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Abstract: This article deals with the pyramidal framework designed to be used in the parallelization of the ant-like 
algorithms. Such algorithms have several things in common: they run in cycles and the process can be divided among 
different "processing units". The parallel implementation of the Ant Colony Optimization algorithm for the Traveling 
Salesman Problem is an application of this system. The topology of the framework architecture is similar to a B-tree 
and contains three types of processing nodes: a single master (the root), several sub-masters corresponding to the 
internal nodes of the tree and several slaves as leaves. First the master reads the problem instance, wraps it up in a 
message that is sent to all the other processing nodes and initializes the central data structures. Then, the slaves take 
over the control by starting the algorithm while the master and the sub-masters are waiting for requests to update the 
data. The framework has an object-oriented design and was implemented in C++, using the MPI library. 
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1. INTRODUCTION 

The idea behind the system we are describing is 
to have a re-usable framework for running several 
sequential algorithms in a parallel environment. The 
starting point was the need to study the behavior of 
some ant colony algorithms [1], i.e. to observe the 
relevance of certain conditions, parameter values, 
and to test new ideas. Because we were mainly 
concerned with ant colonies we had in mind the 
previous work/attempts of parallelization [2,3,4,5,6] 
with their advantages and shortcomings. Our 
intention was to choose a model of parallelization 
which would best suit the sequential ant algorithm 
and to overcome - to some extent - the main 
drawbacks of existing implementations for that 
model. The central problem was the communication 
overhead, which for big instances dramatically 
affects the performance, namely the speed-up.  

After this we realized that the design could be 
easily extended in such a way that it can also be 
applied to other algorithms, not only to ant colonies 
(ant-like algorithms). The result of the analysis is a 
parallel framework that is flexible enough to be 
configured to any suitable user-provided "external" 
algorithm.  

The algorithms with which the framework can be 
used have some things in common: they have to run 
in cycles and it should be possible to divide their 
work among several "processing units. For example, 

genetic algorithms are suitable for being used with 
the framework. 

The paper is organized in the following way: 
First we state the goals of the framework with 
respect to running algorithms in parallel. Then, the 
first attempt to parallelize the Ant Colony 
Optimization algorithm for Traveling Salesman 
Problem is described. This attempt represents the 
use case from which the first (two-level) parallel 
framework has emerged. The choices made 
concerning this first version of the framework are 
motivated, and some of the issues observed in 
experiments are also revealed, thus showing the 
need of improvement. The second version of the 
framework, with three levels, which will be 
described in following sections, tries to address 
challenge these shortcomings. 

 
2.  GOALS 

The two main aims of the article are: to create a 
comfortable level of abstraction and to optimize 
communication. The former means that the 
framework should allow the programmer to replace 
one algorithm with another with a minimum of 
effort. That would allow us to try out many different 
implementations with little effort. In order to 
achieve this first goal class design and application 
architecture (which will be detailed in the nest 
section) have to be dealt with: the actual algorithm 
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to be parallelized would inherit from a generic class 
for algorithms and the problem-specific tools and 
data structures would have to match that specific 
algorithm.  

Achieving the second goal would result in 
acceptable speedups even for larger problem 
instances.  

 
3. ANT ALGORITHM FOR TSP AND THE 
TWO-LEVEL PARALLEL FRAMEWORK  

In this section the first version of the parallel 
framework and the problem it has to solve will be 
described.  

 
3.1. ANT ALGORITHM FOR TSP 

As we have mentioned earlier, the algorithm we 
have chosen to parallelize using the designed 
framework is the Ant Colony Optimization (ACO) 
algorithm for the Traveling Salesman Problem 
(TSP).  

TSP is the classic problem of finding the shortest 
circuit through a set of n cities, visiting each city of 
the tour exactly once. A symmetric TSP can be 
represented by a complete weighted graph G with n 
nodes, the weights standing for the distances 
between the cities. The Euclidean version of the TSP 
defines the cities as points in a plane and weights the 
edges with the Euclidean distances between the 
corresponding cities. The resulting graph is 
complete. TSP is known to be a NP-hard 
combinatorial problem. The Ant Colony 
Optimization (ACO) is a new meta-heuristic that has 
extends the Ant System algorithm that was first 
applied to TSP [1]. The Ant System and ACO are 
inspired from the behavior of real ant colonies in 
nature and their ability to find the shortest path 
between the food source and the nest. Here is a short 
description of how the ant colony algorithms for 
TSP work.  

