
Miticǎ Craus, Laurenţiu Rudeanu / Computing, 2004, Vol. 3, Issue 3, 20-28

 20

MULTI-LEVEL PARALLEL FRAMEWORK

Miticǎ Craus 1), Laurenţiu Rudeanu 2)

Department of Computer Science and Engineering
Technical University "Gh. Asachi"

700050 Iaşi, Romania
1) craus@cs.tuiasi.ro 2) lrudeanu@yahoo.com

Abstract: This article deals with the pyramidal framework designed to be used in the parallelization of the ant-like
algorithms. Such algorithms have several things in common: they run in cycles and the process can be divided among
different "processing units". The parallel implementation of the Ant Colony Optimization algorithm for the Traveling
Salesman Problem is an application of this system. The topology of the framework architecture is similar to a B-tree
and contains three types of processing nodes: a single master (the root), several sub-masters corresponding to the
internal nodes of the tree and several slaves as leaves. First the master reads the problem instance, wraps it up in a
message that is sent to all the other processing nodes and initializes the central data structures. Then, the slaves take
over the control by starting the algorithm while the master and the sub-masters are waiting for requests to update the
data. The framework has an object-oriented design and was implemented in C++, using the MPI library.

Keywords: Parallel Algorithms, Framework, Message Passing Interface. Traveling Salesman Problem, Ant Colony

1. INTRODUCTION

The idea behind the system we are describing is
to have a re-usable framework for running several
sequential algorithms in a parallel environment. The
starting point was the need to study the behavior of
some ant colony algorithms [1], i.e. to observe the
relevance of certain conditions, parameter values,
and to test new ideas. Because we were mainly
concerned with ant colonies we had in mind the
previous work/attempts of parallelization [2,3,4,5,6]
with their advantages and shortcomings. Our
intention was to choose a model of parallelization
which would best suit the sequential ant algorithm
and to overcome - to some extent - the main
drawbacks of existing implementations for that
model. The central problem was the communication
overhead, which for big instances dramatically
affects the performance, namely the speed-up.

After this we realized that the design could be
easily extended in such a way that it can also be
applied to other algorithms, not only to ant colonies
(ant-like algorithms). The result of the analysis is a
parallel framework that is flexible enough to be
configured to any suitable user-provided "external"
algorithm.

The algorithms with which the framework can be
used have some things in common: they have to run
in cycles and it should be possible to divide their
work among several "processing units. For example,

genetic algorithms are suitable for being used with
the framework.

The paper is organized in the following way:
First we state the goals of the framework with
respect to running algorithms in parallel. Then, the
first attempt to parallelize the Ant Colony
Optimization algorithm for Traveling Salesman
Problem is described. This attempt represents the
use case from which the first (two-level) parallel
framework has emerged. The choices made
concerning this first version of the framework are
motivated, and some of the issues observed in
experiments are also revealed, thus showing the
need of improvement. The second version of the
framework, with three levels, which will be
described in following sections, tries to address
challenge these shortcomings.

2. GOALS

The two main aims of the article are: to create a
comfortable level of abstraction and to optimize
communication. The former means that the
framework should allow the programmer to replace
one algorithm with another with a minimum of
effort. That would allow us to try out many different
implementations with little effort. In order to
achieve this first goal class design and application
architecture (which will be detailed in the nest
section) have to be dealt with: the actual algorithm

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

Miticǎ Craus, Laurenţiu Rudeanu / Computing, 2004, Vol. 3, Issue 3, 20-28

 21

to be parallelized would inherit from a generic class
for algorithms and the problem-specific tools and
data structures would have to match that specific
algorithm.

Achieving the second goal would result in
acceptable speedups even for larger problem
instances.

3. ANT ALGORITHM FOR TSP AND THE
TWO-LEVEL PARALLEL FRAMEWORK

In this section the first version of the parallel
framework and the problem it has to solve will be
described.

3.1. ANT ALGORITHM FOR TSP

As we have mentioned earlier, the algorithm we
have chosen to parallelize using the designed
framework is the Ant Colony Optimization (ACO)
algorithm for the Traveling Salesman Problem
(TSP).

