo / Computing, 2004, Vol. 3, Issue 3, 7-12

 12

discrete event simulation. IEEE Transactions on
Automatic Control 45 960–964.

M. C. Fu. 1994. Optimization via simulation: A
review. Annals of Operations Research 53 199–248.

M. C. Fu. 2002. INFORMS Journal on Computing 14,
3, 192–215.

F. Glover, J. P. Kelly, M. Laguna. 1999. New
advances for wedding optimization and simulation. In
Proceedings of the 1999 Winter SimulationConference,
eds. J.A. Joines, R.R. Barton, K. Kang, and P.A.
Fishwick, 255-260. Piscataway, New Jersey: Institute of
Electrical and Electronics Engineers.

F. Glover, G. A. Kochenberger (Editors), 2003.
Handbook of Metaheuristics, Kluwer, Amsterdam.

Glover, F. and M. Laguna. 1997. Tabu Search.
Boston: Kluwer Academic.

Law, A.M. and W.D. Kelton. 2000. Simulation
Modeling and Analysis, 3rd edition. New York: McGraw-
Hill.

Haddock, J. and Mittenhall. 1992. “Simulation
Optimization using Simulated Annealing,” Computers
and Industrial Engineering, 22, 387-395.

M. Hartmann. An improvement on Paulson's
sequential ranking procedure. Sequential Analysis, 7:
363-372, 1988.

M. Hartmann. An improvement on Paulson's
procedure for selecting the population with the largest
mean from k normal populations with a common
unknown variance. Sequential Analysis, 10: 1-16, 1991.

Hochberg, Y. and A.C. Tamhane. 1987. Multiple
Comparison Procedures. New York: John Wiley & Sons.

S.-H. Kim and B. L. Nelson. A fully sequential
procedure for indifference-zone selection in simulation.
ACM Transactions on Modeling and Computer
Simulation, 11:251{273, 2001.

Matejcik, F.J. and B.L. Nelson. 1995. “Two-Stage
Multiple Comparisons with the Best for Computer
Simulation”, Operations Research, 43, 633-640.

Nelson, B. L., J. Swann, D. Goldsman, W. Song.
2001. Simple procedures for selectingthe best simulated
system when the number of alternatives is large.
Operations Research 49 950–963.

E. Paulson. 1964. A sequential procedure for selecting
the population with the largest mean from k normal
populations. Annals of Mathematical Statistics, 35:174-
180.

Rinott Y. 1978. On two-stage selection procedures and
related probability-in-equalities. Communications in
Statistics, A7, 799-811.

Shi, L., S. Olafsson. 2000. Nested partitioned method
for global optimization. Operations Research 48, 390–
407.

Gianpaolo Ghiani is Associate
Professor of Operations Research at the
University of Lecce, Italy. His main
research interests lie in the field of
combinatorial optimization, particularly in
vehicle routing, location and layout
problems. He has published in a variety of
journals, including Mathematical
Programming, Operations Research,

Operations Research Letters, Networks,Transportation
Science, Optimization Methods and Software,
Computational Optimization and Applications, Computers
and Operations Research, International Transactions in
Operational Research, European Journal of Operational
Research, Journal of the Operational Research Society,
Parallel Computing and Journal of Intelligent
Manufacturing Systems. His doctoral thesis was awarded
the Transportation Science Dissertation Award from
INFORMS in 1998. He is an editorial board member of
Computers & Operations Research.

Pasquale Legato is an Assistant

Professor of Operations Research at
Engineering (University of Calabria),
where he teaches courses on
simulation for system performance
evaluation. He has been visiting
scholar at Duke University (NC, USA)
and at “Galileo Ferraris” Institute

(Torino, Italy). He has published on queuing network
models for job shop and logistic systems, as well as on
integer programming models. He has been involved in
several national and international applied research
projects and is serving as reviewer for some international
journals. Current activities are in the integration of
Simulation output analysis with Combinatorial
Optimization algorithms for real life applications in
Transportation and Logistics.

Roberto Musmanno Graduated

in Industrial Engineering, he received
two annual research scholarships
from the Italian National Research
Council. Assistant Professor of
Operations Research at University of
Calabria from 1995 to 1998 and
Associate Professor of Operations
Research at University of Lecce from 1998 to 2001,
Roberto Musmanno is Full Professor of Logistics at
University of Calabria and chairman of the Management
Engineering Degree at the same university. His major
research interests are in logistics, network optimization
and parallel computing. He has published more than 30
papers in a variety of journals. He is coauthor of the book:
G. Ghiani, G. Laporte, R. Musmanno, "Introduction to
Logistics Systems Planning and Control", Wiley, 2004. He
is the scientific director of ParCoLab – Parallel Computing
Laboratory – at the Department of Electronics, Informatics
and Systems of University of Calabria. He is member of
the Scientific Committee of the Italian Center of
Excellence for High Performance Computing, funded by
the Italian Ministry of University. He is member of the
editorial board of the international journal: Computers &
Operations Research (Pergamon). He has been involved
in several international research projects. He was member
of the Organizing Committee of international workshops in
the field of high performance computing.

Francesca Vocaturo Graduated

in Management Engineering, she is a
PhD student in Operations Research
at the Department of Electronics,
Informatics and Systems, University
of Calabria, Italy. She is also a
member of the research unit at the
Center of Excellence on High

Performance Computing (http://www.hpcc.unical.it). Her
research interests are in the areas of Simulation, Output
Analysis and Simulation -Optimization.