Initially a number of ants are randomly 
positioned among the nodes. The ants move from 
one node to another following a state transition rule, 
until each ant has completed a hamiltonian tour. 
During a cycle each ants visits each city (node) 
exactly once. When moving from one node to 
another, the ants lay pheromone trails on the edges, 
as shown in Fig. 1. These pheromone trails act as a 
form of indirect communication among ants (called 
stigmergy) because they attract other ants thus 
generating a positive feedback called autocatalytic 
effect [1]. 

When every ant has completed its tour we say 
that a cycle has ended. The intensity of pheromones 
trails on the edges that the ants used in their tours are 
updated as it will be explained below. The 
pheromones on the edges of the best tour are 

strengthened once more according to a global 
updating rule. Before the next cycle begins a small 
percent of the pheromones on all graph edges is 
evaporated to encourage the ants to search for new 
paths rather than to exploit the ones they already 
know. After this operation is completed the ants can 
start the next cycle from the nodes where they the 
ended the previous cycle. After a predefined number 
of ant cycles (or when a stopping condition becomes 
valid) best result among the ants qualifies as the 
optimal solution.  

The basic idea explained above will be explained 
in a more formal way in the remaining part of this 
section. 

Let )(, tjiτ be the intensity of the pheromone trail 
on edge (i, j) at time t and let bi(t) be the number of 

ants in city i at time t, i=1,n; then ∑
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The ant movement from the current node to the 

next is governed by the state transition rule: for 
every unvisited neighbor of the current node a 
probability of migration is computed. For an ant k 
which at time t is in node i the probability of the ant 
to migrate to node j at time t+1 is defined in (1). The 
choice of the node to use as destination for the ant 
move is made using a “wheel of fortune” 
probabilistic mechanism which uses the probabilities 
that we’ve explained above. 
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-  allowedk(t) is the set of cities not visited by ant k 
at time t. 

- ijη  is a local heuristic and for TSP it’s called 
visibility; it is usually defined as the distance 
between the nodes (the weight of the graph 
edge corresponding to the two nodes). 

- βα ,  are two parameters which control the 
relative importance of pheromone trail versus 
visibility. 

At time t+n, at the end of the cycle, all ants will 
have completed their tours and the intensity of the 
pheromone trail on edge (i, j) will be increased with 
a value corresponding to all ants which have walked 
on edge (i, j) during the cycle. The formula for this 
value is given by (2): 
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),(, nttk
ji +∆ is the intensity of the pheromone trail 

laid by ant k on edge (i j) in time interval [t, t+n] 
and is given by: 
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where Q  is a constant and Lk is the length of the tour 
found by ant k. 

At the end of the cycle after the evaporation 
process is completed the intensity of pheromone 
value on edge (i, j) will be: 

),()()1()( ,,, ntttnt jijiji +∆+⋅−=+ τρτ  (4)

where ρ  is a coefficient representing pheromone 
evaporation )10( << ρ . 

In Fig. 1 there is an example of an ant k which at 
time t is positioned in node u. Node u has four 
neighbors (v1, v2, v3, v4), none of which has been 
visited by ant k in the current cycle. Based on the 
state transition rule defined by (1) the ant has chosen 
to move to node v3. Thus, at the end of the cycle, the 
ant will cause the amount of pheromone on edge (u, 
v3) to be increased with δ= ),(, nttk

ji +∆ , defined by 
(3). If other ants also use edge (u, v3) in their tours 
the δ values are added together. 

 
Fig.1 − When moving from node u to node v3 (not 

visited yet) the ant lays an amount of pheromone on 
the corresponding edge 

 
The outline of the Ant Algorithm is given below: 
 
Initialize: place the m ants randomly among the 
cities 
for t=1 to number of cycles do 

for k=1 to m do 
Repeat until k has completed a tour 

Select city j to be visited next 
with probability Pij

k 
end 
Calculate the length Lk of the tour 

generated by ant k 

end 
Save the best solution found so far 
Update the trail levels ji,τ  on all edges( i, j) 
used by the ants in the current cycle 

 Evaporate the pheromone on all edges 
end 
Print the best solution found 

 
The Ant Colony Optimization Metaheuristic 

extends the concepts of the Ant System algorithm, in 
order to solve other hard combinatorial optimization 
problems the solutions of which can be represented 
as paths or circuits in graphs. 