TSP is the classic problem of finding the shortest
circuit through a set of n cities, visiting each city of
the tour exactly once. A symmetric TSP can be
represented by a complete weighted graph G with n
nodes, the weights standing for the distances
between the cities. The Euclidean version of the TSP
defines the cities as points in a plane and weights the
edges with the Euclidean distances between the
corresponding cities. The resulting graph is
complete. TSP is known to be a NP-hard
combinatorial problem. The Ant Colony
Optimization (ACO) is a new meta-heuristic that has
extends the Ant System algorithm that was first
applied to TSP [1]. The Ant System and ACO are
inspired from the behavior of real ant colonies in
nature and their ability to find the shortest path
between the food source and the nest. Here is a short
description of how the ant colony algorithms for
TSP work.

Initially a number of ants are randomly
positioned among the nodes. The ants move from
one node to another following a state transition rule,
until each ant has completed a hamiltonian tour.
During a cycle each ants visits each city (node)
exactly once. When moving from one node to
another, the ants lay pheromone trails on the edges,
as shown in Fig. 1. These pheromone trails act as a
form of indirect communication among ants (called
stigmergy) because they attract other ants thus
generating a positive feedback called autocatalytic
effect [1].

When every ant has completed its tour we say
that a cycle has ended. The intensity of pheromones
trails on the edges that the ants used in their tours are
updated as it will be explained below. The
pheromones on the edges of the best tour are

strengthened once more according to a global
updating rule. Before the next cycle begins a small
percent of the pheromones on all graph edges is
evaporated to encourage the ants to search for new
paths rather than to exploit the ones they already
know. After this operation is completed the ants can
start the next cycle from the nodes where they the
ended the previous cycle. After a predefined number
of ant cycles (or when a stopping condition becomes
valid) best result among the ants qualifies as the
optimal solution.

The basic idea explained above will be explained
in a more formal way in the remaining part of this
section.

Let)(, tjiτ be the intensity of the pheromone trail
on edge (i, j) at time t and let bi(t) be the number of

ants in city i at time t, i=1,n; then ∑
=

=
n

i
i tbm

1
)(is

the total number of ants.
The ant movement from the current node to the

next is governed by the state transition rule: for
every unvisited neighbor of the current node a
probability of migration is computed. For an ant k
which at time t is in node i the probability of the ant
to migrate to node j at time t+1 is defined in (1). The
choice of the node to use as destination for the ant
move is made using a “wheel of fortune”
probabilistic mechanism which uses the probabilities
that we’ve explained above.









∈

= ∑
∈

otherwise

kallowedj
t

t

tP
kallowedl

ilil

ijij

k
ij

,0

)(,
][)]([

][)]([

)(
)(

βα

βα

ητ
ητ

(1)

- allowedk(t) is the set of cities not visited by ant k
at time t.

- ijη is a local heuristic and for TSP it’s called
visibility; it is usually defined as the distance
between the nodes (the weight of the graph
edge corresponding to the two nodes).

- βα , are two parameters which control the
relative importance of pheromone trail versus
visibility.

At time t+n, at the end of the cycle, all ants will
have completed their tours and the intensity of the
pheromone trail on edge (i, j) will be increased with
a value corresponding to all ants which have walked
on edge (i, j) during the cycle. The formula for this
value is given by (2):

∑
=

+∆=+∆
m

k

k
jiji nttntt

1
,,),(),(

(2)

Miticǎ Craus, Laurenţiu Rudeanu / Computing, 2004, Vol. 3, Issue 3, 20-28

 22

),(, nttk
ji +∆ is the intensity of the pheromone trail

laid by ant k on edge (i j) in time interval [t, t+n]
and is given by:

(3)







=+∆

otherwise

jiedgeuseskantif
L
Q

ntt k
k

ij

,0

),(,
),(

where Q is a constant and Lk is the length of the tour
found by ant k.

At the end of the cycle after the evaporation
process is completed the intensity of pheromone
value on edge (i, j) will be:

),()()1()(,,, ntttnt jijiji +∆+⋅−=+ τρτ (4)

where ρ is a coefficient representing pheromone
evaporation)10(<< ρ .

In Fig. 1 there is an example of an ant k which at
time t is positioned in node u. Node u has four
neighbors (v1, v2, v3, v4), none of which has been
visited by ant k in the current cycle. Based on the
state transition rule defined by (1) the ant has chosen
to move to node v3. Thus, at the end of the cycle, the
ant will cause the amount of pheromone on edge (u,
v3) to be increased with δ=),(, nttk

ji +∆ , defined by
(3). If other ants also use edge (u, v3) in their tours
the δ values are added together.

Fig.1 − When moving from node u to node v3 (not

visited yet) the ant lays an amount of pheromone on
the corresponding edge

The outline of the Ant Algorithm is given below:

Initialize: place the m ants randomly among the
cities
for t=1 to number of cycles do

for k=1 to m do
Repeat until k has completed a tour

Select city j to be visited next
with probability Pij

k
end
Calculate the length Lk of the tour

generated by ant k

end
Save the best solution found so far
Update the trail levels ji,τ on all edges(i, j)
used by the ants in the current cycle

 Evaporate the pheromone on all edges
end
Print the best solution found

The Ant Colony Optimization Metaheuristic

extends the concepts of the Ant System algorithm, in
order to solve other hard combinatorial optimization
problems the solutions of which can be represented
as paths or circuits in graphs.

3.2. PREVIOUS PARALLELIZATION

WORK
In this section a survey over the previous parallel

implementation of the ACO metaheuristic will be
carried out. By observing both their strong and their
weak points we try to motivate the design of our
own implementation.

There have been other attempts to parallelize
ACO algorithms. In [3] Stutzle points out the fact
that there is no rule to efficiently parallelize ACO
algorithms because this process greatly depends on
the underlying computing platform and on the
interconnection network. He suggests the use of the
MIMD architecture in the process (for example, a
cluster of workstations), and then he focuses on
parallel independent runs of the same sequential
algorithm.

In [6] an implementation in MPI with master-
slave architecture is presented, and this is similar to
our approach. However for the sake of simplicity
synchronous communication has been used, which
affects the performance, because of the time it takes
for the processors to synchronize. In order to
improve the communication overhead, they have
chosen to perform information exchanges between
the master and the slaves once every some
predefined number of iterations. This choice reduces
the communication overhead but it also modifies the
usual behavior of the algorithm.

A similar approach is described in [5] by
Bullnheimer and Strauss, though they don't have a
practical implementation. Instead they use N-MAP,
a tool that can simulate the execution of message
passing algorithms and analyze their performance
(the ratio of computation, communication and idle
times). They have achieved a speedup that increases
- to some extent – proportionally with the instance
size. However the communication model that was
used assumes that simultaneous transmission of
messages is possible and that it takes the same
period of time as the delivery of a single message.
This is generally not true, of course. The authors

Miticǎ Craus, Laurenţiu Rudeanu / Computing, 2004, Vol. 3, Issue 3, 20-28

 23

have also felt compelled to minimize the
communication overhead by performing data
exchanges once every k iterations of the algorithm.
This kind of data exchange certainly has a positive
effect on efficiency and speedup but they are also
aware of the fact that it distorts the ant algorithm as
the ants in a processor don't interact with others at
all during those k iterations. Furthermore, the way in
which this influences the quality of the solutions is
not analyzed.

In [2] a description of the implementation using
the shared memory model and the OpenMP as a
parallel environment is given. The authors try to
show that the shared memory model is more
adequate to the problem (parallelization of ant
colonies) than the message passing model.
Synchronization and timing issues are taken into
account and also the necessary amount of effort.

An implementation using OpenMP would have at
least one weak point: it hinders the programmer to
have control over the slave threads by imposing the
synchronization of all threads at the end of the
parallel section. This results in idle times for
synchronization of the threads and moreover all
child threads would try to update the central data
structures simultaneously. Whether or not this is the
best choice greatly depends on the underlying
parallel system and - as we will see in section 3.3.2 -
in some cases it is preferable to do things the other
way around. We have chosen to control the threads
and the timing of data exchanges ourselves, with a
bit of extra work.