 
3.2. PREVIOUS PARALLELIZATION 

WORK 
In this section a survey over the previous parallel 

implementation of the ACO metaheuristic will be 
carried out. By observing both their strong and their 
weak points we try to motivate the design of our 
own implementation. 

There have been other attempts to parallelize 
ACO algorithms. In [3] Stutzle points out the fact 
that there is no rule to efficiently parallelize ACO 
algorithms because this process greatly depends on 
the underlying computing platform and on the 
interconnection network. He suggests the use of the 
MIMD architecture in the process (for example, a 
cluster of workstations), and then he focuses on 
parallel independent runs of the same sequential 
algorithm. 

In [6] an implementation in MPI with master-
slave architecture is presented, and this is similar to 
our approach. However for the sake of simplicity 
synchronous communication has been used, which 
affects the performance, because of the time it takes 
for the processors to synchronize. In order to 
improve the communication overhead, they have 
chosen to perform information exchanges between 
the master and the slaves once every some 
predefined number of iterations. This choice reduces 
the communication overhead but it also modifies the 
usual behavior of the algorithm.  

A similar approach is described in [5] by 
Bullnheimer and Strauss, though they don't have a 
practical implementation. Instead they use N-MAP, 
a tool that can simulate the execution of message 
passing algorithms and analyze their performance 
(the ratio of computation, communication and idle 
times).  They have achieved a speedup that increases 
- to some extent – proportionally with the instance 
size. However the communication model that was 
used assumes that simultaneous transmission of 
messages is possible and that it takes the same 
period of time as the delivery of a single message. 
This is generally not true, of course. The authors 
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have also felt compelled to minimize the 
communication overhead by performing data 
exchanges once every k iterations of the algorithm. 
This kind of data exchange certainly has a positive 
effect on efficiency and speedup but they are also 
aware of the fact that it distorts the ant algorithm as 
the ants in a processor don't interact with others at 
all during those k iterations. Furthermore, the way in 
which this influences the quality of the solutions is 
not analyzed. 

In [2] a description of the implementation using 
the shared memory model and the OpenMP as a 
parallel environment is given. The authors try to 
show that the shared memory model is more 
adequate to the problem (parallelization of ant 
colonies) than the message passing model. 
Synchronization and timing issues are taken into 
account and also the necessary amount of effort.  

An implementation using OpenMP would have at 
least one weak point: it hinders the programmer to 
have control over the slave threads by imposing the 
synchronization of all threads at the end of the 
parallel section. This results in idle times for 
synchronization of the threads and moreover all 
child threads would try to update the central data 
structures simultaneously. Whether or not this is the 
best choice greatly depends on the underlying 
parallel system and - as we will see in section 3.3.2 - 
in some cases it is preferable to do things the other 
way around. We have chosen to control the threads 
and the timing of data exchanges ourselves, with a 
bit of extra work. 

 
3.3. PARALLELIZATION USING THE 

TWO-LEVEL FRAMEWORK 
3.3.1. GENERAL DESCRIPTION 

In this section we are explaining the architecture 
of the first framework we have designed and as a 
case study we are showing how it was used in 
parallelizing the ACO metaheuristic for TSP. More 
implementation details can be found in [7]. 

The framework has an object oriented design and 
was implemented in C++, using the MPI library. We 
have explained the choice of message-passing model 
and MPI over shared memory and OpenMP in the 
previous section. After having decided upon the 
most suitable model to adopt, the way in which the 
work will be shared among processors has  still to 
discussed. In our case we could distribute either the 
vertices or the ants to processors. The first choice is 
not very appropriate because imbalance can occur: if 
there were a vertex with a high degree then the 
processor that contains it would have more work to 
do than the others. Therefore we have chosen the 
latter alternative (the ants are to be evenly 
distributed to processors). 

The processors are organized in a classic master-
slave structure. In Fig.2 there is an outline of the 
runflow in the two-level framework. Briefly, the 
two-level parallel framework works as follows. 
There are two types of processing nodes: master and 
slave nodes. There is a single master node and the 
rest of the processors are slaves. At first, the master 
reads the problem instance and wraps it up in a 
message that is broadcasted to all slaves. It then 
passes the control to the slaves by signaling them to 
start the algorithm and waits for requests coming 
from every slave to update the data. Each slave 
works with a local instance of the sequential 
algorithm that operates over a local copy of the 
central data structures. At the beginning each slave 
receives the input data (the problem instance), 
initializes the local copy of data structures together 
with the sequential algorithm and then waits for a 
start signal. When this happens the slave passes the 
control further to the sequential algorithm instance, 
providing it with a callback mechanism 
(seqAlgReady() in Fig.2) which is to be used 
whenever the algorithm decides it's time to pass the 
control back to the framework (for exchanging data 
with the master and other bookkeeping 
operations).This will call this a checkpoint. Basically 
the communication between processors only takes 
place during these checkpoint moments.  

Both the framework and the sequential algorithm 
are aware of the generic concept of a change. This 
designates the elementary item in the data structures 
of the algorithm that can be modified. For the ACO 
algorithm for example a change would be a real 
number representing the amount of pheromone that 
is to be laid on an edge of the graph. In order to 
minimize the communication without altering the 
correctness of the algorithm we had to maintain 
detailed bookkeeping information and an updating 
algorithm that made use of logical clocks. They will 
be explained in the next section. 

Since each ant acts independently of the others 
linear speedups can be obtained. In practice, 
however, the communication incurred by the 
management of the pheromone trails as global 
information is an important overhead. Since all ants 
use and update the pheromone trails, access to the 
latter is clearly the key point to efficient parallel 
implementations. It is necessary that the pheromone 
values are shared by all ants even if different 
processors host them. Throughout the cycle however 
the ants in one processor have no contact with the 
other ants. The "global" pheromone matrix is 
maintained by the master. 

At the beginning the problem instance along with 
the work share (i.e. the number of ants) is sent to 
each worker. Each worker (slave) has its own local 
copy of the pheromone matrix, which ants modify 
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during the cycle. The local matrix is synchronized 
with the master's, as we have discussed, at the end of 
each ant cycle, through checkpoint operations. The 
synchronization is by no means accomplished by 
sending whole matrices over the network as for large 
instances this could result in serious data traffic on 
the interconnect and high communication overhead; 
instead the patcher object is  called in to pack and 
send (or to receive and unpack) the collections of 
changes. The collections of changes for all ants in a 
processor are lumped together by the patcher object 
in a single transfer in such a way that there will be at 
most one change object for a modified edge, even if 
more than one update of its pheromone value were 
performed (by different ants), thus minimizing 
communication.  

 
Fig.2 − How the master and the slaves work in the 

two-level parallel framework 

Note. There is no need to take into consideration 
the pheromone evaporation when building the patch 
with changes which is to be sent over the network, 
as the evaporation process can be handled locally by 
each CPU. 

 

3.3.2. THE CHECKPOINT 
It is known that communication is the most time 

consuming operation in a parallel message-passing 
system. Since in our case all communication occurs 
during checkpoints this operation is critical for the 
communication overhead and for the efficiency. 
That is why it is important to implement it as 
carefully as possible. More specifically, we are 
concerned with two issues: how to schedule the 
checkpoints and what to do inside a checkpoint, that 
is, what kind of data is necessary to be sent over the 
interconnection network. 

It is important to point out that in order to make 
an efficient parallel implementation; the particular 
parallel environment has to be considered. The 
underlying architecture of the parallel machine and 
interconnection network have major impact over the 
measured performance of the algorithm (mainly 
communication time and idle time). Since it is 

difficult to estimate these system traits in a 
theoretical formula, some tests should be run in 
order to have an idea about how the system behaves. 
We will get back to this later in this section. 