3.3. PARALLELIZATION USING THE

TWO-LEVEL FRAMEWORK
3.3.1. GENERAL DESCRIPTION

In this section we are explaining the architecture
of the first framework we have designed and as a
case study we are showing how it was used in
parallelizing the ACO metaheuristic for TSP. More
implementation details can be found in [7].

The framework has an object oriented design and
was implemented in C++, using the MPI library. We
have explained the choice of message-passing model
and MPI over shared memory and OpenMP in the
previous section. After having decided upon the
most suitable model to adopt, the way in which the
work will be shared among processors has still to
discussed. In our case we could distribute either the
vertices or the ants to processors. The first choice is
not very appropriate because imbalance can occur: if
there were a vertex with a high degree then the
processor that contains it would have more work to
do than the others. Therefore we have chosen the
latter alternative (the ants are to be evenly
distributed to processors).

The processors are organized in a classic master-
slave structure. In Fig.2 there is an outline of the
runflow in the two-level framework. Briefly, the
two-level parallel framework works as follows.
There are two types of processing nodes: master and
slave nodes. There is a single master node and the
rest of the processors are slaves. At first, the master
reads the problem instance and wraps it up in a
message that is broadcasted to all slaves. It then
passes the control to the slaves by signaling them to
start the algorithm and waits for requests coming
from every slave to update the data. Each slave
works with a local instance of the sequential
algorithm that operates over a local copy of the
central data structures. At the beginning each slave
receives the input data (the problem instance),
initializes the local copy of data structures together
with the sequential algorithm and then waits for a
start signal. When this happens the slave passes the
control further to the sequential algorithm instance,
providing it with a callback mechanism
(seqAlgReady() in Fig.2) which is to be used
whenever the algorithm decides it's time to pass the
control back to the framework (for exchanging data
with the master and other bookkeeping
operations).This will call this a checkpoint. Basically
the communication between processors only takes
place during these checkpoint moments.

Both the framework and the sequential algorithm
are aware of the generic concept of a change. This
designates the elementary item in the data structures
of the algorithm that can be modified. For the ACO
algorithm for example a change would be a real
number representing the amount of pheromone that
is to be laid on an edge of the graph. In order to
minimize the communication without altering the
correctness of the algorithm we had to maintain
detailed bookkeeping information and an updating
algorithm that made use of logical clocks. They will
be explained in the next section.

Since each ant acts independently of the others
linear speedups can be obtained. In practice,
however, the communication incurred by the
management of the pheromone trails as global
information is an important overhead. Since all ants
use and update the pheromone trails, access to the
latter is clearly the key point to efficient parallel
implementations. It is necessary that the pheromone
values are shared by all ants even if different
processors host them. Throughout the cycle however
the ants in one processor have no contact with the
other ants. The "global" pheromone matrix is
maintained by the master.

At the beginning the problem instance along with
the work share (i.e. the number of ants) is sent to
each worker. Each worker (slave) has its own local
copy of the pheromone matrix, which ants modify

Miticǎ Craus, Laurenţiu Rudeanu / Computing, 2004, Vol. 3, Issue 3, 20-28

 24

during the cycle. The local matrix is synchronized
with the master's, as we have discussed, at the end of
each ant cycle, through checkpoint operations. The
synchronization is by no means accomplished by
sending whole matrices over the network as for large
instances this could result in serious data traffic on
the interconnect and high communication overhead;
instead the patcher object is called in to pack and
send (or to receive and unpack) the collections of
changes. The collections of changes for all ants in a
processor are lumped together by the patcher object
in a single transfer in such a way that there will be at
most one change object for a modified edge, even if
more than one update of its pheromone value were
performed (by different ants), thus minimizing
communication.

Fig.2 − How the master and the slaves work in the

two-level parallel framework

Note. There is no need to take into consideration
the pheromone evaporation when building the patch
with changes which is to be sent over the network,
as the evaporation process can be handled locally by
each CPU.

3.3.2. THE CHECKPOINT
It is known that communication is the most time

consuming operation in a parallel message-passing
system. Since in our case all communication occurs
during checkpoints this operation is critical for the
communication overhead and for the efficiency.
That is why it is important to implement it as
carefully as possible. More specifically, we are
concerned with two issues: how to schedule the
checkpoints and what to do inside a checkpoint, that
is, what kind of data is necessary to be sent over the
interconnection network.

It is important to point out that in order to make
an efficient parallel implementation; the particular
parallel environment has to be considered. The
underlying architecture of the parallel machine and
interconnection network have major impact over the
measured performance of the algorithm (mainly
communication time and idle time). Since it is

difficult to estimate these system traits in a
theoretical formula, some tests should be run in
order to have an idea about how the system behaves.
We will get back to this later in this section.

The slaves request in turns data exchanges with
the master; the effect of this scheduling of updates is
that between two consecutive checkpoints of the
same processor all other slaves have already made
their changes visible in the global data structures of
the master. These slave-requested data exchanges
that occur at different moments make the system
asynchronous and they also make it benefit from a
“pipeline effect'', meaning that while one processor
is sending messages chances are that the others are
performing computation steps.

This is not the only reason why the checkpoints
are scheduled in this manner. As we have said
before, the behavior of the particular parallel
machine in sending messages has great influence
over the performance of the parallel program. If all
slaves have to asynchronously send messages to the
master, one might see two ways of doing it. Either
by letting them try at the same time, with no
particular schedule, and let the system and the
interconnect handle (presumably in an efficient way)
the situation (no scheduling) or by making them take
turns in performing data transfer, and serialize the
data exchanges by having the master acknowledge
each pending request (scheduling). Choosing
between these two options is not as straightforward
as it might seem. The former is expected to deliver
the best performance, though the results of the tests
we have run showed quite the opposite. For tests and
practical implementation we have used a SunFire
15K HPC service having a backend with 48
processors. Each slave sent a message of 500,000
double values to the master with and without
scheduling and the communication times were
compared. The two sets of values are printed in
Fig.3. It can be seen that as the number of processors
increases, the time for scheduled sending of
messages (the second way) is reduced to nearly half
the time needed for unscheduled communication.
This, we think, is a significant fact, and provides a
strong argument for choosing the scheduled
communication scheme over the unscheduled.

In order to collect all the changes that have
occurred in the slave processors into a central master
processor we cannot oversee the primitives which an
MPI library offers for collective communication.
Moreover one might assume that these primitives
would deal with collective operations much more
efficiently than the user could possibly do using only
simple point to point communication primitives
(send and receive operations); in our case the
collective operation that would be appropriate to use
is of course MPI_Gather(). However we found out

Miticǎ Craus, Laurenţiu Rudeanu / Computing, 2004, Vol. 3, Issue 3, 20-28

 25

that - on the systems we have had access to - the
“scheduled” communication we have described
earlier delivered a much better performance than
MPI_Gather() did.

 Fig.3 − The time of unscheduled versus scheduled
commnication on a SunFire 15K

In the tests each “slave” processor sent a message
to a “master” processor, at first using MPI_Gather()
and then using our scheduled point to point
communication. The tests were carried out with
messages having lengths of 200, 1000, 10000,
100000, 200000, 300000, 400000 and 500000
double values and with a number of processors
ranging from 3 to 24. Communication times were
measured and in each case our system behaved
better.

For example Fig.4 shows the compared
communication times for the test with 10,000
doubles.

Fig.4 − Comparison of communication times:

MPI_Gather() versus scheduled point to point
commnication on a SMP machine with 24

UltraSPARC II processors

Now that we know how to efficiently schedule
the data exchanges between the slaves and the
master (the so called “checkpoint'' we have
mentioned), let us focus on the second issue, that is,
what to send during such a checkpoint.