The slaves request in turns data exchanges with 
the master; the effect of this scheduling of updates is 
that between two consecutive checkpoints of the 
same processor all other slaves have already made 
their changes visible in the global data structures of 
the master. These slave-requested data exchanges 
that occur at different moments make the system 
asynchronous and they also make it benefit from a 
“pipeline effect'', meaning that while one processor 
is sending messages chances are that the others are 
performing computation steps. 

This is not the only reason why the checkpoints 
are scheduled in this manner. As we have said 
before, the behavior of the particular parallel 
machine in sending messages has great influence 
over the performance of the parallel program. If all 
slaves have to asynchronously send messages to the 
master, one might see two ways of doing it. Either 
by letting them try at the same time, with no 
particular schedule, and let the system and the 
interconnect handle (presumably in an efficient way) 
the situation (no scheduling) or by making them take 
turns in performing data transfer,  and serialize the 
data exchanges by having the master acknowledge 
each pending request (scheduling). Choosing 
between these two options is not as straightforward 
as it might seem. The former is expected to deliver 
the best performance, though the results of the tests 
we have run showed quite the opposite. For tests and 
practical implementation we have used a SunFire 
15K HPC service having a backend with 48 
processors. Each slave sent a message of 500,000 
double values to the master with and without 
scheduling and the communication times were 
compared. The two sets of values are printed in 
Fig.3. It can be seen that as the number of processors 
increases, the time for scheduled sending of 
messages (the second way) is reduced to nearly half 
the time needed for unscheduled communication. 
This, we think, is a significant fact, and provides a 
strong argument for choosing the scheduled 
communication scheme over the unscheduled. 

In order to collect all the changes that have 
occurred in the slave processors into a central master 
processor we cannot oversee the primitives which an 
MPI library offers for collective communication. 
Moreover one might assume that these primitives 
would deal with collective operations much more 
efficiently than the user could possibly do using only 
simple point to point communication primitives 
(send and receive operations); in our case the 
collective operation that would be appropriate to use 
is of course MPI_Gather(). However we found out 
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that - on the systems we have had access to - the 
“scheduled” communication we have described 
earlier delivered a much better performance than 
MPI_Gather() did. 

 Fig.3 − The time of unscheduled versus scheduled 
commnication on a SunFire 15K 

In the tests each “slave” processor sent a message 
to a “master” processor, at first using MPI_Gather() 
and then using our scheduled point to point 
communication. The tests were carried out with 
messages having lengths of 200, 1000, 10000, 
100000, 200000, 300000, 400000 and 500000 
double values and with a number of processors 
ranging from 3 to 24. Communication times were 
measured and in each case our system behaved 
better.  

For example Fig.4 shows the compared 
communication times for the test with 10,000 
doubles. 
 

 
Fig.4 − Comparison of communication times: 

MPI_Gather() versus scheduled point to point 
commnication on a SMP machine with 24 

UltraSPARC II processors 

Now that we know how to efficiently schedule 
the data exchanges between the slaves and the 
master (the so called “checkpoint'' we have 
mentioned), let us focus on the second issue, that is, 
what to send during such a checkpoint. 

During a checkpoint the pair of involved 
processors exchanges collections of change objects 

(which we have defined in section 3.3.1): the slave 
sends its modifications to the master which in its 
turn replies with the collection of changes that the 
slave is unaware of. Regarding the slave, it is easy to 
decide what is needed to be sent in the next 
checkpoint: the algorithm simply adds everything 
that it has modified to a collection of changes, which 
is emptied before each cycle begins. Regarding the 
role of the master, however, there is a special 
module called the bookkeeper which makes use of 
the logical clocks to be able to determine the items 
in the data structure (i.e. the above mentioned 
changes) that are to be sent to a particular slave, 
should the checkpoint time come. In order to decide 
which changes are to be sent, an item that can be 
changed contains a logical clock, which can be seen 
as a “version number'' that gets incremented. Also, 
each slave processor has a similar logical clock 
associated with it. Based on these values the master 
can decide which changes have to be sent to each 
slave. 

More details about the implementation of this 
system can be found in [7]. 

 
3.3.3. WEAKNESSES OF THE TWO-

LEVEL FRAMEWORK 
For tests and practical implementation of the 

parallel framework we have used a Sun Fire 15K 
HPC service having a backend with 48 processors. 
The tests have been carried out with an increasing 
number of processors, from 2 up to 36 processors. 
Each value is an average over five runs and the 
sequential time was measured to 234.978 seconds. 
The diagram in Fig.5 depicts the speedup that was 
achieved. 