During a checkpoint the pair of involved
processors exchanges collections of change objects

(which we have defined in section 3.3.1): the slave
sends its modifications to the master which in its
turn replies with the collection of changes that the
slave is unaware of. Regarding the slave, it is easy to
decide what is needed to be sent in the next
checkpoint: the algorithm simply adds everything
that it has modified to a collection of changes, which
is emptied before each cycle begins. Regarding the
role of the master, however, there is a special
module called the bookkeeper which makes use of
the logical clocks to be able to determine the items
in the data structure (i.e. the above mentioned
changes) that are to be sent to a particular slave,
should the checkpoint time come. In order to decide
which changes are to be sent, an item that can be
changed contains a logical clock, which can be seen
as a “version number'' that gets incremented. Also,
each slave processor has a similar logical clock
associated with it. Based on these values the master
can decide which changes have to be sent to each
slave.

More details about the implementation of this
system can be found in [7].

3.3.3. WEAKNESSES OF THE TWO-

LEVEL FRAMEWORK
For tests and practical implementation of the

parallel framework we have used a Sun Fire 15K
HPC service having a backend with 48 processors.
The tests have been carried out with an increasing
number of processors, from 2 up to 36 processors.
Each value is an average over five runs and the
sequential time was measured to 234.978 seconds.
The diagram in Fig.5 depicts the speedup that was
achieved.

Fig5 − The speedup obtained with the implementation
of the parallel ant colony algorithm for TSP using the

two-level framework

It is assumed that the pronounced degrading of
the speedup, which occurs over 26 processors, is
happening when the sum of communication times of
all slaves during a cycle reaches values close enough
to the average processor computation time for one

Miticǎ Craus, Laurenţiu Rudeanu / Computing, 2004, Vol. 3, Issue 3, 20-28

 26

cycle. This is the point when wait times begin to
occur inside processing units when they reach
checkpoints, because at that time there are still one
or more processors which haven't finished their
checkpoint. The cause of this bottleneck situation is
that as the number of processors grows the
checkpoint communication time doesn't necessarily
decrease to make it possible for the increasing
number of checkpoints to fit within the per-
processor cycle computation time, which usually
gets shorter (in the case of a parallel ACO algorithm
more processors mean less ants per processor to
move around, therefore less work to do). This means
that a processor that is trying to perform a
checkpoint while another one still has not finished
its own checkpoint would have to wait until it
receives the acknowledge signal from the master,
signaling that the ongoing checkpoint has finished;
otherwise it would have to try to overlap the
checkpoints, which as we have shown is not always
appropriate as it doesn't necessarily lead to better
communication time.

These considerations drove us to develop the
multi-level system, which tries to go around the
discussed bottleneck issues of the first model.

4. THREE-LEVEL PARALLEL

FRAMEWORK
In the improved three level parallel framework

there are three types of processing nodes: master,
submaster and slave nodes. One of the processors
acts as a master, several act as submasters and the
rest act as slaves. The set of slaves is partitioned so
as each each slave communicates with exactly one
submaster.

The system is useful only if the number of
submasters is at least 2 and there is at least one
submaster with more than one slave. The number of
submasters (and therefore the number of slaves) is a
parameter in the program and is known before
runtime. Based on the rank number, each processor
is able to tell whether it is a slave, a submaster or a
master. Also each slave can deduce the rank of its
submaster and each submaster can compute the list
of the slaves it has to deal with.

The runflow in the three level framework is
presented in Fig.6. First, as in the case of the two-
level framework, the master detects the problem
instance, wraps it up in a message that is
broadcasted to all the other processors and initializes
the central data structures. The control then passes to
the slaves which start the algorithm while the master
and the submasters are waiting for requests to update
the data. The slaves’ behavior is very much the same
as in the two-level framework, the only difference is

that now it does not communicate directly with the
master but instead to its submaster.

A slave initializes its structures and then passes a
callback function (seqAlgReady() in Fig.6) to the
sequential algorithm (SeqAlg) before letting it take
over. When the algorithm has its partial results ready
(for example at the end of a cycle) it calls this
callback function it was provided with, passing the
control back to framework. The slave then submits a
checkpoint request to its submaster. When the
acknowledge is received it packs the data it has
modified as a list of change objects, sends them and
then receives and unpacks the changes from
submaster, applying them to the local structures.
When the checkpoint is over seqAlgReady() returns,
and the sequential algorithm carries on.

As part of the checkpoint, the solution the slave
obtained in the last cycle - or a qualitative evaluation
of it - is also passed to the submaster.

A bookkeeper in each submaster stores the list
locally, builds a complete list of changes that need to
be sent to that specific slave and then sends it.

 When all (or a tunable percent) of the slaves of
the submaster have completed their checkpoints, the
submaster initiates a checkpoint with the central
master. It efficiently packs all the changes it had
received from the slaves in the last cycle and sends
them to the master in a single message - if possible.

After acknowledging the request the master
receives the list of changes from the submaster and
updates the global data structures. Then the master
sends to that submaster a patch containing the
changes already received in the current cycle from
other submasters. The submaster then passes the
control to the slave as described earlier.

So, the checkpoint between a slave and a
submaster is similar to the checkpoint that takes
place between a submaster and the master.

Fig.6 − How the master, submasters and the slaves

work in the three-level framework

What else can be done inside a checkpoint?
Basically anything that is considered important by
the algorithm which is dealt with by the framework.

Miticǎ Craus, Laurenţiu Rudeanu / Computing, 2004, Vol. 3, Issue 3, 20-28

 27

The procedures for sending and receiving collections
of changes are supplied by the sequential algorithm
and the checkpoint procedure can be overridden. In
this way the protocol for data exchange can be
customized to meet any specific demands. For
example there are several parallel implementation of
ACO meta-heuristic [5] that in order to minimize the
communication overhead chose to schedule the data
exchanges between the server and the master to take
place once every predefined number k of cycles. If
it's needed this can also be done in our case by
making the sequential algorithm call the callback
function (seqAlgReady()) every k cycles. Another
example is the global updating rule in ant
algorithms, which might exist or not. In our case this
can be managed by changing the function that
handles the checkpoint requests in the master.

5. GENERALITY OF THE FRAMEWORK

The architecture of the framework is object
oriented and modular. That is why it is easy to adapt
it in such a way to be used with other sequential
algorithms. The changes which have to be made are
local and they do not require modifications in other
places in the framework. The user of the framework
has to implement C++ classes for the following
modules:
1. the sequential algorithm;
2. the change;
3. the patcher object, to handle the collections of

changes and to apply them to the local data
structures;

4. the packager object which is to efficiently pack
the problem instance in order to be sent to all
processors over the network.

6. EXPERIMENTS

In order to test the framework and the ACO for
TSP parallelization, we have used a TSP instance
with 229 cities (gr229.tsp) from the TSPLIB library.

The first test runs have been carried out on a
network of 9 PC’s (Pentium IV with 512 MB RAM)
with an increasing number of slave processes, from
14 up to 112. The results that were achieved are
depicted in Fig.7.

The execution time for sequential algorithm is
41.618 seconds in this case. As it can be observed,
the time achieved by the parallel framework is better
than the sequential time, but the period of parallel
time increases proportionally with the number of
processes. This can be explained by the fact that
starting from 9 processes it is not possible to assign
one process per processor, so we do not have a real
parallelism.

Fig.7 – The time for TSP achieved with the two-level

and three-level parallel framework, using a PC’s
network

As Fig.7 shows, the parallel times for the three-
level framework should become better than those of
the two-level framework only for a number of
processes somewhere between 20 and 30 processes.
Therefore we believed that the advantage would
only become effective on a parallel machine with at
least 30 CPUs.

The first tests on a real parallel machine were
done on a Sun HPC service having a backend with
24 processors. The multi-level framework showed
little or no advantage over the simple master-slave
system. This proved our supposition that the
advantage of the multi-level framework should
become effective on a parallel machine with at least
30 processors.

For tests on a parallel machine with at least 30
CPUs we have used a Sun Fire 15K HPC service
having a backend with 48 processors. The test runs
have been carried out with an increasing number of
processors, from 10 up to 40 processors. The
diagram in Fig.8 below depicts the speedups that
were obtained for the two systems we are
comparing: one curve is for the simple master-slave
system and the other one is for the multi-level
system.