Fig5 − The speedup obtained with the implementation 
of the parallel ant colony algorithm for TSP using the 

two-level framework 

It is assumed that the pronounced degrading of 
the speedup, which occurs over 26 processors, is 
happening when the sum of communication times of 
all slaves during a cycle reaches values close enough 
to the average processor computation time for one 
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cycle. This is the point when wait times begin to 
occur inside processing units when they reach 
checkpoints, because at that time there are still one 
or more processors which haven't finished their 
checkpoint. The cause of this bottleneck situation is 
that as the number of processors grows the 
checkpoint communication time doesn't necessarily 
decrease to make it possible for the increasing 
number of checkpoints to fit within the per-
processor cycle computation time, which usually 
gets shorter (in the case of a parallel ACO algorithm 
more processors mean less ants per processor to 
move around, therefore less work to do). This means 
that a processor that is trying to perform a 
checkpoint while another one still has not finished 
its own checkpoint would have to wait until it 
receives the acknowledge signal from the master, 
signaling that the ongoing checkpoint has finished; 
otherwise it would have to try to overlap the 
checkpoints, which as we have shown is not always 
appropriate as it doesn't necessarily lead to better 
communication time. 

These considerations drove us to develop the 
multi-level system, which tries to go around the 
discussed bottleneck issues of the first model.  

 
4. THREE-LEVEL PARALLEL 

FRAMEWORK 
In the improved three level parallel framework 

there are three types of processing nodes: master, 
submaster and slave nodes. One of the processors 
acts as a master, several act as submasters and the 
rest act as slaves. The set of slaves is partitioned so 
as each each slave communicates with exactly one 
submaster. 

The system is useful only if the number of 
submasters is at least 2 and there is at least one 
submaster with more than one slave. The number of 
submasters (and therefore the number of slaves) is a 
parameter in the program and is known before 
runtime. Based on the rank number, each processor 
is able to tell whether it is a slave, a submaster or a 
master. Also each slave can deduce the rank of its 
submaster and each submaster can compute the list 
of the slaves it has to deal with.  

The runflow in the three level framework is 
presented in Fig.6. First, as in the case of the two-
level framework, the master detects the problem 
instance, wraps it up in a message that is 
broadcasted to all the other processors and initializes 
the central data structures. The control then passes to 
the slaves which start the algorithm while the master 
and the submasters are waiting for requests to update 
the data. The slaves’ behavior is very much the same 
as in the two-level framework, the only difference is 

that now it does not communicate directly with the 
master but instead to its submaster. 

A slave initializes its structures and then passes a 
callback function (seqAlgReady() in Fig.6) to the 
sequential algorithm (SeqAlg) before letting it take 
over. When the algorithm has its partial results ready 
(for example at the end of a cycle) it calls this 
callback function it was provided with, passing the 
control back to framework. The slave then submits a 
checkpoint request to its submaster. When the 
acknowledge is received it packs the data it has 
modified as a list of change objects, sends them and 
then receives and unpacks the changes from 
submaster, applying them to the local structures. 
When the checkpoint is over seqAlgReady() returns, 
and the sequential algorithm carries on.  

As part of the checkpoint, the solution the slave 
obtained in the last cycle - or a qualitative evaluation 
of it - is also passed to the submaster.  

A bookkeeper in each submaster stores the list 
locally, builds a complete list of changes that need to 
be sent to that specific slave and then sends it. 

 When all (or a tunable percent) of the slaves of 
the submaster have completed their checkpoints, the 
submaster initiates a checkpoint with the central 
master. It efficiently packs all the changes it had 
received from the slaves in the last cycle and sends 
them to the master in a single message -  if possible.  

After acknowledging the request the master 
receives the list of changes from the submaster and 
updates the global data structures. Then the master 
sends to that submaster a patch containing the 
changes already received in the current cycle from 
other submasters. The submaster then passes the 
control to the slave as described earlier. 

So, the checkpoint between a slave and a 
submaster is similar to the checkpoint that takes 
place between a submaster and the master. 

  

 
Fig.6 −  How the master, submasters and the slaves 

work in the three-level framework 

What else can be done inside a checkpoint? 
Basically anything that is considered important by  
the algorithm which is dealt with by the framework.  
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The procedures for sending and receiving collections 
of changes are supplied by the sequential algorithm 
and the checkpoint procedure can be overridden. In 
this way the protocol for data exchange can be 
customized to meet any specific demands. For 
example there are several parallel implementation of 
ACO meta-heuristic [5] that in order to minimize the 
communication overhead chose to schedule the data 
exchanges between the server and the master to take 
place once every predefined number k of cycles. If 
it's needed this can also be done in our case by 
making the sequential algorithm call the callback 
function (seqAlgReady()) every k cycles. Another 
example is the global updating rule in ant 
algorithms, which might exist or not. In our case this 
can be managed by changing the function that 
handles the checkpoint requests in the master.  

 
5. GENERALITY OF THE FRAMEWORK 

The architecture of the framework is object 
oriented and modular. That is why it is easy to adapt 
it in such a way to be used with other sequential 
algorithms. The changes which have to be made are 
local and they do not require modifications in other 
places in the framework. The user of the framework 
has to implement C++ classes for the following 
modules: 
1. the sequential algorithm; 
2.  the change; 
3. the patcher object, to handle the collections of 

changes and to apply them to the local data 
structures; 

4. the packager object which is to efficiently pack 
the problem instance in order to be sent to all 
processors over the network. 

 
6. EXPERIMENTS 

In order to test the framework and the ACO for 
TSP parallelization, we have used a TSP instance 
with 229 cities (gr229.tsp) from the TSPLIB library.  

The first test runs have been carried out on a 
network of 9 PC’s (Pentium IV with 512 MB RAM) 
with an increasing number of slave processes, from 
14 up to 112. The results that were achieved are 
depicted in Fig.7.  

The execution time for sequential algorithm is 
41.618 seconds in this case. As it can be observed, 
the time achieved by the parallel framework is better 
than the sequential time, but the period of parallel 
time increases proportionally with the number of 
processes. This can be explained by the fact that 
starting from 9 processes it is not possible to assign 
one process per processor, so we do not have a real 
parallelism.  

 
Fig.7 – The time for TSP achieved with the two-level 

and three-level parallel framework, using a PC’s 
network 

As Fig.7 shows, the parallel times for the three-
level framework should become better than those of 
the two-level framework only for a number of 
processes somewhere between 20 and 30 processes. 
Therefore we believed that the advantage would 
only become effective on a parallel machine with at 
least 30 CPUs. 

The first tests on a real parallel machine were  
done on a Sun HPC service having a backend with 
24 processors. The multi-level framework showed 
little or no advantage over the simple master-slave 
system. This proved our supposition that the 
advantage of the multi-level framework should 
become effective on a parallel machine with at least 
30 processors. 

For tests on a parallel machine with at least 30 
CPUs we have used a Sun Fire 15K HPC service 
having a backend with 48 processors. The test runs 
have been carried out with an increasing number of 
processors, from 10 up to 40 processors. The 
diagram in Fig.8 below depicts the speedups that 
were obtained for the two systems we are 
comparing: one curve is for the simple master-slave 
system and the other one is for the multi-level 
system.  

It can be seen that over 30 processors, the 
speedup decreases in the case of the simple master-
slave paradigm while the multi-level system 
manages to preserve an approximately linear 
speedup. Thus, the test results for a 3-level 
framework prove that the multi-level model 
overcomes the limitations in the basic master-slave 
model 
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Fig.8  – The speedup for TSP achieved with the two-
level parallel framework, using a Sun Fire 15K HPC 

 
7. CONCLUSIONS AND FUTURE WORK 

The ACO for TSP implemented by means of the 
two-level parallel framework has good results: 
approximately linear speedup up to 30 CPUs and 
low communication cost. The degradation for a 
larger number of CPUs is a disadvantage of the 
master-slave paradigm. 

The test results prove that the multi-level model 
overcomes the limitations in the master-slave model. 

Further on, we intend to implement a tree model 
that establishes the tree depth taking into account 
hardware architecture.  
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