It can be seen that over 30 processors, the
speedup decreases in the case of the simple master-
slave paradigm while the multi-level system
manages to preserve an approximately linear
speedup. Thus, the test results for a 3-level
framework prove that the multi-level model
overcomes the limitations in the basic master-slave
model

Miticǎ Craus, Laurenţiu Rudeanu / Computing, 2004, Vol. 3, Issue 3, 20-28

 28

Fig.8 – The speedup for TSP achieved with the two-
level parallel framework, using a Sun Fire 15K HPC

7. CONCLUSIONS AND FUTURE WORK

The ACO for TSP implemented by means of the
two-level parallel framework has good results:
approximately linear speedup up to 30 CPUs and
low communication cost. The degradation for a
larger number of CPUs is a disadvantage of the
master-slave paradigm.

The test results prove that the multi-level model
overcomes the limitations in the master-slave model.

Further on, we intend to implement a tree model
that establishes the tree depth taking into account
hardware architecture.

8. CREDITS

The authors would like to acknowledge the
support of the European Commission through grant
number HPRI-CT-1999-00026 (the TRACS
Programme at Edinburgh Parallel Computing
Centre) and the HPC-Europa consortium.

The authors would also like to acknowledge the
support of the the Romanian HPC Centre,
“CoLaborator”.

9. REFERENCES

[1] M. Dorigo and G. D. Caro. Ant algorithms for
discrete optimization, Artificial Life, no. 5 (1999),
pp. 137-172.
[2] P. Delisle, M. Krajecki, M. Gravel, and
C. Gagne. Parallel implementation of an ant colony
optimization metaheuristic with OpenMP,
Proceedings of the 3rd European Workshop on
OpenMP (EWOMP’01), Barcelona, Spain, 2001.
[3] T. Stutzle. Parallelization strategies for ant
colony optimization, Lecture Notes in Computer
Science, vol. 1498 (1998), pp. 722-731.
[4] E. Ghazali Talbi, O. Roux, C. Fonlupt, and
D. Robillard. Parallel ant colonies for combinatorial
optimization problems, Lecture Notes in Computer
Science, vol. 1586 (1999), pp. 239-247.

[5] B. Bullnheimer, G. Kostis, and C. Strauss.
Parallelization strategies for the ant system, High
Performance Algorithms and Software in Non-linear
Optimization (R. D. L. et all., ed.), Applied
Optimization, vol. 24 (1998), pp. 87-100.
[6] D. A. L. Piriyakumar and P.Levi. A new
approach to explointing parallelism in ant colony
optimization'', 2001.
[7] M. Craus and L.Rudeanu. Parallel Framework
for Ant-like Algorithms, Proceedings of the 3rd
International Symposium on Parallel and
Distributed Computing (ISPDC 2004), Cork,
Ireland, July 5th-7th 2004, pp.36-41

Mitică Craus. Education:
1975 – 1979 : Student at the

Faculty of Mathematics and
Computer Science - "Al. I. Cuza"
University of Iasi

1999 : Ph.D. in computer
science.

Present job: Associated
Professor at the Faculty of

Automatic Control and Computer Engineering,
Department of Computer Science and Engineering

Computer skills: Data structures, algorithm
design (sequential, parallel and distributed), C/C++,
Java, PASCAL and FORTRAN programming

Laurenţiu Rudeanu. Education:

1997 – 2002 : Student at the
Faculty of Automatic Control and
Computer Science - Computer
Science Department of the
"Gh.Asachi" Technical University
of Iasi

2003 : MSc in Distributed
Systems

Present job: Java Software Developer at a
private software company.

Computer skills: Programming: Data structures
and algorithms, C/C++, Java and J2EE
technologies, SQL, MPI, OpenMP, Perl, shell
scripting

Database administration: Oracle, MS SQLServer
Networing and system administration: Linux,

FreeBSD, WindowsNT, Cisco routers

